
XWizard: The Online Informatics
Toolbox

– Handbook for Students –

Lukas König, Friederike Pfeiffer-Bohnen

s0

s1b
s2

a

s3b
a

a

s4
b

b

a

b

a

a b a a b b a

Script ID-10700

http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-10700#Output
http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-10700#Output

XWizard: The Online Informatics
Toolbox

– Handbook for Students –

Contents
1 What is XWizard? 3

1.1 Native Object Types . 3
1.2 Plain PDF Generator Code Types . 7

2 Access to XWizard 7

3 Working with XWizard 8
3.1 Scripts . 8
3.2 Conversion Methods . 11
3.3 Applying Conversion Methods via Scripts . 13
3.4 Syntax and Features of the Native Script Types . 14
3.5 URLs and Short URLs to XWizard scripts . 14

4 Solving Exercises with XWizard 15

5 Legal Note 16

2

1 What is XWizard?
XWizard is a free (web) tool for the automatic visualization, manipulation and PDF generation
of many types of objects from theoretical computer science (such as Turing machines, push-down and
finite automata, Chomsky grammars etc.). A broad range of algorithms can be applied to the objects,
producing intuitive and customizable views. XWizard is well-suited for students’ self-studies, and it
is powerfull in aiding teachers at the creation of course material such as exercises (the X in XWizard
stands for “eXercise” – and also for “anything”).

XWizard can be used to create a variety of object types. To give an overview of its range of
functionality, the following section lists the most important object types including their main features.
If you want to learn how to work with these objects, manipulate them and create new ones, skip to
section 3 right away.

1.1 Native Object Types
The main XWizard object types are categorized into one of the two groups “Theoretical Computer
Science” or “Practical Computer Science” (being aware that not all do perfectly fit into only one group;
in future these groups may change). The list below follows this categorization as well. Below the name
of each object type, its main features are listed.

Below the figures, there is a link to the corresponding object on the XWizard website which can
be used to play around with XWizard and informally get the idea of how it works

.

Theoretical Computer Science

• Finite state machines (FSMs):

– pre-implemented examples

– arbitrary self-defined or ran-
dom FSMs

– step-wise simulation (det. or
non-det.) of arbitrary input
words

– minimization

– creation of equivalent deter-
ministic FSM

– conversion into equivalent

∗ push-down automaton
∗ Turing machine
∗ Chomsky grammar
∗ regular expression

– . . .

FSM:

s0

s3
a

s2
b

a / b

a
s4

b

b

s1
a

a / b

a a b a a b

Minimization table:

s1 ×0

s2 ×0 ×1

s3 ×1 ×0 ×0

s4 ×0 − ×1 ×0

s0 s1 s2 s3

Script ID-13414

3

http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-13414#Output

• Push-down automata (PDAs):

– pre-implemented examples

– arbitrary self-defined PDAs

– step-wise simulation (det. or
non-det.) of arbitrary input
words

– multiple calculations in paral-
lel

– conversion into equivalent

∗ Chomsky grammar
∗ Turing machine

under construction

– . . .

0 0 0 1 0 1 0 1 0
⇑

s0

s3

s1

s2

(s1 , 1, 0) → (s2 , λ)

⇒ 0
0
0
k0

Script ID-13417

• Turing machines (TMs):

– pre-implemented examples

– arbitrary self-defined or ran-
dom TMs

– simulation (det. or non-det.)
of arbitrary input words

– multiple calculations in paral-
lel

– conversion into equivalent
Chomsky grammar

under construction

– step-wise simulation

under construction

– . . .

1 ?

A (B, 1, L) (B, 1, R)
B (C, ?, L) (A, 1, L)
C (D, 1, L) (H, 1, R)
D (A, ?,R) (D, 1, R)
H

Tape Transition

?̂ (A, ?) → (B, 1, R)
1?̂ (B, ?) → (A, 1, L)

1̂1 (A, 1) → (B, 1, L)
?̂11 (B, ?) → (A, 1, L)
?̂111 (A, ?) → (B, 1, R)

11̂11 (B, 1) → (C, ?, L)

1̂ ? 11 (C, 1) → (D, 1, L)
?̂1 ? 11 (D, ?) → (D, 1, R)

11̂ ? 11 (D, 1) → (A, ?,R)
1 ? ?̂11 (A, ?) → (B, 1, R)

1 ? 11̂1 (B, 1) → (C, ?, L)

1 ? 1̂ ? 1 (C, 1) → (D, 1, L)
1?̂1 ? 1 [(D, ?) → (D, 1, R)]

Script ID-16304

• Chomsky grammars:

– pre-implemented examples

– arbitrary self-defined or ran-
dom grammars

– parse tree visualization

– single word derivation

– tree of all derivable words,
limited by derivation or word
length

– conversion into equivalent

∗ epsilon-free grammar
∗ Chomsky normal form
∗ Greibach normal form
∗ Kuroda normal form
∗ PDA

– . . .

(Most algorithms applicable to type-
3 / type-2 (or type-1: Kuroda NF)
grammars only.)

G = ({A,S}, {a, b, c}, P, S)
P = {S → A | SS | aSb,

A → c | AA}

S

a

S

ba

S

b

S S

A

c

A

c

Script ID-13423

4

http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-13417#Output
http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-16304#Output
http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-13423#Output

• Red-black trees:

– pre-implemented examples

– arbitrary red-black trees given
by

∗ insertion order or
∗ explicit tree definition

– conversion into equivalent

∗ 2-3-4 tree

– based on strings or numbers

4

2 6

1 3 5 8

7

Script ID-13425

• 2-3-4 trees:

– pre-implemented examples

– arbitrary 2-3-4 trees given by

∗ insertion order or
∗ explicit tree definition

– conversion into equivalent

∗ 2-3-4 tree

– based on strings or numbers

4

2 6

1 3 5 7 8 12

Script ID-13426

• Pat trees:

– pre-implemented examples

– arbitrary Pat Trees given by
text base

– so far visualization only

6

10

d

18

s

1

a

4

c

15

d

24

dot

2

e

3

h

2

i

2

s

2

semiCol

8

space

5

t

2

w

12

d

5

s

20

dot

4

space

14

d

3

s

22

dot

6

space

13

d

4

s

21

dot

5

space

23

dot

7

space

26

end

25

semiCol

8

d

16

s

11

d

6

s

19

dot

3

space

7

a

1

i

9

d

17

s

Script ID-13428

Practical Computer Science

• Binary decision diagrams
(BDDs):

– pre-implemented examples

– calculation of BDDs from arbi-
trary Boolean functions

– Visualization of BDDs

– Visualization of step-wise cre-
ation of BDDs

a

b

 0

b

 1

c

 0

c

 1

d

 0

d

 1

e

 0

e

 1

0

 0

1

 1 1 0

 1 0

 1 0

 1 0

Script ID-62

5

http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-13425#Output
http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-13426#Output
http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-13428#Output
http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-62#Output

• Huffman codes:

– pre-implemented examples

– calculation of Huffman trees
for arbitrary symbol distribu-
tions

– Two different visualization
modes (bottom-up and top-
down)

u 2

111

n 2

110

4

 1 0

f 4

10

8

 1

 0

m 2

011

a 2

010

4

 1 0

d 1

0011

- 1

0010

2

 1 0

h 1

000

3

 1

 0

7

 1

 0

15

 1

 0

Script ID-72

• Number representations:

– ExcessQ

– Fixed-point rational

– Floating-point rational (in-
cluding IEEE754)

– One’s complement

– Two’s complement

– Conversion between these rep-
resentations and decimal

– Arbitrary bases from binary to
36.

1 00011001 00000011100000000000000ieee754 = −1.99911E − 31

10001100100000011100000000000000 (FloatingPointRational)

MANTISSA: 1.00000011100000000000000 (FixedPointRational) positive length autoQ ieee754 EXPONENT: 00011001 (ExcessQ) value

afterDecVal INTVALUE: 100000011100000000000000 (ExcessQ) afterDec value

5 radix q length value

2 0 24 8503296

23 1.01367

false 32 true true radix q length value

2 127 8 -102

-1.99911E-31

Script ID-15538

Furthermore, the following object types are currently available, but under construction, i. e., they
only have little functionality so far, and the depiction might be confusing (particularly this is the case
for large logic circuits):

• Logic circuits:

under construction (So far, logic
circuits can only be displayed.)

&

a1

a

&

a2
b

u

E

U

=1

x1

=1

x2

1

n

≥1

o

Script ID-8861

• Regular expressions:

under construction (More pre-
cisely, regular expressions do work
well, but all they can do so far is
listing their words, see example.)

(a+ b)?c+ ∅?
First 16 words: λ, c, ac, bc,

aac, abc, bac, bbc, aaac, aabc, abac, abbc, baac, babc,

bbac, bbbc, . . .

Script ID-14238

6

http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-72#Output
http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-15538#Output
http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-8861#Output
http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-14238#Output

Note that the very specific object type MARB (for example Script ID-1847) as well as the simple
calculator (Script ID-235) and the meta-type MetaProperties (Script ID-15847) are not listed here.
A quick help for each of them is provided on the XWizard website; the MetaProperties type can be used
to create the overview of object types on page 11 of this document. Moreover, XWizard is constantly
under construction, meaning that both new object types and improvements of the available ones can
occur at any time.

1.2 Plain PDF Generator Code Types
Besides the prefabricated object types, XWizard can process arbitrary LATEX and Graphviz code. This
feature has originally been implemented for technical reasons1, but once available, it brings along the
possibility to create complex objects which go far beyond the native XWizard types. A detailed
description of the features which come with these plain types is not within the scope of this “average
user”-oriented documentation. For more details on customizing the XWizard output, creating complex
objects which may contain data from several of the native types, and on generating exercises to be solved
online by students (cf. Sec. 4), see the handbook “XWizard for Teachers”.

As a pleasant side-effect, students unfamiliar with LATEX or Graphviz are free to use XWizard
as an easy-to-use learning tool which works with arbitrary documents and does not require the
extensive installation of LATEX or Graphviz on a home computer.

2 Access to XWizard
XWizard can be simply accessed via:

www.xwizard.de
or by clicking (or scanning) any of the script links in this document, such as:

Script ID-10700

In addition to the web version, there exists a download version called Very Fast PDF Generator
(VFP). It can be retrieved (including installation instructions) from:

https://sourceforge.net/projects/easyagentsimulation

Both versions are mostly innerchangeable, therefore, the term XWizard will refer to both in the fol-
lowing, except where a difference between the two is explicitly addressed. Such as in the following:

XWizard can be switched between English and German language; so far, VFP is only available
in English.

The following figure shows the structure of the XWizard components. The XWizard work flow
based on scripts, conversion methods etc. is described in the next section.

1Since all XWizard objects are created by either PDF LATEX or Graphviz DOT (or GNUPlot when using the download
version).

7

http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-1847#Output
http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-235#Output
http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-15847#Output
www.xwizard.de
http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-10700#Output
http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-10700#Output
https://sourceforge.net/projects/easyagentsimulation

XWizard Web Application

Object 1

Object 2

…

Object n

Very Fast PDF Generator (VFP)

Scripts

Object 1

Object 2

…

Object n

X
W

iz
ar

d
 F

ra
m

e
w

o
rk

Hyperlinks / URLs

IDs / Short URLs

Script formatting

Exercise creation

PDF Generator code

Pre-processor

Functions

Hyperlinks / URLs

-

Script formatting

Exercise creation

PDF Generator code

Pre-processor

W
eb

D

o
w

n
lo

ad

… CM11 CM12

… CM21 CM22

… CMn1 CMn2

…

Conversion methods

… CM11 CM12

… CM21 CM22

… CMn1 CMn2

…

Scripts Functions Conversion methods

XWizard and all implementations related to it are free software2. They are allowed to be run for any
purpose (except commercial), and the sourcecode can be studied, changed, and further distributed in
accordance with this legal notice: http://www.xwizard.de:8080/Wizz?impressum&lang=eng.

3 Working with XWizard
There are two main mechanisms which can be utilized when working with XWizard: scripts, which
define a specific object, and conversion methods, which provide a mechanism to apply algorithms
to an object (e. g., minimizing an FSM). More precisely, scripts establish the universal framework to
control XWizard, meaning that, in principle, all functionality can be exploited by just writing scripts.
Conversion methods are implemented as a special case within this framework. They provide a simple
graphical access point for users and do not involve writing scripts at all. Many typical applications of
XWizard can be established solely with conversion methods.

3.1 Scripts
XWizard’s basic workflow is simply to process a script, translate it into a PDF image and display this
image. A script is usually built up of three parts (or else four, when encoding a script conversion at the
bottom, see below), as illustrated in the following example of a PDA:

pda: ⇐ Script preamble
(s0, 0, k) => (s1, 0k);
(s0, 1, k) => (s3, 1k);
(s1, 0, 0) => (s1, 00);
(s1, 1, 0) => (s2, lambda);
(s1, lambda, k) | (s3, lambda, k) => (s0, k);
(s2, lambda, 0) => (s1, lambda);
(s2, lambda, k) => (s3, bk);
(s3, 0, 1) => (s3, b);
(s3, 0, b) => (s3, lambda);
(s3, 1, 1) => (s3, 11);
(s3, 1, b) => (s3, b1);

Main script part

2https://en.wikipedia.org/wiki/Free_software

8

http://www.xwizard.de:8080/Wizz?impressum&lang=eng
https://en.wikipedia.org/wiki/Free_software

--declarations--
e=#n#;
s0=s0;
F=s0;
kSymb=k;
inputs=000101010;
simSteps=3;

--declarations-end--

Variable declarations

All scripts include the following three parts: a preamble determines the type of object defined
by the script; a main part defines the actual structure of the object; variables in a declarations
part can be used to assign many types of additional properties (both the complete declarations
part and some of the variables can be omitted, in which case the according variables are set to
standard values).

This example script will create the following image (using Graphviz and LATEX in the background):

0 0 0 1 0 1 0 1 0
⇑

s0

s3

s1

s2

(s1 , 1, 0) → (s2 , λ)

⇒ 0
0
0
k0

Script ID-13417

The script can be pasted into the script areas of both VFP and XWizard to produce the given output,
see screenshots below (clicking or scanning the above QR code will open XWizard and automatically
execute the script).

9

http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-13417#Output
http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-13417#Output

VFP:

XWizard:

The calculation of the displayed PDA can be carried on by increasing the “simSteps” variable in
the script or by repeatedly clicking the conversion method “Simulate one step” (cf. description
of conversion methods below).

When using VFP, the PDF output is automatically updated each time the script area changes. When
using XWizard, the image output is created after clicking the “Draw!” button on the web page. A PDF
can be retrieved by clicking the “Download PDF” link; it appears when scrolling down below the PDF
output.

An overview of the script types available at creation time of this document are depicted in the
following figure (solid and dotted arrows denote script type transitions by conversion methods; dashed
arrows denote the PDF creation process; diamond nodes represent plain PDF generator script types –
see below for details on these terms).

10

Object Types and their Connections in XWizard

BDD

LaTeX PlainDOTPlainJavaPDF

PDF

FSM

RegularExpression

method: 'Regular Expression'

PDA

method: 'PDA'Grammar

method: 'Right-linear Grammar'

Turing

method: 'TM'

Numbers

method: 'PDA'

Properties

Tree234

RedBlackTree

method: 'Red-black tree'method: '2-3-4 tree'

Calc

PlainGNUPlot

PatTree HuffmanLogicCircuit

MARB

A current version of the figure can be retrieved via this link (note that it is itself generated by a simple
XWizard script):

Script ID-15812

For any of these object types, there are example scripts on the XWizard web page:

http://www.xwizard.de:8080/Wizz?lang=eng&hide#Examples

3.2 Conversion Methods
Besides creating and displaying objects, a main functionality of XWizard is to apply algorithms to
scripts, e. g., to visualize the stepwise computation of a PDA or to minimize an FSM. Algorithms are
applied to objects by using conversion methods, i. e., methods that transform one script into another.

When applying a conversion method, the script belonging to the current object is replaced with the
new script created by the conversion method, and the object defined by the new script is created
and displayed.

The easiest way to apply a conversion method to a script is to click the according button in the
“Conversion methods” area of the graphical user interface. The following screenshot shows the conversion
methods available for PDA scripts in XWizard:

11

http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-15812#Output
http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-15812#Output
http://www.xwizard.de:8080/Wizz?lang=eng&hide#Examples

For example, when clicking the “Simulate one step” button, the PDA script will be translated into a
very similar script where the display mode is switched to step-wise visualization; at repeated clicks, the
simSteps variable will get incremented which, in turn, will result in a PDA simulated one step further
than before. Overall, the conversion methods in the category “Display Modes” can be used to switch
between step-wise and complete calculation view, a visualization of the PDA definition, and combinations
of those (cf. feature overview in section 1.1).

The according script created by the conversion method is the following:

pda:
(s1, 1, 0) => (s2, lambda);
(s3, 1, b) => (s3, b1);
(s3, 0, 1) => (s3, b);
(s3, 0, b) => (s3, lambda);
(s1, 0, 0) => (s1, 00);
(s3, 1, 1) => (s3, 11);
(s3, lambda, k) => (s0, k);
(s1, lambda, k) => (s0, k);
(s2, lambda, k) => (s3, bk);
(s0, 1, k) => (s3, 1k);
(s0, 0, k) => (s1, 0k);
(s2, lambda, 0) => (s1, lambda);

--declarations--
e=#n#;
s0=s0;
F=s0;
kSymb=k;
inputs=000101010;
simSteps=4; /* Value increased by conversion method. */
maxNondetCalcDepth=12

--declarations-end--

12

The resulting object looks like this:

0 0 0 1 0 1 0 1 0
⇑

s0

s3

s1

s2

(s2 , λ, 0) → (s1 , λ)

⇒ 0
0
k0

Script ID-13100

Click the QR code and try it yourself!

3.3 Applying Conversion Methods via Scripts

The application of conversion methods via scripts is an advanced feature added for interested
readers. It is not mandatory for working with XWizard in the usual way, so you may well skip
this section.

As mentioned above, scripts control XWizard completely; this particularly means that even the
application of conversion methods can be initiated via a special script type. Such a conversion script
starts with the regular three parts, which determine the script to be converted. As a fourth part, a
conversion command is written as the last line of the script. A conversion command looks like this:

>CM-NAME<

where CM-NAME is the English name of the conversion method to be applied or, if the conversion method
requires parameters:

>CM-NAME[p1, p2, ...]<

where p1, p2, ... are the method parameters (they can be put in quotes if they are supposed to
include special characters such as white spaces or commas: ["p, a, r, 1", "p, a, r, 2", ...]).
For example, the “Simulate one step” conversion method can be applied to a PDA script by adding the
red-colored last line to it:

13

http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-13100#Output
http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-13100#Output

pda:
(s1, 1, 0) => (s2, lambda);
(s3, 1, b) => (s3, b1);
(s3, 0, 1) => (s3, b);
(s3, 0, b) => (s3, lambda);
(s1, 0, 0) => (s1, 00);
(s3, 1, 1) => (s3, 11);
(s3, lambda, k) => (s0, k);
(s1, lambda, k) => (s0, k);
(s2, lambda, k) => (s3, bk);
(s0, 1, k) => (s3, 1k);
(s0, 0, k) => (s1, 0k);
(s2, lambda, 0) => (s1, lambda);

--declarations--
e=#n#;
s0=s0;
F=s0;
kSymb=k;
inputs=000101010;
simSteps=3;
maxNondetCalcDepth=12

--declarations-end--
>Simulate one step< /* This is a conversion command. */

When entering this script, the result will be exactly the same as after clicking the according button
on the script without the conversion command.

3.4 Syntax and Features of the Native Script Types
XWizard is constantly being further developed, therefore, it does not seem practical to describe all
script types and features in this rather static handbook. On the other hand, the XWizard website
includes a comprehensive help page in both English and German, with descriptions of all main script
types, conversion methods and additional features. Therefore, please refer to this help page for an
up-to-date guide to most XWizard features:

http://www.xwizard.de:8080/Wizz?help&lang=eng (English help page)
http://www.xwizard.de:8080/Wizz?help&lang=ger (German help page)

3.5 URLs and Short URLs to XWizard scripts
XWizard scripts can easily be exchanged with others by using URLs which, in XWizard, are either
regular URLs or short URLs. For creating URLs, the according conversion buttons (1) “URL to this
script” and (2) “Short URL (ID) to this script” can be used (note that, strictly speaking, (2) is not a
conversion method and therefore not available in VFP). When creating a regular URL (1), the current
script will be transformed into a URL, meaning that the complete script string will be encoded in the
URL. As opposed to that, when creating a short URL (2), the script will be stored in a database and
associated to a number, the script ID. The retrieved URL will only contain the ID, and therefore, it will
usually be much shorter:

(1) Example of a regular URL to a BDD script:
http://www.xwizard.de:8080/Wizz?template=bdd%3A+a%2Cb%2Cc%2Cd%2Ce%3A+01101001100101101001011001101001

(2) Example of a short URL to the same script:
http://www.xwizard.de:8080/Wizz?template=ID-16130

Both URL types are in principle equivalent in their functioning. However, regular URLs can get so long
that current browsers might not even accept them; also, anti-malware programs might produce alerts
due to the unusual form of such URLs. Therefore, in many cases, short URLs should be preferred over
regular ones. Nevertheless, it has to be noted that short URLs depend on the XWizard database while
regular URLs are completely stand-alone. The database is of course properly maintained and archived,
but a regular URL may, from this point of view, be a little more reliable than a short URL.

14

http://www.xwizard.de:8080/Wizz?help&lang=eng
http://www.xwizard.de:8080/Wizz?help&lang=ger
http://www.xwizard.de:8080/Wizz?template=bdd%3A+a%2Cb%2Cc%2Cd%2Ce%3A+01101001100101101001011001101001
http://www.xwizard.de:8080/Wizz?template=ID-16130

4 Solving Exercises with XWizard
Besides the regular mode described so far, XWizard can run in a so-called exercise mode. The
exercise mode is triggered if a script includes the encoding of an “exercise” in its declarations part (see
below for an example). An exercise is a question, e. g., posed by a teacher for a group of students, which
the students are supposed to solve. The teacher can distribute a link to the students which leads them
to the exercise. In exercise mode, the question to solve is displayed above the script area of XWizard.
The user is allowed to use all available conversion methods in the quest of a solution, however, the
exercise definition can state that some conversion methods are hidden. The screenshot below shows an
example exercise including its script, displayed on the XWizard website. (Note that exercises cannot
be displayed using VFP.)

Script ID-11020

The user can enter a presumed solution in the text field entitled “Your solution”. If the solution is
correct, XWizard will print out a congratulations message, as well as, if provided by the creator of the
exercise, an additional explanation and a “secret word” (so far, the secret word has no further meaning,
it is only displayed as a small reward for solving the task). After the solution has been entered correctly
(and at any other time), XWizard can be switched back to regular mode by clicking the “Close exercise”
link.

The script below shows how an exercise is encoded in the declarations part of a script (colored in
red).

15

http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-11020#Output
http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-11020#Output

grammar:
A => A, A | 0 | epsilon;
E => A, 1, A;
S => E, E, E | S, S | 0;

--declarations--
e=#tit=~Create the parse tree for the word 01011 with the given Grammar.~,

exp=~<P>The output area shows the grammar tree with several derivations
of words generated by the grammar. Since the grammar includes an epsilon
production, the grammar has to be made epsilon-free first by using
the according conversion method. Afterwards, you can use the remaining
conversion method to create the parse tree for 01011. (All other
conversion methods are hidden.)</P><P>Execute these steps and count the
number of non-terminal nodes in the tree. Enter this number into the
solution field.</P>~,

sol=~6~,
cod=~parser-guru~,
met=~.*Epsilon.*|.*Parse.*~,
cur=~.*~,
tar=~.*~,
crypt=~false~,
excrypt=~false~,#;

N=S,E,A;
T=0,1;
S=S;
displayMode=2;
maxdepth=8;
cutNonTerminalBranches=true;
cutTerminalDoubleBranches=true;
maxLengthWords=4;
multiLetterSymbolsHaveIndex=true;
parseTreeNum=0;

--declarations-end--

In this case, the exercise is encoded as plain, human-readable text – which makes cheating easy. To
preserve the excitement of actually solving an exercise, two levels of encryption can be applied to the
scripts by their creators, encrypting either the exercise definition only or the whole script. Details of the
encoding of exercises and the encryption can be reviewed in the “handbook for Teachers”.

Of course, the execution of conversion methods via script, as described in Sec. 3.3, is not available
for encrypted scripts. Otherwise, hidden conversion methods could be executed.

5 Legal Note
The following legal notice is also available (in a possibly more current version) via

http://www.xwizard.de:8080/Wizz?impressum&lang=eng

Easy Agent Simulation (EAS) and the embedded Very Fast PDF Generator (VFP; also called PDF
XWizard or XWizard desktop version) as well as XWizard, the Web version of the latter, are open
source programs; the complete sources, particularly code in Java, SQL, XML, HTML, LaTeX, Graphviz,
XWizard-SCRIPT etc., native as well as generated, are protected by the Creative Commons by-nc-sa
license, see below.

The complete sources as well as Javadoc for most Java classes are available from Sourceforge:

• EAS (including VFP) on Sourceforge: https://sourceforge.net/projects/easyagentsimulation

• XWizard on Sourceforge: https://sourceforge.net/projects/xwiz

In a nutshell, you are free:

• to Share – to copy, distribute and transmit the work,

• to Remix – to adapt the work.

The licensor cannot revoke these freedoms as long as you follow the license terms.

16

http://www.xwizard.de:8080/Wizz?impressum&lang=eng
https://sourceforge.net/projects/easyagentsimulation
https://sourceforge.net/projects/xwiz

Under the following conditions:

• Attribution – You must attribute the work in the manner specified by the author or licensor (but
not in any way that suggests that they endorse you or your use of the work).

• Noncommercial – You may not use this work for commercial purposes.

• Share Alike – If you alter, transform, or build upon this work, you may distribute the resulting
work only under the same or a similar license to this one.

No additional restrictions – You may not apply legal terms or technological measures that legally restrict
others from doing anything the license permits.

Detailed license conditions (Germany): http://creativecommons.org/licenses/by-nc-sa/3.0/
de

Detailed license conditions (unported): http://creativecommons.org/licenses/by-nc-sa/3.0/
deed.en

© 2007-2016: Lukas König, Marlon Braun (red-black trees, 2-3-4 trees), Marc Mültin (pat trees),
Nils Koster (web design), Friederike Pfeiffer-Bohnen (web design).

Have fun with XWizard!

This document has been compiled on September 10, 2016

17

http://creativecommons.org/licenses/by-nc-sa/3.0/de
http://creativecommons.org/licenses/by-nc-sa/3.0/de
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en

	What is XWizard?
	Native Object Types
	Plain PDF Generator Code Types

	Access to XWizard
	Working with XWizard
	Scripts
	Conversion Methods
	Applying Conversion Methods via Scripts
	Syntax and Features of the Native Script Types
	URLs and Short URLs to XWizard scripts

	Solving Exercises with XWizard
	Legal Note

