
Self-organized Invasive Parallel Optimization with
Self-repairing Mechanism

Sanaz Mostaghim, Friederike Pfeiffer and Hartmut Schmeck

Institute AIFB
Karlsruhe Institute of Technology (KIT)

76128 Karlsruhe, Germany
{firstname.lastname}@kit.edu

Abstract: The parallelization of optimization algorithms is very beneficial when the
function evaluations of optimization problems are time consuming. However, paralle-
lization gets very complicated when we deal with a large number of parallel resources.
In this paper, we present a framework called Self-organized Invasive Parallel Optimi-
zation (SIPO) in which the resources are self-organized. The optimization starts with
a small number of resources which decide the number of further required resources
on-demand. This means that more resources are stepwise added or eventually released
from the platform. In this paper, we study an undesired effect in such a self-organized
system and propose a self-repairing mechanism called Recovering-SIPO. These fra-
meworks are tested on a series of multi-objective optimization problems.

1 Introduction
Inspired by invasive algorithms [Tei08], here we investigate a framework for parallel op-
timization. Invasive algorithms are proposed as a way to manage the control of parallel
execution in multi-processor systems with hundreds of resources by giving the power of
coordination and execution to the resources. This is proposed as a new self-organizing
computing paradigm [Tei08]. In parallel optimization, coordination among the resources
is more critical as the solutions obtained in different resources highly depend on each
other. This leads to a high dependency between the data in the parallel resources, particu-
larly if the parallelization model is aimed to divide the problem into smaller sub problems.
In this paper, we investigate a new variant of our proposed framework Self-organized In-
vasive Parallel Optimization (SIPO) [MPS11]. In SIPO, the computation starts by giving
the optimization problem to one available computing resource. According to the user pre-
ferences, the starting processor performs a rough optimization in the given partition and
stores its results in a shared memory. Thereafter, if this partition passes a selection mecha-
nism, the processor divides it into smaller ones. The smaller partitions are stored in a list
which is accessible by other processors. As soon as a processing unit takes a job (partition)
for optimization, it performs the same procedure described above and either assigns new
jobs for other processors or stops the optimization process in its partition. In this way, the
approximation of the optimal solutions, which are stored in the shared memory, gets more
precise over the successive divisions of the tasks. From another point of view, the optimi-
zation starts from one computing resource and then successively occupies more resources

for computation until the computing resources cannot obtain any better solutions. The par-
allel resources are released one by one until there is no computing resource required for
the optimization and in fact the system stops automatically. The selection mechanism for
further divisions of a certain partition has a great impact on the quality of solutions. It may
be the case that in the course of the selection mechanism some partitions get lost although
they contain part of the optimal solutions.

In this paper, we focus on this issue in SIPO and propose a self-repairing method called
Recovering-SIPO (R-SIPO). In R-SIPO, one of the resources detects the failing partitions
and starts a new invasive parallel optimization only on these critical parts. Self-repairing
methods are very often used in the area of software engineering e.g., [GSRU07]. However
to our knowledge, the proposed self-repairing mechanism has not being studied in the
area of parallel optimization. A recovering mechanism is introduced in [SMDT03] which
deals with failures in the parameter space. This method is used for non-parallel algorithms.
The main difference between SIPO and R-SIPO with the existing parallel optimization
approaches (e.g., [TMO+08]) is the varying number of resources over the time. While in
traditional parallel approaches the parallel resources are active over the optimization time,
in our framework, the resources are successively added to and deleted from the system, i.
e. they are used on-demand.

The experiments on our case study show that we can significantly improve the results ob-
tained by a parallel system like SIPO on multi-objective problems. In addition, we measure
the speed-up factor of both frameworks SIPO and R-SIPO and compute an efficiency fac-
tor when comparing them with non-parallel algorithms and another parallel variant. The
rest of this paper is organized as follows. We briefly explain SIPO in the next section and
introduce R-SIPO in Section 3. In Section 4, we study SIPO and R-SIPO on our case stu-
dy on multi-objective optimization and the experiments are investigated in Section 5. The
paper is concluded in Section 6.

2 Self-Organized invasive parallel optimization (SIPO)
In SIPO, we consider a parallel platform of computing resources communicating through
a shared memory. To start SIPO, the user is asked to give a rough estimation of the position
of the desired solutions. This can be a partition or an interval, for instance [0, 10] for an
objective function. This initial partition is written in a global list located in the shared
memory [MNS87]. This rough estimation is only used in the beginning of the algorithm
and can even contain an infeasible area. Every processing unit which is able to perform a
new job, repeatedly executes the following steps: (a) takes a partition from a global list of
partitions in the shared memory, (b) optimizes inside the partition, (c) communicates the
results to other resources through the shared memory, (d) evaluates the obtained results
in its partition in order to decide for selecting the partition for further divisions, and (e)
in case of further divisions, divides the partition into a number of smaller partitions and
writes them on the global list. These steps are executed until there is no partition left in the
global list of partitions. This global list is called problem-heap and is only used to store the
partitions to be optimized. In addition, the resources communicate their obtained solutions
to other resources by using a global archive which is also kept in the shared memory. This
archive contains the best so-far-obtained solutions and is updated by the resources after

Algorithm 1: SIPO
repeat

I := GetPartition(problem-heap)
A := GetGlobalArchive(A)
a := Optimize(I, A)
Decide if I is kept for further divisions:
if (SelectInterval(I, A, a) ==TRUE) then

ListI := Divide(I,NumofDivisions)
problem-heap := UpdateProblemHeap(problem-heap, ListI)

end
A := UpdateGlobalArchive(A, a)

until I is empty

each optimization step. In this way, the resources synchronize their results which is a very
important aspect in parallel optimization. Algorithm 1 demonstrates the skeleton of SIPO
which is executed by the resources. By the Functions GetPartition(problem-heap) and
GetGlobalArchive(A), every resource downloads the global data such as the partition I
to be optimized and the global archive A from the shared memory. Optimize(I, A) runs an
optimization algorithm which focuses on the given partition I according to the given global
archive A. The solutions of the optimization are denoted as a. Before updating the global
archive A (in A := UpdateGlobalArchive(A, a)), the Function SelectInterval(I, A, a)
decides if the partition I is kept for further divisions or not. For making this decision, the
results a obtained in the partition are analyzed and compared with the stored results in
the global archive A as in [MPS11]. I is kept for further divisions, if (i) a part of the
global archive A is located within the interval and (ii) some improvements of the results
a in terms of quality in respect to A are observed. If the result of SelectInterval is
true, the Function Divide divides I into NumofDivisions and write them in ListI . The
problem-heap is updated by the ListI to make the new partitions accessible to the other
processors. Thereby, the partition I is deleted from the problem-heap.

The partitions which do not survive the selection mechanism are not considered anymore
for the rest of the computations. In fact, after a certain number of divisions, many intervals
are not selected anymore and the number of required processors reduces until the results
are not being improved and the algorithm stops automatically. This is a novelty of SIPO
to automatically stop the optimization as it is usually a challenge to know when to stop
a search algorithm [TLMP08]. Moreover, it utilizes the processors on-demand, i.e., if we
do not obtain any better solutions, we do not waste resources. However, the selection
mechanism has a great impact on the quality of solutions. It may be the case that in the
course of the selection mechanism some partitions get lost although they contain a part
of the optimal solutions. This will be discussed more into detail in the next section. SIPO
is a decentralized approach, but from a central point of view, this invasive algorithm is
like successive divisions of partitions through several iterations where each partition is
assigned to a processing unit. Figure 1 illustrates an example of partitioning task in a two
dimensional space with p indicating the problem-heap. Suppose, we start with 2 partitions
(|p| = 2). These partitions are successively divided by NumofDivisions = 2 into 4 and
8 partitions. In the next division step, only 5 out of 8 partitions are further divided which

|p| = 2 |p| = 4 |p| = 8 |p| = 0 |p| = 6 |p| = 10

Abbildung 1: Schematic illustration of SIPO

results into |p| = 10 partitions. After one further step, there is no partition left for another
division and the problem-heap is empty indicated by |p| = 0.

3 Self-repairing Mechanism
A major drawback of self-organization as explained above (in SIPO) is that the resources
might neglect some partitions for further optimization due to the selection mechanism.
This effect can be lessened by changing the parameters of SIPO, such as the significance
levels or the selection mechanism in general [MPS11]. However, our concern here is to
investigate a mechanism so that the resources evaluate their obtained results at the end
of the entire optimization process and start a self-repairing mechanism if needed. A self-
repairing mechanism can be performed in different ways. In this paper, we study a self-
repairing mechanism called static recovering. The basic idea of static recovering is that
at the end of SIPO, a recovering mechanism repairs the failures in the obtained results.
Failures in our case are defined as gaps in the partitions.

For realizing the static recovering, the last processor working in SIPO starts the process
once it has delivered his solutions to the shared memory. It must be aware that it was the
last processor by examining if |problem-heap| equals to 1 as illustrated in Algorithm 2.
This is the case, if the processor does not divide its partition and there is no other partition
left in the problem-heap. This processor scans the results stored in A for possible gaps and
writes them as new partitions in the problem-heap. In this way, SIPO starts working again
on the found gaps in a successive way. In other word, the recovering starts a new SIPO
like a new impulse to the system. Algorithm 2 shows SIPO with the recovering mecha-
nism. In this algorithm, we additionally assign an ACTIVE tag by SetTag(I, problem-
heap,ACTIV E) to the partitions which are taken by the resources. This tag is kept AC-
TIVE until the resource finishes its optimization process in that partition. The partition I
is deleted by updating the problem-heap within UpdateProblemHeap. If the considered
partition I was the last partition in the problem-heap so that |problem-heap| == 1, the last
processor has to find the failures, i.e. the gaps, in the global archive.

Finding Gaps: In Algorithm 2, the inputs to the Function FindGaps are the global archi-
ve A before updating it with the current archive a (i.e., the old global archive) and the new
global archive denoted as A′. This function examines first if there is any improvement in A′

comparing to A. An improvement in the results indicates that recovering was required and
could be executed again on the results to gain more solutions. The Function FindGaps ad-
ditionally calculates the distances of each solution in A′ to its right and left neighbors and
stores the results in ADistances. The maximal distance DistancesMax of ADistances is
determined and the mean of ADistances with DistancesMax is compared with the mean
of ADistances without DistancesMax. If the percental change is greater than a given

Algorithm 2: Recovering-SIPO
repeat

I := GetPartition(problem-heap)
SetTag(I, problem-heap,ACTIV E)
A := GetGlobalArchive(A)
a := Optimize(I, A)
if (SelectInterval(I, A, a) ==TRUE) then // I is selected for further divisions

ListI := Divide(I,NumofDivisions)
problem-heap := UpdateProblemHeap(problem-heap, ListI)
A := UpdateGlobalArchive(A, a)

else if (|problem-heap| == 1) then // I was the last partition: start recovering
A′ := UpdateGlobalArchive(A, a)
G := FindGaps(A′, A)
A := A′

problem-heap := UpdateProblemHeap(problem-heap,G)

end
until I is empty

threshold T , the corresponding partition G0 is created, the distances corresponding to the
solutions are deleted from ADistances and the same procedure is continued on the rest
of the distances. The resulting gaps through the iterations are denoted as Gi. This loop is
continued until the DistancesMax reaches the threshold T . If no more gaps are found, the
processor updates the problem-heap using the Function UpdateProblemHeap by writing
G for further optimization.

Discussion: The self-repairing mechanism is meant to improve the quality of the solutions
by revisiting some already deleted partitions in the course of the selection mechanism. This
is performed automatically and without involving any user. The advantage of our approach
is that it considers the system as a whole and the results are obtained in a cooperative way
by the resources. The possible failures denoted as gaps can occur at any time and along
the execution of SIPO by any of the resources. The recovering process as suggested abo-
ve is like a new impulse to the system and invasively involves new resources to work on
the recovering process like in SIPO. The main advantage is that the recovering process
automatically detects the failures, if any, and improves the results. However, by using this
kind of recovering, there is no guarantee that all the failures are detected and recovered.
This highly depends on the location of the optimal solutions. In some cases (as in our ex-
periments) solutions are located on disconnected areas separated by gaps. The recovering
process may require some time to differentiate between the real and failing gaps.

4 Case Study
SIPO is considered to be a general framework for self-organized parallel optimization.
Here, we take multi-objective optimization as the case study like in [MPS11] and ana-
lyze the self-repairing mechanism. Typically a Multi-Objective Problem (MOP) involves
several objectives to be optimized simultaneously: min~x∈S⊂Rn fi(~x), for i = 1 . . .m.
The objective function is multi-dimensional ~f : Rn → Rm. We denote the image of S by
Z ⊂ Rm and call it the objective space, the elements of Z are called objective vectors.
Since we are dealing with MOPs, there is not generally one global optimum but a set of

Tabelle 1: Test functions
test function constraints
ZDT1 g(x2, · · · , xn) = 1 + 9(

∑n
i=2 xi)/(n− 1) xi ∈ [0, 1]

h(f1, g) = 1−
√
f1/g n = 30

f1(~x) = x1 i = 1, 2, . . . , n
f2(~x) = g(x2, · · · , xn) · h(f1, g)

ZDT2 g(x2, · · · , xn) = 1 + 9(
∑n

i=2 xi)/(n− 1) xi ∈ [0, 1]
h(f1, g) = 1− (f1/g)2 n = 30
f1(~x) = x1 i = 1, 2, . . . , n
f2(~x) = g(x2, · · · , xn) · h(f1, g)

ZDT3 g(x2, · · · , xn) = 1 + 9(
∑n

i=2 xi)/(n− 1) xi ∈ [0, 1]

h(f1, g) = 1−
√
f1/g − (f1/g) sin(10πf1) n = 30

f1(~x) = x1 i = 1, 2, . . . , n
f2(~x) = g(x2, · · · , xn) · h(f1, g) + 1

so-called Pareto optimal solutions. A decision vector ~x1 ∈ S is called Pareto-optimal
if there is no other decision vector ~x2 ∈ S that dominates it: ~x1 is said to dominate ~x2 if
~x1 is not worse than ~x2 in all of the objectives and it is strictly better than ~x2 in at least
one objective. An objective vector is called Pareto-optimal if the corresponding decision
vector is Pareto-optimal. Multi-objective optimization algorithms which properly fit into
SIPO must be able to focus on a given partition either in parameter or objective space.
In [MPS11], we demonstrated that it is relatively straightforward to deal with the focu-
sing feature in the objective space. We assume that each partition is an interval in terms of
one objective function. The focusing mechanism in [MPS11] is based on a multi-objective
PSO algorithm called F-MOPSO.

5 Experiments
In the experiments, we analyze the self-repairing mechanism and its related parameters
on our case study. We consider a parallel platform of homogeneous resources with ma-
ny processors executing the same procedure as indicated by SIPO and Recovering-SIPO
(R-SIPO). Furthermore, we assume that the communication overhead is negligible compa-
red to optimization in a given interval. We select three different test problems containing
convex, concave and disconnected fronts (included some gaps) denoted as ZDT1, 2 and 3
functions [DTLZ02] in Table 1. As in SIPO the quality of solutions gets more precise over
the division process, the optimization algorithm in each interval must only find a rough
approximation of solutions. Therefore, F-MOPSO is run for 400 evaluations in all the ex-
periments. In R-SIPO, we decrease this value to 300 as the goal of recovering is to detect
possible failures and do fine tuning. The maximal global archive size is kept to 100 by
a clustering mechanism [MT03]. We select the standard value 0.4 for inertia weight. All
the experiments are repeated for 30 different runs. The starting interval is selected as [0, 1]
along the first objective for all the test problems. We select the best parameter setting for
SIPO from [MPS11] and employ it to R-SIPO in our experiments in this paper. The quality
of solutions is computed by measuring the average number of function evaluations (#EV)
and the quality of solutions (HV) based on the hypervolume metric (smetric in [Zit99])
with (3, 3) as the reference point.

Results: We first start with a statistical analysis on the threshold value T from Section 3.
In order to analyze this factor which only affects the recovering process, we run SIPO

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

number
processors

division
number

ZDT1

ZDT2

ZDT3

Abbildung 2: Average number of processors over successive divisions are shown for the
three test problems.The continuing dashed lines indicate the recovering process.

first for 30 different runs and report the average hypervolume HV and its standard error
SEHV in the first part of Table 2. We execute only the recovering part of R-SIPO on the
results of SIPO for different T values and report the extra required number of evaluations
#Ev by the recovering and the overall quality of solutions in the second part of Table 2.
The results show that the recovering has considerably improved the results and their cor-
responding standard error values particularly for ZDT2 and ZDT3. The low values for the
standard errors for almost all the runs are remarkable. Comparing the results for different
T indicates that it should be set to 0.04 for the convex problems and 0.06 for the con-
cave whereas 0.05 namely the middle value in the experiments must be selected for the
problems with gaps on the front. However, we notice that the selected range of 0.04 to
0.07 results in relatively good quality of solutions and the recovering mechanism is not
very sensitive to this. In Table 2, #AMP is the average maximum number of processors
required for SIPO whereas #MAPD indicates the maximum of the average number of
processors required in one division in SIPO and for R-SIPO, these values refer to the extra
number of processors for only the recovering, respectively. Furthermore, the column in-
dicated by Recovering? illustrates the percentage of the runs which perform recovering.
For all the SIPO runs, the value is 0 as SIPO does not perform recovering. For R-SIPO,
we observe that a recovering mechanism was always required for the ZDT3 problem. This
is because of the disconnected front of solutions as, at the beginning of the recovering, all
the gaps are first considered as failures. In the case of ZDT1 and ZDT2, which both ha-
ve connected fronts, R-SIPO is executed with a very high percentage of about 90 percent
which demonstrates that we still are dealing with gaps along the connected front. Figure 2
illustrates the average maximum number of required processors #AMP before and after
recovering. The number of resources at each division illustrates the parallel resources re-
quired at the same time. As expected, the recovering works like a new impulse for further
invasive computations. The maximum number of required parallel processors is not as lar-
ge as in SIPO, but it illustrates that the algorithms detect regions which require repairing.

Speed-up: In the following, we compute the speed-up of our invasive parallel approaches
in different ways [JC09]. The first speed-up factor is considered as the ratio of the total
execution time on a uniprocessor Ts to the total execution time of the parallel system Tp:
Sp = Ts

Tp
. For the computations, we assume that evaluation time of one solution takes one

time unit (one second). We examine the required time Ts for the uniprocessor1 to achieve

1We select NSGA-II algorithm [DPA02] for solving MOPs for the uniprocessor with population size 100,
200 generations, 0.9 for Pcrossover with ηc = 15 and 0.033 for Pmutation with ηm = 20.

Tabelle 2: Results for SIPO and R-SIPO
test function T Recovering? HV SEHV #Ev SE#Ev #AMP MAP

SIPO
ZDT1 - 0 8.2259 0.0426 17668 917 42.1 13.1
ZDT2 - 0 7.6480 0.1389 10556 809 25.1 7.7
ZDT3 - 0 9.2372 0.0800 13524 463 32.2 10.0

R-SIPO
ZDT1 0.07 97 8.5124 0.0364 2549 271 8.0 3.7

0.06 97 8.5486 0.0322 3680 390 11.5 5.6
0.05 97 8.5616 0.0311 4864 481 15.2 6.2
0.04 100 8.5835 0.0240 5472 410 17.1 7.8

ZDT2 0.07 83 8.2587 0.0364 3776 602 11.8 4.6
0.06 83 8.3027 0.0078 3765 516 11.8 4.7
0.05 87 8.2772 0.0354 4117 536 12.9 4.9
0.04 90 8.2297 0.0577 4299 515 13.4 5.1

ZDT3 0.07 100 10.2087 0.0511 5717 368 17.9 4.7
0.06 100 10.2358 0.0551 5888 322 18.4 5.4
0.05 100 10.2757 0.0485 5867 343 18.3 5.0
0.04 100 10.2050 0.0651 5483 268 17.1 4.9

Tabelle 3: Results of speed-up for SIPO and R-SIPO
test function Tp Ts HVp HVs #p Sp Ep Sxp

SIPO
ZDT1 3780 5400 8.2259 7.7611 4.67 1.43 0.31 1.06
ZDT2 3360 7400 7.6480 5.1768 3.14 2.20 0.70 1.48
ZDT3 2940 3300 9.2372 9.0257 4.60 1.12 0.24 1.02

R-SIPO
ZDT1 5700 9300 8.5835 8.2929 3.57 1.63 0.46 1.04
ZDT2 5280 16600 8.3027 6.7666 2.17 3.14 1.45 1.23
ZDT3 4860 6700 10.2757 9.9123 3.88 1.38 0.36 1.04

the same quality of solutions as the parallel algorithms. With the selected parameters, Tp

and Ts are measured as in Table 3 for SIPO and R-SIPO. The corresponding Sp values
indicate that SIPO and R-SIPO have both larger speed-up values than one for all the test
problems. This means that our parallel systems even as invasive models can achieve some
speed-up values. The speed-up value for ZDT2 is remarkable and comparing SIPO and R-
SIPO, we observe that recovering has significantly increased the speed-up for this problem.

Additionally, we compute the efficiency of the parallel algorithm based on these values. Ef-
ficiency Ep is measured as the fraction of time that a processor is effectively used [KGG94].
This is the ratio between the speed-up Sp and the number of processors #p used: Ep =
Sp

#p . The ideal value of Ep is one where usually it varies between zero and one. In our
case, as we do not have a fixed number of parallel processors over time, we take the ave-
rage of the average number of required processors over time as shown in Figure 2 and
in Table 3. The efficiency values (Ep) illustrate that SIPO has very high efficiency when
applied to ZDT2 problem. This value is even more than one after recovering as reported
for R-SIPO and means that R-SIPO finds solutions which can not be found by the algo-
rithm from [DPA02] on the uniprocessor. Overall, the efficiency values are improved by
R-SIPO for all the test problems. This reveals that recovering has considerably contributed
to improving the quality of the results.

Another speed-up factor for multi-objective optimization is called fixed-time-model [Gus90].

By this measurement, we assume that we have a time limit and compare the quality of the
solutions obtained by the parallel system with the solutions of the uniprocessor. We take
Tp as the time limit from above and measure the ratio called Sxp as the fraction between
the quality (here hypervolume) of solutions from the parallel system as reported in Table 2
and the quality of solutions from uniprocessor: Sxp =

HVp

HVs
. We slightly changed the Sxp

from [Gus90] as we maximize the hypervolume and want to keep the definition of speed-
up consistent over the paper. The calculated values of Sxp in our experiments are reported
in Table 3. By this measurement, we conclude that the results from SIPO and R-SIPO have
better quality than the results from the uniprocessor. Comparing SIPO and R-SIPO, we ob-
serve that Sxp values have been improved after the recovering for ZDT3 problem, where
for ZDT1 and ZDT2, we have less improvements. One reason for this phenomenon is that
we already obtained very good results for ZDT1 and ZDT2 with SIPO. R-SIPO has more
contributed to the quality of the results for ZDT3 because this function contains several
gaps along the optimal front and it is more likely that some good solutions are deleted by
SIPO and then recovered by R-SIPO.

Comparison: For a more in-depth evaluation, we additionally compare the results of R-
SIPO with another parallel alternative. We take the average of the average number of
parallel processors over all divisions by R-SIPO (as illustrated in Figure 2). The average
values are denoted as #p in Table 3. We divide the given interval into sub-intervals and
run the processors in parallel for the same number of evaluations as in R-SIPO. In more
details, we take #Ev from R-SIPO (23140, 14321 and 19391 for ZDT1 to ZDT3) and
divide that by 4, 2 and 4. The number of iterations in each processor is computed as
288, 357 and 241 for ZDT1 to ZDT3 for 20 particles. We measure hypervolume values
of 8.5802 (±0.0111), 7.7836 (±0.0282) and 10.3952 (±0.0147) for the three problems
respectively. R-SIPO obtains better quality of solutions for ZDT1 and ZDT2, whereas the
obtained values for ZDT3 are surprisingly better than those from R-SIPO. This is due
to the nature of the ZDT3 problem which contains a disconnected front of solutions and
recovering spends more evaluations to repair the real gaps along the front. This indicates
that it is difficult for R-SIPO to differentiate between real gaps and gaps caused by failures.

6 Conclusion and Future Work
In this paper, we study Self-organized Invasive Parallel Optimization (SIPO) for solving
optimization problems using parallel platforms. Particularly, we investigate Recovering-
SIPO (R-SIPO) which has a self-repairing mechanism to overcome the failures caused by
the self-organization in SIPO. The studied failures here concern the gaps obtained in the
course of selection mechanism in SIPO. SIPO starts from a partition given by the user with
one resource. This resource performs a rough optimization in the partition and decides if
the partition is further divided into smaller partitions or not. In the course of this selection
mechanism, it can happen that some good partitions are not considered anymore in the
optimization process. This causes undesired gaps in the solution space. We study a variant
of recovering mechanism called static recovering as it starts working after the resources
are done with the main steps of SIPO. The results of our experiments show that for the
selected test problems the recovering improves the quality of the obtained solutions. This
indicates that failures have indeed occurred by SIPO. In order to measure the power of
recovering and to observe if R-SIPO can differentiate between real gaps and failures, we

intentionally select a test problem with gaps (namely ZDT3). The results on this problem
illustrate that R-SIPO improves the quality but takes extra number of evaluations. This is
observed by comparing R-SIPO with a parallel variant which could obtain equally good
solutions with less number of evaluations than R-SIPO. We approved the result of the
experiments by computing different speed-up measurements. In future, we intend to work
on other variants of recovering methods and to minimize the number of evaluations by R-
SIPO. Furthermore, as R-SIPO is a general framework, we will employ other optimization
algorithms and investigate other test problems.

Literatur

[DPA02] K. Deb, A. Pratap und S. Agarwal. A Fast And Elitist Multi-objective Genetic Algo-
rithm: NSGA-II. IEEE Trans. on Evolutionary Computation, 6(8), 2002.

[DTLZ02] K. Deb, L. Thiele, M. Laumanns und E. Zitzler. Scalable Multi-Objective Optimization
Test Problems. In Congress on Evolutionary Computation, Seiten 825–830, 2002.

[GSRU07] D. Ghosh, R. Sharman, H. R. Rao und S. Upadhyaya. Self-healing systems - survey
and synthesis. Decision Support Systems, 42:2164 – 2185, 2007.

[Gus90] J. L. Gustafson. Fixed Time, Tiered Memory, and Superlinear Speedup. In Proceedings
of the Fifth Distributed Memory Computing Conference, Seiten 1255–1260, 1990.

[JC09] A. Lopez Jaimes und C. A. Coello Coello. Application of Parallel Plattforms and
Models in Evolutionary Multi-Objective Optimization. In A. Lewis et al., Hrsg.,
Biologically-inspired Optimisation Methods, Seiten 23–49. Springer, 2009.

[KGG94] V. Kumar, G.K. Ananth Grama und A. Gupta. Introduction to Parallel Computing:
Design and Analysis of Parallel Algorithms. Benjamin Cummings Publishing, 1994.

[MNS87] P. Moller-Nielsen und J. Staunstrup. Problem-heap: A paradigm for multiprocesor al-
gorithms. Parallel Computing, 4(1):63 – 74, 1987.

[MPS11] S. Mostaghim, F. Pfeiffer und H. Schmeck. Self-organized Invasive Parallel Optimiza-
tion. In Proceedings of the Internantional Workshop on Bio-inspired Approaches for
Distributed Computing, Seiten 49–56. ACM, 2011.

[MT03] S. Mostaghim und J. Teich. Strategies for finding good local guides in multi-objective
particle swarm optimization. In Swarm Intelligence Symposium, Seiten 26–33, 2003.

[SMDT03] O. Schütze, S. Mostaghim, M. Dellnitz und J. Teich. Covering Pareto Sets by Multilevel
Evolutionary Subdivision Techniques. In International Conference on Evolutionary
Multi-Criterion Optimization, Seiten 118–132, 2003.

[Tei08] J. Teich. Invasive Algorithms and Architectures. it - Information Technology,
50(5):300–310, 2008.

[TLMP08] H. Trautmann, U. Ligges, J. Mehnen und M. Preuss. A Convergence Criterion for
Multiobjective Evolutionary Algorithms Based on Systematic Statistical Testing. In
Parallel Problem Solving from Nature, Jgg. 5199, Seiten 825–836. Springer, 2008.

[TMO+08] E-G. Talbi, S. Mostaghim, T. Okabe, H. Ichibushi, G. Rudolph und C. A. Coello Coello.
Parallel Approaches for Multiobjective Optimization, Seiten 349–372. Springer, 2008.

[Zit99] E. Zitzler. Evolutionary Algorithms for Multiobjective Optimization: Methods and Ap-
plications. Shaker, 1999.

