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Abstract. In recent years, a number of authors have successfully extended parti-
cle swarm optimization to problem domains with multiple objectives. This paper
addresses the issue of parallelizing multi-objective particle swarms. We propose
and empirically compare two parallel versions which differin the way they di-
vide the swarm into subswarms that can be processed independently on different
processors. One of the variants works asynchronously and isthus particularly
suitable for heterogeneous computer clusters as occurringe.g. in modern grid
computing platforms.

1 Introduction

Particle Swarm Optimization (PSO) is now established as an efficient optimization al-
gorithm for static functions in a variety of contexts [21]. PSO is a population based
technique, similar in some respects to evolutionary algorithms, except that potential
solutions (particles) move, rather than evolve, through the search space. The rules, or
particle dynamics, which govern this movement, are inspired by models of swarming
and flocking [15]. Each particle has a position and a velocity, and experiences linear
spring-like attractions towards two attractors:

1. The best position attained by that particle so far (local attractor), and
2. The best position found by the swarm as a whole (global attractor),

where best is in relation to evaluation of an objective function at that position. The
global attractor therefore enables information sharing between particles, whilst the local
attractors serve as individual particle memories.

The optimization process is iterative. In each iteration, the acceleration vectors of all
the particles are calculated based on the positions of the corresponding attractors. Then,
this acceleration is added to the velocity vector, the updated velocity is constricted so
that the particles progressively slow down, and this new velocity is used to move the
individual from the current to the new position. The detailsof our implementation are
provided in Section 3.

Due to the success of particle swarm optimization (PSO) in single objective opti-
mization, in recent years, more and more attempts have been made to extend PSO to
the domain of multi-objective problems, see e.g. [18, 3]. The main challenge in multi-
objective particle swarm optimization (MOPSO) is to selectthe global and local at-
tractors such that the swarm is guided towards the Pareto optimal front and maintains



sufficient diversity. Our paper simply adopts one of the proposed strategies, namely
the sigma-method [18]. The paper’s focus is on parallelization strategies, and is largely
independent from the multi-objectivization technique used.

The motivation for parallelization is that for many practical optimization problems,
evaluating a single solution already requires a significantcomputational effort, e.g. if
the evaluation involves a computationally demanding fluid dynamics simulation. On the
other hand PSO and also other nature-inspired optimizationtechniques like evolution-
ary computation or simulated annealing usually require theevaluation of a large number
of solutions before producing good results. One way to resolve this predicament is to
employ parallel processing. While only few people have access to a dedicated parallel
computer, recently, it also became possible to distribute an algorithm over any bunch
of networked computers, using a paradigm called “grid computing”. Grid Computing
enables the sharing, selection, and aggregation of a wide variety of geographically dis-
tributed computational resources (such as supercomputers, compute clusters, storage
systems, etc.) and presents them as a single, unified resource for solving large-scale and
data intensive computing applications [13]. This idea is analogous to the electric power
network (grid) where power generators are distributed, butthe users are able to access
electric power without bothering about the source of energyand its location. As such,
grid computing promises to make high performance computingavailable to almost ev-
eryone. On the other hand, it makes parallelization more challenging, as one can no
longer assume a homogeneous set of processors. Also, grid computers usually do not
allow the direct communication between processors.

In this paper, we propose two parallel variants of MOPSO. In both cases, the basic
idea is to repeatedly divide the population into a number of subswarms which can be
processed in parallel. The subswarms run for a limited number of iterations and then
return their result (i.e. all non-dominated solutions found) to a central server. In the
next iteration, they are provided with a “guide”, a non-dominated particle, and re-start
search with this guide and all other particles re-initialized within the local search-space
neighborhood of the guide. The two proposed variants differin the way they select the
guides. The cluster-based subswarm MOPSO (C-MOPSO) waits for all subswarms to
return their results, and then performs a clustering step toidentify a number of well-
distributed guides along the non-dominated front. The hypervolume-based subswarm
MOPSO (H-MOPSO) selects guides one at a time based on their marginal hypervolume,
i.e. the hypervolume covered by a particle that is not covered by any other particle. Note
that the latter version works asynchronously, which makes it particularly suitable for
heterogeneous computer clusters such as the grid.

The paper is structured as follows. In the next section, we briefly survey related
work. Our parallel PSO variants are presented in Section 3. Some preliminary empirical
results on homogeneous as well as heterogeneous computer clusters are provided in
Section 4. The paper concludes with a summary and several ideas for future work.

2 Related Work

In PSO, parallelization has been largely neglected so far. We are aware of only one
paper [9] on parallel single-objective PSO, and no paper on parallel MOPSO. Thus, in



the following, we focus on parallel multi-objective evolutionary algorithms (MOEAs),
where parallelization has been studied extensively. The parallel MOEA approaches can
be grouped into three categories:

1. Master-slave: Here, a single processor maintains control over selection, and uses
the other processors only for crossover, mutation and evaluation of individuals. It
is useful only for few processors or very large evaluation times, as otherwise the
strong communication overhead outweighs the benefit of parallelization.

2. Island model: In this model, every processor runs an independent EA, using a sep-
arate sub-population. In regular intervals,migration takes place: The processors
cooperate by exchanging good individuals. The island modelis particularly suit-
able for computer clusters, as communication is limited, and thus most related to
our work.

3. Diffusion model: Here, the individuals are spatially arranged, and mate with other
individuals from their local neighborhood. When parallelized, there is a lot of inter-
processor communication (every individual has to communicate with its neighbors
in every iteration), but the communication is only local. Thus this paradigm is par-
ticularly suitable for massively parallel computers with afast local intercommuni-
cation network.

A detailed discussion of parallel evolutionary algorithmsis out of the scope of this pa-
per. The interested reader is referred to e.g. [22, 8, 2]. Oneof the few papers considering
heterogeneous processors is [6], which assumes an island model and examines different
migration policies and neighborhood structures.

Also, there are quite a few papers on parallelizing multi-objective evolutionary al-
gorithms. Most of these methods are based on the island model, and attempt to divide
the objective space into several regions which are then assigned to different proces-
sors. Deb [12] uses ideas from the Guided-MOEA [7] to focus the different subpopu-
lations on different trade-off ranges between the objectives. Branke et al. [5] proposed
to explicitly divide up the objective space into “cones”. Streichert et al. [23] study a
clustering method and apply a divide and conquer method. These approaches assume
communication between processors, and tested only a rathersmall number of parallel
processors (up to six). Heterogeneity of the processors hasnot been considered in either
of these papers.

Subswarms in MOPSO have already been used in [19] in order to obtain a better
covering of the front, and in [14] to maintain the spread of solutions.

Optimization in Grid Computing is an established field, e.g., Nimrod/O [1]. In Nim-
rod/O, several heuristics are provided like Simulated Annealing, Evolutionary Program-
ming and Genetic Algorithms which are being used to solve many real-world applica-
tions. However, they involve only single objective optimization techniques, and to our
knowledge, no PSO has been proposed yet.

3 Parallel Multi-Objective Particle Swarm Optimization

3.1 Multi-Objective Particle Swarm Optimization

A MOPSO starts with a set of uniformly distributed random initial particles defined in
the search spaceS. A set ofM particles are considered as a populationPt at the gener-
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are random values in the range[0, 1] andw is the inertia weight which is employed to
control the impact of the previous history of velocities.
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t is the position of theglobal best particle in the population, which guides the
particles to move towards the optimum. The important part inMOPSO is to determine
the best global particlep i,g

t for each particlei of the population. In single-objective
PSO, the global best particle is determined easily by selecting the particle that has
the best position. But in MOPSO,p
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MOPSO are iteratively repeated until a termination criterion is met.

3.2 Parallelization

Here, we propose two parallelization techniques. We assumethat there is a central
server maintaining the archive, distributing work to different processors and collect-
ing the results. This assumption is in line with the usual grid architecture. The parallel
processors are assigned sub-swarms, and run independent MOPSOs based on these sub-
swarms for a prespecified number of iterations. All found non-dominated solutions are
returned as result to the central processor.

Intuitively, it makes sense to have different subswarms each in different regions of
the non-dominated front. This is also the underlying assumption of the parallel MOEAs
discussed in Section 2. In our case, focus on different areasof the non-dominated front
is achieved by assigning each subswarm a “guide”. A guide is anon-dominated solution
from the archive. The subswarm is then randomly initializedin a search-space neigh-
borhood of the guide, and the guide itself becomes part of theswarm. Because of the
guide and the local initialization, the search of the sub-swarm is likely to focus on a
region of the non-dominated front close to the location of the guide.

The two parallelization approaches differ in the way they select guides from the
archive, which will be explained in more detail in the following subsections.
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Fig. 1. Selection of the global guide. Point B has a larger impact on the hyper-volume and there-
fore must be selected first. (�: solutions,◦: reference point)

Cluster-based subswarm MOPSOThe idea of the cluster-based subswarm MOPSO
(C-MOPSO) is to pick a set of guides which represents the current non-dominated front
as well as possible. This is achieved by performing a clustering operation on the archive,
with the goal to findN cluster representatives ifN is the number of processors avail-
able.

Note that this assumes synchronization after every iteration: the central processor
performs the clustering, sends out the different guides to the different processors, waits
for them to return their results, updates the archive, and then starts the next iteration.

Hypervolume-based subswarm MOPSOIn the hypervolume-basedsubswarm MOPSO
(H-MOPSO), guides are selected one by one according to theirmarginal hypervolume.
The hypervolume is the area dominated by all solutions stored in the archive [25]. The
marginalhypervolume of a particle is the area dominated by the particle that is not dom-
inated by any other particle. As guide, the particle from thearchive is selected which
has not been selected before and which has the largest marginal hypervolume. Only if
all archive solutions have been used as guides before, they are allowed to be re-used.
Figure 1 illustrates this. Point A has a smaller contribution to the whole hyper-volume
value than Point B. Therefore, Point B must be selected first.

Note that this guide selection process is asynchronous. Whenever a processor re-
turns its results, they can be immediately integrated into the archive, a new guide can
be selected and the processor can be assigned a subswarm based on a new guide. This
makes the approach particularly suitable for heterogeneous computer clusters such as
grids, where very fast processors are used along with ratherslow ones. It is not neces-
sary to wait for the slowest processor to return its results before spawning the next set
of subswarms as is the case with C-MOPSO.

For both variants, the region used to initialize a subswarm around the guide can
be chosen in different ways. In preliminary experiments, wetested the following three
approaches:
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Fig. 2. (a) A fixed sized area around each guide is selected to be the search space of the corre-
sponding MOPSO for that guide. (b) The area in search space between surrounding neighbors in
the objective space is selected to be the search space for theMOPSO. The neighbors are shown
with arrows. For point A, both neighbors are not surroundingit in the search space, therefore
the maximum and minimum coordinates of A and its neighbors are selected to define the search
space.

– A subswarm can use the whole search space of the problem. Thisis not efficient,
if the search space is large, as it takes a while until the subswarm converges to the
interesting area around the current non-dominated front.

– A fixed, but smaller search area can be defined around the inputguide. We use
±10% of the whole search space range in each dimension (capped by the search
space boundaries, of course).

– The area between them neighbors (in them-objective space) of the guide which the
guide is in between, is selected as the search space of the subswarm. The neighbors
are non-dominated solutions selected from the archive. Theselection of neighbors
is based on the distances in the objective space.

Figure 2 shows the last two scenarios in an example with 2 parameters.◦ denotes the
non-dominated solutions stored in Archive.dat. In (a), a selected area around each guide
is set to be the search space for the corresponding MOPSO. Depending on the defined
size, the main search space can be easily covered by all of them. In (b) the area between
the two neighbors is selected to be the search space. Since the neighbors of the guide
are selected in the objective space, it can happen that the area defined by their positions
in the search space does not contain the guide, e.g., point A.Therefore, the maximums
and minimum values of their corresponding decision vectorsare set to be the high and
low ranges for the defined search space. In our preliminary experiments, the second
range definition performed best and will be used for the remainder of this study.



4 Experiments

In this section, we test C-MOPSO and H-MOPSO on two scenarios, one consisting of
homogeneous processors, one consisting of heterogeneous processors.

Parameter Setting In both approaches, for a subswarm, a MOPSO method as proposed
in [18] is used with 20 particles and an internal archive sizeof 20 and is run for 20
generations. We select standard values for turbulence factor and inertia weights as 0.1
and 0.4.

The hyper-volume values in H-MOPSO are being computed by building a grid be-
tween a reference point and the origin in the objective space. The grid points dominated
by the solutions are counted as the hyper-volume. High values of hyper-volume show a
high quality in terms of the diversity and convergence of theobtained solutions.

The selected test function from literature is a 2-objectivetest containing 10 param-
eters [10]:

f1(x) = 1 − exp(−
∑

i

(xi −
1√
n

)2)

f2(x) = 1 − exp(−
∑

i

(xi +
1√
n
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wherexi ∈ [−4, 4].
We examine both of the methodologies in homogenous and heterogeneous environ-

ments. In order to simulate the heterogeneous environment,we consider 20 processors
as shown in Figure 3. Three processors (1-3) are fast and can finish their optimization
tasks (i.e. running a subswarm for 20 iterations) in timeT1, Four processors (4-7) are
slower and require timeT2 = 2T1 for this task. The rest of the processors (8-20) are
even slower, requiringT3 = 3T1. In Figure 3, a total time of6T1 is depicted. After this
time, all processors are synchronized again, and we call this a “cycle”. We run our tests
for 6 such cycles (i.e. the slowest processors can process 12subswarms in this time, the
fastest processors can run 36 subswarms).

The homogenous environment uses 20 processors with the samespeed. In this case,
we run the program until each processor has processed 12 subswarms. Note that for
C-MOPSO, as it always waits for the slowest processor beforespawning the next set
of subswarms, there is no difference between the heterogeneous and the homogeneous
environment. H-MOPSO, on the other hand, can run more subswarms on the faster
processors and thus can make better use of the available processing power in a hetero-
geneous environment.

Evaluations Table 1 shows the average hyper-volume measures obtained for both
methods in heterogeneous and homogenous environments (forC-MOPSO, heteroge-
neous and homogeneous are identical as explained above). Comparing C-MOPSO and
H-MOPSO on the homogeneous environment, C-MOPSO performs better. Because
both use exactly the same processing power, this differencehas to be due to the strategy
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Fig. 3. 20 heterogeneous processors are illustrated.t1, t2 andt3 are equal.

of selecting the guide. We conclude that selecting guides according to hypervolume is
better than trying to obtain an even distribution along the front by using clustering.

In the heterogeneous environment, H-MOPSO works even better, because it can
make better use of the processing power available. Figure 4 shows the results in Table 1
over iterations graphically.

Altogether, H-MOPSO is able to find more non-dominated solutions with higher
convergence and diversity rates than C-MOPSO.

5 Conclusion and Future Work

In this paper, we proposed two new parallel methodologies ofMulti-Objective Parti-
cle Swarm Optimization (MOPSO). To our knowledge, these approaches are the first
parallel MOPSO methods. One of the methods is particularly designed to also work in
parallel environments containing an arbitrary amount of heterogeneous processors as is
a typical setting for modern grid-computing environments.

The basic idea behind these methods is to divide the population into subswarms
which can be processed in parallel. Cluster-based MOPSO (C-MOPSO) is designed to
work on a fixed number of processors where hypervolume-basedMOPSO (H-MOPSO)
is flexible to work on a heterogeneous set of processors. As the results show, H-MOPSO
outperformed C-MOPSO also in homogeneous environments, showing that the way to
generate subswarms according to marginal hypervolume performs better than trying to
distribute subswarms evenly along the current non-dominated front by clustering.



Table 1. Average values and std. error of Hyper-volume values computed for Heterogeneous
H-MOPSO (Hetero.H-MOPSO), C-MOPSO and Homogenous H-Mopso(Homo. H-MOPSO)
methods after every cycle.

cycle Hetero. H-MOPSO stderr C-MOPSO stderr Homo.H-MOPSO stderr
1 13015 63.56 11969 44.98 12813 40.82
2 13186 58.515 12610 41.227 12950 42.73
3 13269 46.40 12758 35.79 13142 21.44
4 13322 40.93 12782 22.87 13239 9.391
5 13360 31.31 12863 35.577 13261 9.168
6 13639 13.57 12885 32.99 13273 8.9106
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Fig. 4. Hypervolume values computed for homogenous and heterogeneous H-MOPSO and C-
MOPSO methods over 10 iterations(the shown cycles are recorded for two iterations).

In future, we will test the approaches on a larger set of test problems and parallel
environments. We will also test a number of possible improvements to the current ap-
proach, e.g. by allowing solutions with high marginal hypervolume to be re-selected
after some time, even if some other non-dominated solutionswith low marginal hy-
pervolume have not yet been selected. Finally, we will test the above approached on
a real grid system called JOSCHKA (Job Scheduling Karlsruhe) [4] with a real world
application.
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