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Abstract. Inrecent years, a number of authors have successfully @xtieparti-
cle swarm optimization to problem domains with multipleesijves. This paper
addresses the issue of parallelizing multi-objectiveig@swarms. We propose
and empirically compare two parallel versions which diffethe way they di-
vide the swarm into subswarms that can be processed indepiyndn different
processors. One of the variants works asynchronously atttuss particularly
suitable for heterogeneous computer clusters as occuetpgin modern grid
computing platforms.

1 Introduction

Particle Swarm Optimization (PSO) is now established adfariemt optimization al-
gorithm for static functions in a variety of contexts [215® is a population based
technique, similar in some respects to evolutionary athors, except that potential
solutions (particles) move, rather than evolve, throughgbarch space. The rules, or
particle dynamics, which govern this movement, are insbirg models of swarming
and flocking [15]. Each particle has a position and a velpeihd experiences linear
spring-like attractions towards two attractors:

1. The best position attained by that particle so far (lotahetor), and
2. The best position found by the swarm as a whole (globaléttir),

where best is in relation to evaluation of an objective fiorctat that position. The
global attractor therefore enables information sharirtg/ben particles, whilst the local
attractors serve as individual particle memories.

The optimization process is iterative. In each iteratiba,dcceleration vectors of all
the particles are calculated based on the positions of tliesmonding attractors. Then,
this acceleration is added to the velocity vector, the updiatlocity is constricted so
that the particles progressively slow down, and this newecig} is used to move the
individual from the current to the new position. The detail®ur implementation are
provided in Section 3.

Due to the success of particle swarm optimization (PSO)riglsiobjective opti-
mization, in recent years, more and more attempts have baee to extend PSO to
the domain of multi-objective problems, see e.g. [18, 3fe Tiin challenge in multi-
objective particle swarm optimization (MOPSO) is to seldwt global and local at-
tractors such that the swarm is guided towards the Paretmalgront and maintains



sufficient diversity. Our paper simply adopts one of the psgul strategies, hamely
the sigma-method [18]. The paper’s focus is on parallébpadtrategies, and is largely
independent from the multi-objectivization techniquedise

The motivation for parallelization is that for many praafioptimization problems,
evaluating a single solution already requires a significamputational effort, e.g. if
the evaluation involves a computationally demanding flyidainics simulation. On the
other hand PSO and also other nature-inspired optimizé&icdmiques like evolution-
ary computation or simulated annealing usually requirettaduation of a large number
of solutions before producing good results. One way to westilis predicament is to
employ parallel processing. While only few people have sste a dedicated parallel
computer, recently, it also became possible to distribntalgorithm over any bunch
of networked computers, using a paradigm called “grid caingtl. Grid Computing
enables the sharing, selection, and aggregation of a witktyaf geographically dis-
tributed computational resources (such as supercompuatargpute clusters, storage
systems, etc.) and presents them as a single, unified resfousolving large-scale and
data intensive computing applications [13]. This idea islagous to the electric power
network (grid) where power generators are distributedtieitusers are able to access
electric power without bothering about the source of enamyy its location. As such,
grid computing promises to make high performance compuwirzgiable to almost ev-
eryone. On the other hand, it makes parallelization mordélestging, as one can no
longer assume a homogeneous set of processors. Also, gniduters usually do not
allow the direct communication between processors.

In this paper, we propose two parallel variants of MOPSO.dthlzases, the basic
idea is to repeatedly divide the population into a numbemdisg/arms which can be
processed in parallel. The subswarms run for a limited nurobéerations and then
return their result (i.e. all non-dominated solutions fduto a central server. In the
next iteration, they are provided with a “guide”, a non-doated particle, and re-start
search with this guide and all other particles re-initiadlzvithin the local search-space
neighborhood of the guide. The two proposed variants difféhe way they select the
guides. The cluster-based subswarm MOPSO (C-MOPSO) vaaitdlfsubswarms to
return their results, and then performs a clustering stagdentify a number of well-
distributed guides along the non-dominated front. The hygame-based subswarm
MOPSO (H-MOPSO) selects guides one at a time based on thajimaéhypervolume,
i.e. the hypervolume covered by a particle that is not cavbyeany other particle. Note
that the latter version works asynchronously, which makesiticularly suitable for
heterogeneous computer clusters such as the grid.

The paper is structured as follows. In the next section, viefliprsurvey related
work. Our parallel PSO variants are presented in Section@eJreliminary empirical
results on homogeneous as well as heterogeneous compusezrslare provided in
Section 4. The paper concludes with a summary and sevees fdefuture work.

2 Related Work

In PSO, parallelization has been largely neglected so far.avé aware of only one
paper [9] on parallel single-objective PSO, and no paperavallgl MOPSO. Thus, in



the following, we focus on parallel multi-objective evaariary algorithms (MOEAS),
where parallelization has been studied extensively. ThallphMOEA approaches can
be grouped into three categories:

1. Master-slave: Here, a single processor maintains doower selection, and uses
the other processors only for crossover, mutation and atialu of individuals. It
is useful only for few processors or very large evaluatiomes, as otherwise the
strong communication overhead outweighs the benefit oflpézation.

2. Island model: In this model, every processor runs an ieddent EA, using a sep-
arate sub-population. In regular intervasigration takes place: The processors
cooperate by exchanging good individuals. The island midpérticularly suit-
able for computer clusters, as communication is limited] #rus most related to
our work.

3. Diffusion model: Here, the individuals are spatiallyaarged, and mate with other
individuals from their local neighborhood. When paraiteli, there is a lot of inter-
processor communication (every individual has to commateiwith its neighbors
in every iteration), but the communication is only local uBtthis paradigm is par-
ticularly suitable for massively parallel computers witfaat local intercommuni-
cation network.

A detailed discussion of parallel evolutionary algorithisisut of the scope of this pa-
per. The interested reader is referred to e.g. [22, 8, 2].@ttee few papers considering
heterogeneous processors is [6], which assumes an islathel ared examines different
migration policies and neighborhood structures.

Also, there are quite a few papers on parallelizing mulfeotive evolutionary al-
gorithms. Most of these methods are based on the island renatlattempt to divide
the objective space into several regions which are themgr@adito different proces-
sors. Deb [12] uses ideas from the Guided-MOEA [7] to focesdtiferent subpopu-
lations on different trade-off ranges between the objestiBranke et al. [5] proposed
to explicitly divide up the objective space into “cones’résthert et al. [23] study a
clustering method and apply a divide and conquer methods& bpproaches assume
communication between processors, and tested only a rathedl number of parallel
processors (up to six). Heterogeneity of the processomdtdseen considered in either
of these papers.

Subswarms in MOPSO have already been used in [19] in ordebtaira better
covering of the front, and in [14] to maintain the spread dfisons.

Optimization in Grid Computing is an established field, @Nymrod/O [1]. In Nim-
rod/O, several heuristics are provided like Simulated Aling, Evolutionary Program-
ming and Genetic Algorithms which are being used to solveymaal-world applica-
tions. However, they involve only single objective optimibn techniques, and to our
knowledge, no PSO has been proposed yet.

3 Parallel Multi-Objective Particle Swarm Optimization

3.1 Multi-Objective Particle Swarm Optimization

A MOPSO starts with a set of uniformly distributed randontialiparticles defined in
the search space. A set of M particles are considered as a populatiorat the gener-



ationt. Each particle has a position defined by’ = (2%, 2%, -, z%,) and a velocity
defined byv’ = (vi,v4,---  0¢) in the search spacg Beside the population, another
set (called Archive)4, can be defined in order to store the obtained non-dominated
solutions. Due to the presence of an archive, good soluaompreserved during gen-
erations. The particles are evaluated and the non-dongiisatations are added to the
archive in every generation, while dominated solutiongpauged. In the next step, the
particles are moved to a new positions in the space. The itelmed position of each

particlei is updated as below:

i _ i i i 1,9 i

Vg1 = WU+ e Ri (P — 25 ) + coRa(pyd — 2 4) 1)
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Tjpr = Tjp T Vi1

wherej = 1,...,n,4i = 1,..., M, ¢; andc, are two positive constant®; and Ry
are random values in the ranffe 1] andw is the inertia weight which is employed to
control the impact of the previous history of velocities.

pf"g is the position of theylobal best particlein the population, which guides the
particles to move towards the optimum. The important paM@PSO is to determine
the best global particle,”? for each particle of the population. In single-objective
PSO, the global best particle is determined easily by sapthe particle that has
the best position. But in MOPS®,"? must be selected from the updated set of non-
dominated solutions stored in the archive. We use the sigwet&rod for this purpose
[18]. pi is the best position that particieould find so far and keeps the non-dominated
(best) position of the particle by comparing the new positig, ; in the objective space
with p,* (p,* is the last non-dominated (best) position of the partifldhe steps of a
MOPSO are iteratively repeated until a termination critelis met.

3.2 Parallelization

Here, we propose two parallelization techniques. We asdhatethere is a central
server maintaining the archive, distributing work to diéfet processors and collect-
ing the results. This assumption is in line with the usuad gwichitecture. The parallel
processors are assigned sub-swarms, and run independ&@80®kbased on these sub-
swarms for a prespecified number of iterations. All found-dominated solutions are
returned as result to the central processor.

Intuitively, it makes sense to have different subswarmsé @adifferent regions of
the non-dominated front. This is also the underlying asdionpf the parallel MOEAs
discussed in Section 2. In our case, focus on different aridie non-dominated front
is achieved by assigning each subswarm a “guide”. A guideaadominated solution
from the archive. The subswarm is then randomly initialized search-space neigh-
borhood of the guide, and the guide itself becomes part o$tveem. Because of the
guide and the local initialization, the search of the sularswis likely to focus on a
region of the non-dominated front close to the location efghide.

The two parallelization approaches differ in the way thelecteguides from the
archive, which will be explained in more detail in the follog subsections.
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Fig. 1. Selection of the global guide. Point B has a larger impacherhyper-volume and there-
fore must be selected firstI( solutions,o: reference point)

Cluster-based subswarm MOPSOThe idea of the cluster-based subswarm MOPSO
(C-MOPSO) is to pick a set of guides which represents theeatimon-dominated front
as well as possible. This is achieved by performing a cliljexperation on the archive,
with the goal to findV cluster representatives ¥ is the number of processors avail-
able.

Note that this assumes synchronization after every irathe central processor
performs the clustering, sends out the different guidekedaltfferent processors, waits
for them to return their results, updates the archive, aad #tarts the next iteration.

Hypervolume-based subswarm MOPSOIn the hypervolume-based subswarm MOPSO
(H-MOPSOQ), guides are selected one by one according tortreginal hypervolume.
The hypervolume is the area dominated by all solutions dtor¢he archive [25]. The
marginalhypervolume of a particle is the area dominated by the pattiat is not dom-
inated by any other particle. As guide, the particle fromahehive is selected which
has not been selected before and which has the largest mbngjpervolume. Only if
all archive solutions have been used as guides before, tieegllawed to be re-used.
Figure 1 illustrates this. Point A has a smaller contribuitio the whole hyper-volume
value than Point B. Therefore, Point B must be selected first.

Note that this guide selection process is asynchronousn@ilee a processor re-
turns its results, they can be immediately integrated inéoarchive, a new guide can
be selected and the processor can be assigned a subswathohaseew guide. This
makes the approach particularly suitable for heterogesieomputer clusters such as
grids, where very fast processors are used along with ratberones. It is not neces-
sary to wait for the slowest processor to return its resudfede spawning the next set
of subswarms as is the case with C-MOPSO.

For both variants, the region used to initialize a subswarourad the guide can
be chosen in different ways. In preliminary experimentstested the following three
approaches:



@) (b)

X2

Fig. 2. (a) A fixed sized area around each guide is selected to be #nehsspace of the corre-

sponding MOPSO for that guide. (b) The area in search spaeebe surrounding neighbors in

the objective space is selected to be the search space fIQRSO. The neighbors are shown
with arrows. For point A, both neighbors are not surroundinig the search space, therefore
the maximum and minimum coordinates of A and its neighboessatected to define the search
space.

— A subswarm can use the whole search space of the problemisTinig efficient,
if the search space is large, as it takes a while until thevgailma converges to the
interesting area around the current non-dominated front.

— A fixed, but smaller search area can be defined around the qmpdé. We use
+10% of the whole search space range in each dimension (cappdtetsearch
space boundaries, of course).

— The area between the neighbors (in then-objective space) of the guide which the
guide is in between, is selected as the search space of teeauh. The neighbors
are non-dominated solutions selected from the archive s€lextion of neighbors
is based on the distances in the objective space.

Figure 2 shows the last two scenarios in an example with 2npeters.o denotes the
non-dominated solutions stored in Archive.dat. In (a) lacted area around each guide
is set to be the search space for the corresponding MOPS@nBem on the defined
size, the main search space can be easily covered by allraof thé€b) the area between
the two neighbors is selected to be the search space. Sieceitphbors of the guide
are selected in the objective space, it can happen thatehedafined by their positions
in the search space does not contain the guide, e.g., poiftiéefore, the maximums
and minimum values of their corresponding decision vedaogesset to be the high and
low ranges for the defined search space. In our preliminapgrxents, the second
range definition performed best and will be used for the radei of this study.



4 Experiments

In this section, we test C-MOPSO and H-MOPSO on two scenasites consisting of
homogeneous processors, one consisting of heterogenemespors.

Parameter Setting In both approaches, for a subswarm, a MOPSO method as pibpose
in [18] is used with 20 particles and an internal archive i£€0 and is run for 20
generations. We select standard values for turbulencerfaod inertia weights as 0.1
and 0.4.

The hyper-volume values in H-MOPSO are being computed bidingi a grid be-
tween a reference point and the origin in the objective spHuve grid points dominated
by the solutions are counted as the hyper-volume. High gadfibyper-volume show a
high quality in terms of the diversity and convergence ofdb&ined solutions.

The selected test function from literature is a 2-objedtdst containing 10 param-
eters [10]:

fi(®) =1 — exp(- Z (@i — ﬁ)g)
fo(x) =1 —exp(— Z (z; + %)2) (2)

wherex; € [—4, 4].

We examine both of the methodologies in homogenous anddugteeous environ-
ments. In order to simulate the heterogeneous environmwentpnsider 20 processors
as shown in Figure 3. Three processors (1-3) are fast andrdah their optimization
tasks (i.e. running a subswarm for 20 iterations) in tife Four processors (4-7) are
slower and require timé&, = 277 for this task. The rest of the processors (8-20) are
even slower, requirin@s = 377. In Figure 3, a total time of 7} is depicted. After this
time, all processors are synchronized again, and we calattgycle”. We run our tests
for 6 such cycles (i.e. the slowest processors can procesgiisvarms in this time, the
fastest processors can run 36 subswarms).

The homogenous environment uses 20 processors with thesgged. In this case,
we run the program until each processor has processed 1@aubs. Note that for
C-MOPSO, as it always waits for the slowest processor befpagvning the next set
of subswarms, there is no difference between the heterogsrand the homogeneous
environment. H-MOPSO, on the other hand, can run more subssvan the faster
processors and thus can make better use of the availablegsing power in a hetero-
geneous environment.

Evaluations Table 1 shows the average hyper-volume measures obtaindubfio
methods in heterogeneous and homogenous environmentS-fOPSO, heteroge-
neous and homogeneous are identical as explained abovepating C-MOPSO and
H-MOPSO on the homogeneous environment, C-MOPSO perfostisrb Because
both use exactly the same processing power, this differleaséo be due to the strategy



Fig. 3. 20 heterogeneous processors are illustratede andts are equal.

of selecting the guide. We conclude that selecting guidesrding to hypervolume is
better than trying to obtain an even distribution along tieaf by using clustering.

In the heterogeneous environment, H-MOPSO works evenrbéteause it can
make better use of the processing power available. Figunewsthe results in Table 1
over iterations graphically.

Altogether, H-MOPSO is able to find more non-dominated $ohst with higher
convergence and diversity rates than C-MOPSO.

5 Conclusion and Future Work

In this paper, we proposed two new parallel methodologigdati-Objective Parti-
cle Swarm Optimization (MOPSO). To our knowledge, theser@gghes are the first
parallel MOPSO methods. One of the methods is particulaighed to also work in
parallel environments containing an arbitrary amount ¢ér@eneous processors as is
a typical setting for modern grid-computing environments.

The basic idea behind these methods is to divide the popul@ito subswarms
which can be processed in parallel. Cluster-based MOPSMQ@PSO) is designed to
work on a fixed number of processors where hypervolume-Hd§#SO (H-MOPSO)
is flexible to work on a heterogeneous set of processors.éetults show, H-MOPSO
outperformed C-MOPSO also in homogeneous environmertdsjisl that the way to
generate subswarms according to marginal hypervolumemeasfbetter than trying to
distribute subswarms evenly along the current non-doraihftont by clustering.



Table 1. Average values and std. error of Hyper-volume values coethbédr Heterogeneous
H-MOPSO (Hetero.H-MOPSO), C-MOPSO and Homogenous H-Mdptamo. H-MOPSO)
methods after every cycle.

cycle Hetero. H-MOPSO stderr C-MOPSO stderr Homo.H-MOPS@ers

1 13015 63.56 11969 44.98 12813 40.82
2 13186 58.515 12610 41.227 12950 42.73
3 13269 46.40 12758 35.79 13142 21.44
4 13322 40.93 12782 22.87 13239 9.391
5 13360 31.31 12863 35.577 13261 9.168
6 13639 1357 12885  32.99 13273 8.9106
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Fig. 4. Hypervolume values computed for homogenous and heterogend-MOPSO and C-
MOPSO methods over 10 iterations(the shown cycles arededdpr two iterations).

In future, we will test the approaches on a larger set of tesblpms and parallel
environments. We will also test a number of possible impnosets to the current ap-
proach, e.g. by allowing solutions with high marginal hyymdume to be re-selected
after some time, even if some other non-dominated solutatts low marginal hy-
pervolume have not yet been selected. Finally, we will teetabove approached on
a real grid system called JOSCHKA (Job Scheduling Karlsy{dijewith a real world
application.
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