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Abstract. Translations to (first-order) datalog have been used in a number of
inferencing techniques for description logics (DLs), yet the relationship between
the semantic expressivities of function-free Horn logic and DL is understood only
poorly. Although Description Logic Programs (DLP) have been described as DLs
in the “expressive intersection” of DL and datalog, it is unclear what an intersec-
tion of two syntactically incomparable logics is, even if both have a first-order
logic semantics. In this work, we offer a characterisation for DL fragments that
can be expressed, in a concrete sense, in datalog. We then determine the largest
such fragment for the DL ALC, and provide an outlook on the extension of our
methods to more expressive DLs.

1 Introduction

Ontologies and rules are two fundamental concepts in knowledge representation. Taking
ontologies as the basic modelling paradigm has led to the development of Description
Logics (DLs) with a wide range of successful knowledge representations languages. On
the other hand rules are the central notion in Logic Programming building on first-order
Horn logic. Both have been very prolific research areas and have recently received a
boost in the context of the Semantic Web. As references for the purposes of this paper
we point to [2] and [4]. Since decidability is an important concern for DL, function-free
first-order Horn logic “datalog” is of particular interest.

Since the semantic frameworks for DL and datalog are very close it is natural that
the research community started investigating the relationship between them. One direc-
tion explores how either formalism could be extended with features of the other. This
line of research is represented by approaches such as AL-log [8], CARIN [23], SWRL
[13,14], DL+Iog [28], DL-safe rules [27], DL Rules [21,11], but also Datalog® [5], and
V3-rules [3]. Another direction aims at pin-pointing how both formalisms overlap. This
has led to the study of Horn description logics [15,20] and Description Logic Programs
(DLP) [12,29]. The latter is a family of DLs that can be faithfully expressed in first-
order Horn-logic, and in particular in datalog, and the generalisation of this approach is
the main topic of this paper.*

4 Besides these two strands on integrating first-order rules with DLs, there are numerous works
on extending DLs with non-monotonic features from logic programming [10,9,28,25,26]
which are interesting in their own right but not closely related to this work.



It is known that fragments of various DLs can be translated into equivalent or equi-
satisfiable datalog programs, and this has also been exploited to solve reasoning tasks.
This has been demonstrated, e.g., for the description logics Horn-SHIQ and EL™
[15,22,17,18]. In this paper we address the question whether there is a maximal frag-
ment that can be mapped into datalog. This would give a precise meaning to the slogan
of the “expressive intersection” of DL and datalog. The failure of naive attempts to de-
fine maximal fragments eventually led to the definition of a DLP fragment for a given
DL in Section 3 below. In Section 4 we define the DLP fragment DLP #,c of ALC
and prove its maximality. This result can be extended to SROZQ but the necessary
canonical syntactic descriptions are too complex to be included in this paper. We thus
rather provide a summary of the relevant results and methods in Section 5 and refer for
details and omitted proofs to the technical report [19].

2 Preliminaries

We assume the reader to be familiar with DLs (see [19,2] for details and references),
and restrict to notational remarks here. The largest DL we encounter is SROJ Q™°, the
well-known DL SROJQ without any restrictions on simplicity and regularity of roles,
though only the simpler DL ALC will be considered in detail within this paper. DL
knowledge bases are defined over finite sets of individual names (constants) I, concept
names A, and roles R. We call . = (I, A, R) a signature. A signature .’ = (I’ ,/A’,R")
is called an extension of ., in symbols . C ./, if ICT" and A CA’and RCR’".

We use FOLL. to refer to standard first-order logic with equality. It is well known
in the folklore of DL and easy to see that there exists a translation 7 of SROZQ and
thus also of ALC into FOL. that preserves logical inference, i.e. KB; | KB, implies
m(KB)) F m(KB;). A definition of 7 may e.g., be found in [19, Figure 3.4].

We use the term “datalog” to refer to the function-free Horn logic fragment of
FOL.. A datalog program is a first-order theory which contains only formulae of the
form Vx.A; A ... AN A, — B where A;, B are atoms without function symbols of arity
greater than 0, and universal quantifies over all variables occurring in the implications.
We generally omit the quantifier, we simply write B if n = 0, and we use L to denote
the empty head.

It will not be sufficient for our work to consider knowledge bases KB such that
m(KB) is equivalent to a datalog program. Semantic equivalence turns out to be too
restrictive, it does e.g., not allow the use of new constant symbols denoting individuals
whose existence is required by ABox axioms. Equisatisfiability on the other hand is too
weak — it does not preserve relevant logical entailments. The following notion turns out
to be a more appropriate middle-ground:

Definition 1. Given FOL_ theories T and T’ with signatures . C ., then T’ seman-
tically emulates T if

(1) every model of T’ becomes a model of T when restricted to the interpretations of
symbols from .#, and

(2) for every model J of T there is a model I of T’ that has the same domain as [,
and that agrees with J on ..



It is usually not necessary to mention the signatures of 7 and 7" explicitly, since it
is always possible to find minimal signatures for 7 and 7" that satisfy condition (1) of
Definition 1. The concept of semantic emulation is also known by the name semantic
conservative extension, see e.g. [24, Def.11.29]. We will prefer semantic emulation for
its brevity.

Definition 2. Given FOL. theories T and T’ with signatures . C ., then T" syn-
tactically emulates T if for every first-order formula ¢ over : T = ¢ iff T' E .

It is easy to see that semantic emulation implies syntactic emulation. This illus-
trates the strength and significance of semantic emulation for knowledge representa-
tion: whenever a theory 7’ semantically emulates a theory 7, we find that 7" and T
encode the same information about the symbols in T, and in particular that 7’ cannot
be distinguished from 7 when restricting to those symbols.

Note, syntactic emulation of T by T’ can equivalently be characterized by the re-
quirement that for every formula ¢ over . the sets TU{p} and T’ U{p} be equisatisfiable.

We will later make use of the following lemma, which generalises the well-known
least model property of datalog. The proof of this is straightforward by unravelling of
the definitions.

Lemma 1. Let I, I, be interpretations over the same domain which agree on the
interpretation of constant and function symbols, and let T be a first-order theory that is
satisfied by 1| and I,.

1. If T is a datalog program then also the intersection 1| N I, satisfies T.
2. If T can be semantically emulated by a datalog program then also the intersection
I NI, satisfies T.

The intersection of interpretations is defined in the obvious way based on the intersec-
tion of predicate extensions.

3 Considerations for Defining DLP

In this section, we discuss and motivate a generic definition for DLP fragments of a
description logic. A powerful tool for obtaining this definition is the construction of
variants of logical expressions which preserve only the logical structure but may modify
concrete signature symbols:

Definition 3. Let F' be a FOL. formula, a DL axiom, or a DL concept expression,
and let .# be a signature. An expression F' is a variant of F in .7 if F’ can be ob-
tained from F by replacing each occurrence of a role/conceptfindividual name with
some role/conceptfindividual name in .. Multiple occurrences of the same entity name
in F need not be replaced by the same entity name of . in this process.

A knowledge base KB’ is a variant of a knowledge base KB if it is obtained from
KB by replacing each axiom with a variant.



Note that we do not require all occurrences of an entity name to be renamed to-
gether, so it is indeed possible to obtain A —B from A —A. Considering all variants of
a formula or axiom allows us to study the semantics and expressivity of formulae based
on their syntactic structure, disregarding any possible interactions between signature
symbols. We therefore call a FOL- formula, DL axiom, or DL concept expression F
name-separated if no signature symbol occurs more than once in F.

Definition 4. Given description logics L and D, we call D a DLP fragment of L if

(1) every axiom of D is an axiom of L,

(2) there is a transformation function datalog that maps a D axiom « to a datalog
program datalog(a) such that datalog(a) semantically emulates «,

(3) D is closed under variants, i.e. given any axiom a and an arbitrary variant @' of «,
we find « is in D iff ' is.

Item (1) of this definition fixes the syntactic framework for DLP fragments. Item (2)
states the property that motivates the study of DLP languages: every axiom of a DLP
fragment can be expressed in datalog. DLP languages as discussed in the literature may
require the use of auxiliary symbols for the translation to datalog [29], and the datalog
program can no longer be semantically equivalent to the original knowledge base in this
case, even if all consequences with respect to the original predicates are still the same.
This motivates the use of semantic emulation as introduced in Definition 1.

Item (3) of Definition 4 reflects our desire to obtain fragments that correspond to
well-behaved logical languages as opposed to being arbitrary collections of axioms.
An obvious way to implement this would be to require DLP fragments to be described
by a context-free grammar. A typical feature of grammars for logical languages is that
they are parametrised by a logical signature that can be modified without changing the
essential structural features of the language. This effect is mirrored by the requirement
of item (3) without introducing detailed requirements on a suitable logical grammar.
We will find grammatical descriptions in the cases we consider, though item (3) as such
does not imply that this is possible.

Let us discuss for a moment an alternative to item (3) in Definition 4. It seems
natural to require that membership in a fragment can be decided efficiently, say in poly-
nomial time. Proposition 1 shows that in this case no maximal fragment can exist. Def-
inition 4 allows fragments without any restriction on the complexity of the membership
relation, but the maximal DLP fragment of ALC in Section 4 is described by a context-
free language, and thus efficiently recognisable.

Proposition 1. Given description logics L and D, we call D a P-DLP fragment of £
if items (1) and (2) of Definition 4 are satisfied, and in addition there is a polynomial
procedure for deciding a € D for any DL axiom a.

Unless the complexity classes P and PSPACE coincide, there is no maximal P-DLP
fragment of ALC: given any P-DLP fragment D of ALC, there is a P-DLP fragment
D of ALC that covers more axioms, i.e. D C D',

Proof. We start with an auxiliary construction: if the concept expression C is satisfiable
and does not contain the symbols R, A{, A,, and ¢, then no datalog program semantically



emulates the expression a¢ = (C M AR.(A; LI A»))(c). For a contradiction, suppose that
ac is semantically emulated by a datalog theory datalog(ac). By construction, ac is
satisfiable, and so is {a¢,A; E L1} for each i = 1,2. By Definition 2, we find that
datalog(ac) U {A; C L} is satisfiable, too. Thus, there are models J; of datalog(a¢)
such that Al.j © = (. By the least model property of datalog, there is also a model 7 of
datalog(ac) such that AY = AZ = 0. But then datalog(ac) U {A; LI A, C 1} is satisfiable
although {a,A; LI A, C 1} is not, contradicting the supposed semantic emulation.

Let us now assume for the sake of a contradiction that 9 contains all unsatisfiable
ALC axioms of the form of e . This would give a polynomial decision procedure for
deciding satisfiability of ALC concept expressions C: construct a¢ from C (clearly
polynomial) decide ¢ € D (was assumed to be of polynomial complexity). This con-
tradicts the fact that deciding (un)satisfiability of ALC concept expressions is PSpace
hard.

Therefore, there is an unsatisfiable expression @ with a ¢ 9. Now let 9’ be defined
as D U {a}. The transformation is given by datalog’(@) = datalog(e) if @ € D, and
datalog’(@) = {T — A(x),A(x) — L} otherwise, where A is a new predicate symbol. It
is immediate that " P-DLP fragment of ALC strictly greater than D. O

This proof exemplifies a general problem that occurs when trying to define DLP: the
question whether an axiom is expressible in datalog is typically computationally harder
than one would like to admit for a language definition. This result carries over to more
expressive DLs, and remains valid even if requirements such as closure under common
normal form transformations are added to the definition of fragments. The fact that this
problem is avoided by item (3) in Definition 4 confirms our intuition that this require-
ment closely relates to the possibility of representing DLP fragments syntactically, i.e.
without referring to complex semantic conditions.

Proposition 2. Consider a class K of knowledge bases that belong to a DLP fragment
of some description logic, and such that the maximal size of axioms in K is bounded.
Deciding satisfiability of knowledge bases in K is possible in polynomial time.

Proof. Let the maximal size of axioms be bounded by N. Let V be a vocabulary with
N concept, role and constant symbols. By assumption we know that for every of the
finitely many axioms « of size less than N there is a translation datalog(e). We use
this as a (finite) look-up table in the definition of datalogy(8) for axioms 5 in KB € K:
Find a renaming @ = o(8) such that « is an expression in the vocabulary V. Here o is a
usual 1-1 renaming of symbols, not a variant in the sense of Definition 3. Look up the
datalog program datalog(@) and set dataloggg(8) = o(datalog(a)). It is easy to see that
dataloggg (B) still satisfies item (2) of Definition 4. Thus satisfiability of KB € K can
be decided by checking satisfiability of (Jsekp dataloggg (). The maximal number of
variables occurring within these datalog programs may also be bounded by N. Satisfi-
ability of datalog with at most N variables per rule can be decided in time polynomial
in 2V [7]. The renamings o can likewise be found in time polynomial in 2. Since N
is a constant, this yields a polynomial time upper bound for deciding satisfiability of
knowledge bases in K. O

It is interesting that the previous result does not require any assumptions on the
computational complexity of recognising or translating DLP axioms. Intuitively, Propo-



Concepts necessarily equivalent to T: L7 :=T|VRL? | L?nL? | L7uC

Concepts necessarily equivalent to L: Ly =1 |3RLT LN C|LIULT

Body (C € L7 iff -C C A in DLPase): LI := LA | L7 | A [VRL? | LA NLA | LA U LA
Head (C € LA iffAC Cin DLPazc): L o= LA A |VRLY | LANLY LI ULS
Assertions (C € LY iff C(a) in DLPasc): LI == L7 | IRLY | LA LY | LA ULy

Fig. 1. DLP ¢ concepts in negation normal form

sition 2 states that reasoning in any DLP language is necessarily “almost” tractable.
Indeed, many DLs allow complex axioms to be decomposed into a number of simpler
normal forms of bounded size, and in any such case tractability is obtained. Moreover,
Proposition 2 clarifies why Horn-SH ZQ cannot be in DLP: ExpTIME worst-case com-
plexity of reasoning can be proven for a class K of Horn-SH 7 Q knowledge bases as in
the above proposition (see [20], noting that remaining complex axioms can be decom-
posed in Horn-SHIQ).

4 The DLP Fragment of ALC

Using Definition 4, it is now possible to investigate DLP fragments of relevant descrip-
tion logics. In this paper, we detail this approach for ALC; some remarks on the more
complex case of SROJQ are given in Section 5 below. It turns out that the largest DLP
fragment of ALC exists, and can be defined as follows, where we use the negation
normal form NNF for simplifying our presentation.

Definition 5. We define the description logic DLP arc to contain all knowledge bases
consisting only of ALC axioms which are

— GClIs C T D such that NNF(=C U D) is an Lg concept as defined in Fig. 1, or
— ABox axioms C(a) where NNF(C) is an L‘Z[ concept as defined in Fig. 1.

The headings in Fig. 1 give the basic intuition about the significance of the vari-
ous concept languages. The distinction of head and body concepts is typical for many
works on DLP and Horn DLs, while our use of additional assertional concepts takes into
account that emulation allows for some forms of Skolemisation. Typical example repre-
sentatives of the respective grammars are —=A MYR.(=B U —C) for L7, =AU (BMVR.C)
for L7}, and —A L 3R.B for L.

Though name separation prevents most forms of semantic interactions within con-
cepts, we still require grammars for L7 and L' to characterise concepts all variants of
which are equivalent to T and L, respectively. This includes concept expressions such
asAM3R.L and BUVR.T.

We start with an easy observation on Definition 5. This result will not explicitly be
used later on but might add to the understanding of this definition.

Lemma 2. Consider arbitrary ALC concept expressions C that do not contain quan-
tifiers ¥, 3, and the symbols T and 1.



1. IfC € L? then C has a conjunctive normal form ['|;||; C;; with C;; a negated
atom for all i, j.

2. IfC e L‘ZI[ or C € L then C has a conjunctive normal form []; LI; Cij with Cy
negated or unnegated atoms and for every i there is at most one j such that C j is
an unnegated atom.

(Since the assumptions require that C does not contain quantifiers there is no dif-
ference here between C € L? and C e L)

Proof. Notice, that C ¢ L7 and C ¢ L7 since neither T nor L occur in C. For item (1),
note that if C € L? then either C is a negated atom, or C = C; M Cyor C = C; LU C,
with C; € L?. The claim now follows easily from the induction hypothesis on C}, C5.

For item (2), by the assumptions on C we have C € Lf} if one of the following cases
holds true:

1. Ce Lg‘. Then the claim follows from part (1) of the lemma.

2. Cis an atom. Then the claim is obviously true.

3.C=CinCywith C; € LZ,[. If C! is a conjunctive normal form of C; satisfying the
claim then C 1 CJ is a conjunctive normal form of C satisfying the claim.

4. C=CiuC withC; e L and Cy € L. Let []; | ; Ci‘,j and [],, LI, C2,, be the con-
junctive normal forms that exist by induction hypothesis satisfying the respective
claims. A conjunctive normal form of C = C; U C; is obtained as the conjunction
of all | |; Cl.l,j U | ], C2 , for all combinations of i, m. Since LI; Cl.l,j contains at most

one positive atom and | |, C2 , contains only negative atoms we are finished. O

N

It is obvious that DLP 4 ¢ satisfies items (1) and (3) of Definition 4, so what re-
mains to show is that DLP 4 ,c knowledge bases can indeed be expressed in datalog.
Following the grammatical structure of DLP # ¢, we specify three auxiliary functions
for constructing datalog programs to semantically emulate a DLP 4 ¢ knowledge base.
The following two lemmata can be proven by simple inductions, see [19] for further de-
tails.

Lemma 3. Given a concept name A, and a concept C € Lg, Fig. 2 recursively defines
a datalog program dIgf}(A C C) that semantically emulates A C C.

For an example of this transformation, consider the Lf} concept E = =B U (C 1
VR.D). Then dIgﬂ(A C E) consists of the following rules:

A(x) A X1(x) = Xa(x)
B(x) — Xi(x)

Xo(x) — C(x)

Xo(x) AR(x,y) — X3(x)
X3(x) — D(x)

Clearly, this rule set could be further simplified to obtain the three rules A(x) A B(x) —
X5(x), Xo(x) — C(x), Xa(x) A R(x,y) — D(x) which are easily seen to semantically
emulate AC E.

Lemma 4. Given a constant a and a concept C € L, Fig. 3 recursively defines a
datalog program dIgZ‘(C (a), L) that semantically emulates C(a).



C dig7(A C C)

DeL¥} dig? (=X E D) U{A(x) A X(x) —> L}
B {A(x) = B(x)}
VYR.D dig7(X © D)
U {A(x) AR(x,y) = X(»)}
D, D, dig/(A € D) Udigi(A E D,)
Dy U D, e (LAULY|digh(X, © D) Udigl(=X; E Dy) U{A®) A X1 (x) > Xa(x)}

c digi(-=AC C)

DeL] {}

DeL] {A(x)}

-B {B(x) = A(x)}

YR.D dig7(=X E D) U{R(x,y) A X(y) = A(x)}

D, N D, e (LY NL|digi(=A € D) Udig)(-A T Dy)
Dy U D, e (LF uLH|digi(=X, £ D) Udlgy (=X, T D>) U {X1(x) A Xa(x) > A(x)}

A, B concept names, R a role, X(;) fresh concept names

Fig. 2. Transforming axioms A C L;} and —A C L' to datalog

Again, this transformation is designed for a concise definition, not for optimised
output. For an example, consider the L' concept E = =B U AR.C. Then dIgf}(E (a), L)
consists of the following rules (X; and Y indicating fresh concept names as in the defi-
nition of the transformation):

B(x) = Xi(x) Xo(a) — R(a,b)
Xao(a) — Y(b) X3(0) A Xg(x) — Xo(x)
- X3(x) X1(x) — X4(x)
— Xs5(b) X5(x) A Xo(x) — X7(x)
X7(x) = C(x) Y(x) = Xe(x)

As before, this rule set can be simplified significantly by eliminating most of the intro-
duced auxiliary concept symbols. Doing this, we obtain the three rules B(x) — X,(x),
X>(a) = R(a,b), and X,(a) — C(b), which again are easily seen to semantically emu-
late E(a) as claimed. Here, the fresh constant symbol b acts as a Skolem constant that
represents the individual that the existential concept expression may require to exist.

Combining the previous lemmata, we obtain the emulation theorem for DLP # c.

Theorem 1. For every DLP arc axiom a as in Definition 5, one can construct a data-
log program dig(@) that emulates a.

Proof. If @ = C C D is a TBox axiom, define datalog(«) := dlgﬂ(A C NNF(-CuD))U
{A(x)}. If @ = C(a) is an ABox axiom, define datalog(a) := dIgZ‘(C(a), 1). The result
follows by Lemma 3 and 4. O



c dig;(C(a), E)

DeL] dig(X C DU E) U {X(a)}

Dy nD, dig;(Di(a), E) U dig(Da(a), E)

D, U D, € (LA ULM|dgi (=X C D,) Udig(Di(a), E LU =X)

3R.D dig7 (=X C E) U digZ(D(b),-Y) U {X(a) > R(a,b), X(a) —> Y(b)}

E e L?, X, Y fresh concept names, b a fresh constant

Fig. 3. Transforming axioms C(a) with C € L to datalog

We still need to show that DLP ¢ is indeed the largest DLP fragment of ALC.
We first introduce two transformations — etb and qe —, and make some basic observa-
tions that allow us to use these transformations for showing maximality of DLP  sc.

Definition 6. Let C be an arbitrary ALC concept expression. The expression etb(C)
(eliminate top and bottom) is obtained from C by elimination of top and bottom sym-
bols, achieved by applying exhaustively the following rewrite rules:

TMND— D LuUuD—D TUD— T 1MDe— L VRTHT
DNTwe—D DuUulLwe—D DUTHT DNnlie L dJR.1L > L

Note, that etb(C) may still contain subexpressions of the form YR.L and AR.T
The next lemma summarises some easy observations on etb.

Lemma 5. For any ALC concept expression C

1. etb(C) is logically equivalent to C, i.e., for any interpretation (A*, T and any a €
A%, we have a € C* iffa e eth(C)!.

2. CeLfiffeth(C)e LY CeLliffeth(C) e LT  C e L iffeth(C) € L
CeL} iffeth(C) e Ly CeLiff etb(C)e Ly

3. If C does not contain subexpressions of the form YR.L or AR. T then etb(C) = L,
or etb(C) = T, or etb(C) does neither contain L nor T.

Definition 7. Let C be an arbitrary ALC concept expression. The expression ge(C) is
obtained from C by quantifier elimination:

ge(A) =A (concept name) ge(—Ci) = -gqe(Cy)
qe(Cy M C2) = ge(Cy) M ge(Cy) qe(Cy U C2) = ge(Cy) U ge(Ca)
ge(VR.Cy) = ge(Cy) ge(AR.Cy) = ge(Cy)

Lemma 6. Let (I, A,R) be a signature and fix a domain A. There is an interpretation
I| on 4 of the role symbols in R such that for any interpretation Iy on A of the signature
X, A, 0), and for any concept C of (I, A, R), we find cl = qe(C)f‘J with T = ToU 1.

Proof. Setting 7|(R) = {{a,a) | a € 4} for all R € R, we obtain:
(YR.DY ={aed|be D" forall{a,b) e RI'}) ={aed|ae D) =D,
(AR.D)! = {a € 4| there is (a, b) € RI* withb e D'} ={ae A |ae D'}y =Dl. @O



Note, that Lemma 6 is true for arbitrary ALC concept expressions, they need neither
belong to DLP # ¢ nor be name-separated.

Lemma 7. Let C be an arbitrary ALC concept expression. Then

Ce L? iff ge(C)e L7,
Ce LZ‘ iff ge(C)e LY,
CeLl iff qe(C)eLM

Proof. Here is a sample from the inductive proof for the first equivalence. The goal in
this case is to show that (YR.D) € L' iff D € L.

The “if” direction is directly covered by a grammar rule. For the “only if” direction,
we observe that there are only two grammar rules that can produce a formula of the
form (YR.D). The first is VR.L‘?, for which we directly find that (VR.D) € L? implies
De Lg‘. The second rule is VR.L?. Thus (YR.D) € Lg‘ implies D € L7, which suffices
since L¥ ¢ L. O

Theorem 2. DLP 7 ¢ is the largest DLP fragment of ALC.

Proof. For a contradiction, suppose that there is a DLP fragment ¥ of ALC that
is strictly larger than DLP#c. Then there is some GCI C’ £ D’ in # but not in
DLP arc. The other possibility that there is an ABox axiom C’(a) € ¥ with C’(a) ¢ L
is completely analogous. By Definition 4, any name-separated variant C E D of C' £ D’
is still in . Since DLP # ¢ is closed under variants, C T D is not in DLP »,c. By
Definition 5 this means that the negation normal form E of —=C LI D is not in Lﬂ. By
Lemmas 5 and 7 also etb(qe(E)) is not in Lﬂ. Let EY be a conjunctive normal form of
etb(qe(E)). Thus E = Con N...NMCony with Con; = Liyu...uL;, whereeach L;;is
a concept name or the negation of a concept name. Again, it can be verified that E € L‘g
iff E e L‘ZII. Furthermore, for one i, 1 < i < k there are two unnegated concept names
among {L;1, ..., L, }. Otherwise, we could show E“Y € L. For this we need the ex-
tended grammar of Lg. Without loss of generality leti = 1 and L;; = Aj, Lix = A
positive. The name separation of E may have been lost by building the transformation
to conjunctive normal form EV, but we still have the following:

1. For any atom A, if A occurs in E/ then =A does not occur in EY, and vice versa.

2. For any two different conjuncts Con; and Con; of E“Y, there is a literal / occurring
in Con; and not in Con; (and by symmetry also a literal I occurring in Con; and
not in Con;).

Claim 1 can be easily seen since the transformation from E to E“Y is effected by re-
peated application of the rewriting rule (Cy M Cy) U C3 = (Cy LU C3) M (Cy U C3).

Claim 2 can be proven by induction on the structural complexity of E. In the simplest
case E already is a conjunctive normal from. Then name separation of E even implies
that different conjuncts Con; are disjoint. Next assume that £ = E| U ... U E, and by
induction hypothesis each E; has a conjunctive normal form E; = Con;; M. ..M Con,,,
such that for j # k the conjunct Con; ; contains a literal, that does not occur in Con; .



Furthermore, name separation of E tells us that different E; , E;, do not share a literal.
By elementary computation we have

E = |_| .. ’_| (Cony , U...UCony;)

1<ij<m 1<i,<my,

Let us look at two different conjuncts in EV. Typically we may consider Con;; LI C,
and Con;, U C, with C, = Cony;, U ... U Con,; . By induction hypothesis there is a
literal / in Con,; that does not occur in Con, ». Under the present assumptions / occurs
in Con;; U C, and not in Con;, LI C,. This completes our proof of claim 2. Returning
to our main line of reasoning we define interpretations 7, and 7, on a universe 4 by

A{le L{liz([)foraIIZSanl

A?:A L{j:(l)foralllﬁjsnl,j?tz

Thus

Con‘lr‘ = Con‘lr2 =4 and COn‘lr'm—2 =0

By property 2 it is possible to extend the interpretations Z; such that Conf" = A4 for
i€f{i,1}and 2 < j < k. In total we have

(E(‘nf)fl — (ECﬂf)Jz =4 and (Ecnf)flﬂfz =0

Since the normal form and the etb transformation preserve logical equivalence, we also
have qe(E)? = A fori = 1,2 and qe(E)?'"?> = (. By Lemma 6 there are expansions 7 ;
of T; such that EZi = qe(E)’i = Afori € {1,2}and ET*'"2" = EDinD)" = ge(E)1102 =
0. By Lemma 1, this contradicts the possibility that 7(E) can be emulated by a datalog
formula. |

5 The Datalog Fragment of SROZQ

The previous section showed that syntactic descriptions tend to become rather complex
when maximising languages in a canonical way, but the situation is substantially more
intricate when considering SROZQ"™® instead of ALC as an underlying DL. Here, we
summarise the conclusions that have been obtained in [19] for this case. There, a maxi-
mal DLP fragment of SROZQ™® has been developed under the additional requirement
of closure under disjunctive normal forms (DNF):

Theorem 3. The largest DL fragment of SROIQ™ that is also closed under DNF
exists, and it can be characterised by a parametrised set of grammar productions. We
call this DL DLP.

Disjunctive normal forms here are mainly required to curtail the syntactic com-
plexity of the obtained fragment, and we conjecture that a maximal DLP fragment of
SROIQ™ that does not have this property also exists. Rather than in the concrete de-
scription of this fragment, we are interested here in the general insights that are obtained
from proofs of such results. The above result consists of three parts: (1) specifying an



explicit syntactic characterisation, (2) showing that all DL% axioms can be FOL_-
emulated in datalog, (3) showing that DLP is the largest such DL. Here we give an
overview of the main methods that are used in each step.

Syntactic Characterisation The main challenge here is to reduce the presentational
complexity as far as possible. A DLP normal form is introduced that incorporates DNF
and an improved form of NNF, and which ignores concepts that, like LZ/L7' above,
are always equivalent to T/L. The syntax of DLP in normal form is still very complex
due to the interplay of number restrictions and nominals that is possible even in name-
separated axioms.

Datalog Emulation A recursive datalog transformation as in the case of DLP ¢
above is provided. The individual steps are substantially more involved, and even lead
to exponentially large datalog programs in various cases, although these programs are
very regular and can be constructed in a single pass without complex computations.
We conjecture that this blow-up is unavoidable but this issue has not been investigated
further.

Maximality The least model property of datalog was used for showing maximality of
DLParc, but no extension of this direct approach to DLP has been found. Instead,
additional model-theoretic properties of datalog were used that incorporate submodels
and product models [6]. Using various inductive arguments, it has then been shown that
any extension of DLP leads to axioms that cannot be FOL--emulated in datalog.

We provide some examples to illustrate the issues that occur in the general case
(datalog emulations are provided in parentheses). DLP expressions of the form A M
AR.BC VS.C (A(x) AR(x,y) A B(y) AS (x,z) = C(z)) are well-known. The same is true
for A T AR{c} (A(x) — R(x,c)) but hardly for A € >2 R.({c} U {d}) (A(x) = R(x,¢),
A(x) = R(x,d), A(x) A c ~ d — 1). Another unusual form of DLP axioms arises
when Skolem constants (not functions) can be used as in the case {c} C >2 R.A (R(c, s),
R(c,s"), A(s), A(s"), s = ' — L with fresh s, ') and A C dR.({c} 1 3S.T) (A(x) —
R(x,c), A(x) — S(c, s) with fresh ). This is possible since semantic emulation is more
general than semantic equivalence.

For a more complex DLP axiom, consider the GCI {c} C >2R.(-{a} L AU B). It
is semantically emulated by {R(c, s1), R(c, s2),a = 51 — A(s1),a = s, — A(sy)} where
s; are fresh constants. Note how equalities of fresh constants are used to simulate finite
amounts of disjunctive behaviour. In contrast, {c} E >2 R.(={a} LU A U B LI C) is not in
DLP.

Another complex example is {c} E >4 R.(A U {a} U ({b} N <1 S.({c} L {d}))) which is
semantically emulated by a datalog program that contains about 30 rules. Interestingly,
the axiom {c} C >3 R.(A U {a} U ({b} N <1 S.({c} L {d}))) which only differs by using 3
instead of 4 cannot be FOL_-emulated by any datalog program.

6 Conclusions and Outlook

DLP provides an interesting example of a general type of problem: given two KR for-
malisms that can be translated to first-order logic, how can we syntactically characterise



all theories of the source formalism that can faithfully be represented in the target for-
malism? In this work, we proposed to interpret “faithful representation” by means of
semantic emulation (a weaker notion of semantic equivalence), while “syntactic” has
been realised by requiring closure under variants (non-uniform renamings of signature
symbols). These two simple principles allowed us to show the existence of a largest
DLP fragment for the DL ALC. In this sense, we argue that our approach introduces a
workable definition for the vague notion of the “intersection” of two KR formalisms.

Our rigorous definition of DLP fragments also clarifies the differences between DLP
and the DLs &L and Horn-SHZQ which can both be expressed in terms of datalog as
well. Neither &L nor Horn-SHIQ can be semantically emulated in datalog but both
satisfy a weaker version of syntactic emulation that is obtained by restricting to variable-
free formulae ¢ in Definition 2. Under such weaker requirements, a larger space of
possible DL fragments is allowed, but it is unknown whether (finitely many) maximal
languages exist in this case. There is clearly no largest such language, since both EL
and DLP abide by the weakened principles whereas their (intractable) union does not
(contradicting Proposition 2).

Even when weakening the requirements of DLP fragments like this, Horn-SHIQ
is still excluded by Proposition 2, which explains why Horn-SH 7 Q cannot be trans-
lated to datalog axiom-by-axiom. In the presence of transitivity, Horn-SHZQ also is
not really closed under variants, but this problem could be overcome by using distinct
signature sets for simple and non-simple roles. Again, it is open which results can be
established for Horn-SH 7 @-like DLs based on the remaining weakened principles.

This work also explicitly introduces a notion of emulation which appears to be
novel, though loosely related to conservative extensions. In essence, it requires that a
theory can take the place of another theory in all logical contexts, based on a given
syntactic interface. Examples given in this paper illustrate that this can be very different
from semantic equivalence. Yet, emulation can be argued to define minimal require-
ments for preserving a theory’s semantics even in combination with additional informa-
tion, so it appears to be a natural tool for enabling information exchange in distributed
knowledge systems. We think that the articulation of this notion is useful for studying
the semantic interplay of heterogeneous logical formalisms in general.

Finally, the approach of this paper — seeking a logical fragment that is provably max-
imal under certain conditions — immediately leads to a number of further research ques-
tions. For example, what is the maximal fragment of SWRL (“datalog U SROIQ,” see
[14]) that can be expressed in SROJQ? Clearly, this fragment would contain DL Rules
[21] and maybe some form of DL-safe rules [27]. But also the maximal FOL_- frag-
ment that can be expressed in a well-known subset such as the Guarded Fragment [1] or
the two-variable fragment might be of general interest. We argue that ultimate answers
to such questions can indeed be obtained based on similar definitions of fragments as
used for DLP in this work. At the same time, our study of SROZQ indicates that the re-
quired definitions and arguments can become surprisingly complex when dealing with a
syntactically rich formalism like description logic. The main reason for this is that con-
structs that are usually considered “syntactic sugar” have non-trivial semantic effects
when considering logical fragments that are closed under variants.
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