OntoEdit empowering SWAP: A case study in
supporting DIstributed, Loosely-controlled and
evolvinG Engineering of oNTologies (DILIGENT)

Sofia Pinto!2, Steffen Staab?, York Sure?, and Christoph Tempich?

'Dep. de Engenharia Informética, Instituto Superior Técnico, Lisboa, Portugal
http://www.dei.ist.utl.pt/
sofia.pinto@dei.ist.utl.pt
Institute AIFB, University of Karlsruhe, 76128 Karlsruhe, Germany
http://www.aifb.uni-karlsruhe.de/WBS/

{staab, sure, tempich}@aifb.uni-karlsruhe.de

Abstract. Knowledge management solutions relying on central repositories some-
times have not met expectations, since users often create knowledge ad-hoc using
their individual vocabulary and using their own decentral IT infrastructure (e.g.,
their laptop). To improve knowledge management for such decentralized and in-
dividualized knowledge work, it is necessary to, first, provide a corresponding IT
infrastructure and to, second, deal with the harmonization of different vocabular-
ies/ontologies. In this paper, we briefly sketch the technical peer-to-peer platform
that we have built, but then we focus on the harmonization of the participating
ontologies.

Thereby, the objective of this harmonization is to avoid the worst incongruen-
cies by having users share a core ontology that they can expand for local use at
their will and individual needs. The task that then needs to be solved is one of
distributed, loosely-controlled and evolving engineering of ontologies. We have
performed along these lines. To support the ontology engineering process in the
case study we have furthermore extended the existing ontology engineering en-
vironment, OntoEdit. The case study process and the extended tool are presented
in this paper.

1 Introduction

The knowledge structures underlying today’s knowledge management systems consti-
tute a kind of ontology that may be built according to established methodologies e.g.
the one by [1]. These methodologies have a centralized approach towards engineering
knowledge structures requiring knowledge engineers, domain experts and others to per-
form various tasks such as requirement analysis and interviews. While the user group
of such an ontology may be huge, the development itself is performed by a — com-
paratively — small group of domain experts who represent the user community and
ontology engineers who help structuring.

In Virtual Organizations [2], organizational structures change very often, since or-
ganizations frequently leave or join a network. Therefore, working based on traditional,
centralized knowledge management systems becomes infeasible. While there are some

technical solutions toward Peer-to-Peer knowledge management systems (e.g., [3]) —
and we have developed a technically sophisticated solution of our own as part of our
project, SWAP — Semantic Web and Peer-to-Peer [4], traditional methodologies for
creating and maintaining knowledge structures appear to become unusable like the sys-
tems they had been developed for in the first place.

Therefore, we postulate that ontology engineering must take place in a Distributed,
evolvIinG and Loosely-controlled setting. With DILIGENT we here provide a process
template suitable for distributed engineering of knowledge structures that we plan to
extend towards a fully worked out and multiply tested methodology in the long run. We
here show a case study we have performed in the project SWAP using DILIGENT with a
virtual organization. DILIGENT comprises five main activities of ontology engineering:
build, local adaptation, analysis, revision, and local update (cf. Section 3).

The case study (cf. Section 4) suggests that the resulting ontology is indeed shared
among users, that it adapts fast to new needs and is quickly engineered. With some
loose control we could ensure that the core ontology remained consistent, though we
do not claim that it gives a complete view on all the different organizations.

In the following, we briefly introduce the organizational and technical setting of our
case study (Section 2). Then we sketch the DILIGENT process template (Section 3),
before we describe the case study (Section 4).

2 Problem Setting

2.1 Organizational setting at IBIT case study

In the SWAP project, one of the case studies is in the tourism domain of the Balearic
Islands. The needs of the tourism industry there, which is for 80% of the islands’ econ-
omy, are best described by the term ‘coopetition’. On the one hand the different or-
ganizations compete for customers against each other. On the other hand, they must
cooperate in order to provide high quality for regional issues like infrastructure, facil-
ities, clean environment, or safety — that are critical for them to be able to compete
against other tourism destinations.

To collaborate on regional issues a number of organizations now collect and share
information about indicators reflecting the impact of growing population and tourist
fluxes in the islands, their environment and their infrastructures. Moreover, these in-
dicators can be used to make predictions and help planning. For instance, organiza-
tions that require Quality & Hospitality management use the information to better plan,
e.g., their marketing campaigns. As another example, the governmental agency IBIT!,
the Balearic Government’s co-ordination center of telematics, provides the local indus-
try with information about new technologies that can help the tourism industry to better
perform their tasks.

Due to the different working areas and objectives of the collaborating organizations,
it proved impossible to set up a centralized knowledge management system or even a
centralized ontology. They asked explicitly for a system without a central server, where

"http://www.ibit.org

knowledge sharing is integrated into the normal work, but where very different kinds of
information could be shared with others.

To this end the SWAP consortium — including us at Univ. of Karlsruhe, IBIT, Free
Univ. Amsterdam, Meta4, and empolis — have been developing the SWAP generic
platform and we have built a concrete application on top that allows for satisficing the
information sharing needs just elaborated.

2.2 Technical setting at SWAP

The SWAP platform (Semantic Web And Peer-to-peer; short Swapster) [4] is a generic
infrastructure, which was designed to enable knowledge sharing in a distributed net-
work. Nodes wrap knowledge from their local sources (files, e-mails, etc.). Nodes ask
for and retrieve knowledge from their peers. For communicating knowledge, Swap-
ster transmits RDF structures [5], which are used to convey conceptual structures (e.g.,
the definition of what a conference is) as well as corresponding data (e.g., data about
ESWS-2004). For structured queries as well as for keyword queries, Swapster uses
SeRQL, an SQL-like query language that allows for queries combining the conceptual
and the data level and for returning newly constructed RDF-structures.

In the following we describe only the SWAPSTER components that we refer to later
in this document (for more see [4]).

Knowledge Sources: Peers may have local sources of information such as the local file
system, e-mail directories, local databases or bookmark lists. These local information
sources represent the peer’s body of knowledge as well as its basic vocabulary. These
sources of information are the place where a peer can physically store information (doc-
uments, web pages) to be shared on the network.

Knowledge Source Integrator: The Knowledge Source Integrator is responsible for
the extraction and integration of internal and external knowledge sources into the Local
Node Repository. This task comprises (1) means to access local knowledge sources and
extract an RDF(S) representation of the stored knowledge, (2) the selection of the RDF
statements to be integrated into the Local Node Repository and (3) the annotation of the
statements with metadata. These processes utilize the SWAP metadata model presented
later in this section.

Local Node Repository:The local node repository stores all information and its meta
information a peer wants to share with remote peers. It allows for query processing and
view building. The repository is implemented on top of Sesame [6].

User Interface: The User Interface of the peer provides individual views on the infor-
mation available in local sources as well as on information on the network. The views
can be implemented using different visualization techniques (topic hierarchies, thematic
maps, etc). The Edit component described here is realized as a plug-in of the OntoEdit
ontology engineering environment.

Communication Adapter: This component is responsible for the network communi-
cation between peers. Our current implementation of the Communication Adapter is
build on the JXTA framework [7].

Information and Meta-information. Information is represented as RDF(S) statements
in the repository. The SWAP meta model? (cf. [4]) provides meta-information about the
statements in the local node repository in order to memorize where the statements came
from and other meta-information. The SWAP meta model consists of two RDFS classes,
namely Swabbi and Peer. Every resource is related to an instance of Swabbi in order
to describe from which instances of Peer it came from, etc.

Besides the SWAP meta data model the SWAP environment builds on the SWAP
common ontology.® The SWAP common model defines concepts for e.g. File and Folder.
Purpose of these classes is to provide a common model for information usually found
on a peer participating in a knowledge management network.

Querying for Data. SeRQL[8] is an SQL like RDF query language comparable to
e.g. RQL [9]. The main feature of SeRQL that goes beyond the abilities of existing
languages is the ability to define structured output in terms of an RDF graph that does
not necessarily coincide with the model that has been queried. This feature is essential
for defining personalized views in the repository of a SWAP peer.

OntoEdit. [10] is an ontology engineering environment which allows for inspecting,
browsing, codifying and modifying ontologies. Modelling ontologies using OntoEdit
means modelling at a conceptual level, viz. (i) as much as possible independent of a
concrete representation language, (ii) using graphical user interfaces (GUI) to represent
views on conceptual structures, i.e. concepts ordered in a concept hierarchy, relations
with domain and range, instances and axioms, rather than codifying conceptual struc-
tures in ASCIIL.

3 DILIGENT process

3.1 Process overview

As we have described before, decentralized cases of knowledge sharing, like our ex-
ample of a virtual organization, require an ontology engineering process that reflects
this particular organizational setting [11].* Therefore, we have drafted the template of
such a process — we cannot claim that it is a full-fledged methodology yet. The result,
which we call DILIGENT, is described in the following. In particular, we elaborate on
the high-level process, the dominating roles and the functions of DILIGENT, before we
go through the detailed steps in Sections 3.2. Subsequently, we give the concrete case
in Section 4 as an indicator for the validity of our ontology engineering process design.

Key roles: In DILIGENT there are several experts, with different and complementary
skills, involved in collaboratively building the same ontology. In a virtual organization
they often belong to competing organizations and are geographically dispersed. Ontol-
ogy builders may or may not use the ontology. Vice versa, most ontology users will
typically not build or modify the given ontology.

Overall process: An initial ontology is made available and users are free to use it and
modify it locally for their own purposes. There is a central board that maintains and

http://swap.semanticweb.org/2003/01/swap-peeri#
3http://swap.semanticweb.org/2003/01/swap-common#
* In fact, we conjecture that the majority of knowledge sharing cases falls into this category.

assures the quality of the shared core ontology. This central board is also responsible
for deciding to do updates to the core ontology. However, updates are mostly based on
changes re-occurring at and requests by decentrally working users. Therefore the board
only loosely controls the process. Due to the changes introduced by the users over time
and the on-going integration of changes by the board, the ontology evolves. Let us
now survey the DILIGENT process at the next finer level of granularity. DILIGENT
comprises five main steps: (1) build, (2) local adaptation, (3) analysis, (4) revision,
(5) local update (cf. Figure 1).

Build. The process starts by having domain experts, users, knowledge engineers and
ontology engineers build an initial ontology. In contrast to existing ontology engineer-
ing methodologies (cf. [12-16]), we do not require completeness of the initial shared
ontology with respect to the domain. The team involved in building the initial ontol-
ogy should be relatively small, in order to more easily find a small and consensual first
version of the shared ontology.

Local adaptation. Once the core ontology is available, users work with it and, in par-
ticular, adapt it to their local needs. Typically, they will have their own business require-
ments and correspondingly evolve their local ontologies (including the common core)
[17,18]. In their local environment, they are also free to change the reused core on-
tology. However, they are not allowed to directly change the core ontology from which
other users copy to their local repository. Logging local adaptations (either permanently
or at control points), the control board collects change requests to the shared ontology.

,
O
) %/ Nclo
%i %4 O, Q - Ontology\‘ %]
Ontology Sa User 1
User pomain Ontology % / o Board

Expert Engineer \ Editors
O, /
Ontology
Knowledge User n
Engineer

Fig. 1. Roles and functions in distributed ontology engineering

Analysis. The board analyzes the local ontologies and the requests and tries to identify
similarities in users’ ontologies. Since not all of the changes introduced or requested by
the users will be introduced to the shared core ontology,’ a crucial activity of the board
is deciding which changes are going to be introduced in the next version of the shared
ontology. The input from users provides the necessary arguments to underline change

3 The idea in this kind of development is not to merge all user ontologies.

requests. A balanced decision that takes into account the different needs of the users
and meets user’s evolving requirements® has to be found.

Revise. The board should regularly revise the shared ontology, so that local ontologies
do not diverge too far from the shared ontology. Therefore, the board should have a well-
balanced and representative participation of the different kinds of participants involved
in the process: knowledge providers, domain experts, ontology engineers and users. In
this case, users are involved in ontology development, at least through their requests
and re-occurring improvements and by evaluating it, mostly from an usability point of
view. Knowledge providers in the board are responsible for evaluating the ontology,
mostly from a technical and domain point of view. Ontology engineers are one of the
major players in the analysis of arguments and in balancing them from a technical
point of view. Another possible task for the controlling board, that may not always be
a requirement, is to assure some compatibility with previous versions. Revision can be
regarded as a kind of ontology development guided by a carefully balanced subset of
evolving user driven requirements. Ontology engineers are responsible for updating the
ontology, based on the decisions of the board. Revision of the shared ontology entails
its evolution.

Local update. Once a new version of the shared ontology is released, users can update
their own local ontologies to better use the knowledge represented in the new version.
Even if the differences are small, users may rather reuse e.g. the new concepts instead
of using their previously locally defined concepts that correspond to the new concepts
represented in the new version.

3.2 Tool support for DILIGENT steps

We support the participants in the DILIGENT process with a tool (cf. Figure 2). It is
an implementation of the Edit component of the SWAP environment, thus it works on
the information stored in the local node repository, and is realized as an OntoEdit plug-
in. We will now describe in detail how the tool supports the actions building, locally
adapting, analyzing, revising and locally updating.

Build

The first step of the ontology engineering task is covered by established methodologies
and by common OntoEdit functions. Some major tool functionality includes support
for knowledge elicitation from domain experts by means of competency questions and
mind maps and further support for the refinement process.

In contrast to a common full ontology engineering cycle the objective of this Build
task is not to generate a complete and evaluated ontology but rather to quickly identify
and formalize the main concepts and main relations.

® This is actually one of the trends in modern software engineering methodologies (see Rational
Unified Process).

.3! OntoEdit for Beta Tester

File Edit View Tools Windows Help

Al _E] i ge.jag]@J Open Swap Fils | Save Swap| Reload|

+% http:ifnewOnto.org/98e852210 (c:\tmp\Templswap§245.1mp) M EIET| |
RuleEditor | Generslfwioms | Inferencina | Analvzer | Wisuslizer | Debugger | Domainlexicon | OnkoFiler | Identfication | Metadaka
Concepts & Relations Instances Relation axioms | Guery Toal | Disjoink concepts
Concept hierarchy nstances
Q|al+l.|cJQSnurce A1
5 GDEFAULT_ROOT_COMCERT = 3 Waterdetters-01.doc

& water-Quality-01,doc
[+ (3 Water-research-01,doc
100% adaptation rate for concept Beaches | |
.- (3 Beaches 200
@ Beaches 2000
5 @ Blueflags Selsct for relation creal

=]

& Blus flags Select for instance sssignment

Remove Concept

Insert Relation

(3 Ecaches 2001 Reargarize
@Beaches 2002 Edit concept

@Blue flags Sort alphabetically

@ Human pressure

£

Sort Adaphion Rate . Measures In beaches

ol
ol

sellect ko align with
Create Subconcepts from Instances

=

Ready.| | 4236 0k Free

=

Fig. 2. OntoEdit plug-in to support DILIGENT

Local Adaptation

We distinguish two main types of users. The less frequent type is the user with on-
tology engineering competence who analyzes his personal needs, conceptualizes and
formalizes them. He uses established ontological guidelines [19] in order to maintain
soundness and validity. Besides, he annotates his knowledge according to his locally
extended ontology.

The more common type of user reuses the categorizations he had defined in his daily
work before (e. g.his folder structures) and just aligns them with the shared ontology. To
illustrate this use case we must point forward to some issues we found in the case study.
In the case study, users expect from a peer-to-peer system primarily the possibility to
share their documents with others. Users already organize their files in folder structures
according to their individual views. Hence, they will extend the core ontology with
concepts and relations corresponding to folder structures found in their file or email
system.

Concept creation. Our tool supports the creation of concepts and thus the extension of
the shared ontology in two ways. The reader may note that both methods have been
heavily influenced by our targeted system, SWAPSTER, and may be supplemented or
overridden by other methods for other target systems:

1. OntoScrape — part of the SWAPSTER knowledge source integrator — can extract
information from the user’s local file and email system. OntoScrape extracts e.g.the
folder hierarchy and builds up an RDFS representation in which the folder names
are used to create instances of class Folder. This information is stored in the local

node repository. Then, the user can pick a set of instances of Folder and create
concepts or relations using the folder names. In case of “concept creation” he would
select a certain concept and the system would subclass that concept using the names
of the previously selected folders.

The user may also reuse the folder hierarchy given by the inFolder relation to
construct a SubClassOf hierarchy.

2. Furthermore, a user can query other participants for their local subconcepts of the

core ontology. He can use the gathered information to directly extend his own struc-
tures by integrating retrieved information. Alternatively, he may use the query result
only for inspiration and create own extensions and modifications.
SWAPSTER integrates a component for semi-automatic alignment. Alignment de-
tection is based on similarities between concepts and relations(cf., e.g., [20]). The
user may either select a set of classes and ask for proposed alignment for these
classes, or he can look for alignments for the entire class hierarchy. The reader may
note that even the best available alignment methods are not very accurate and hence
some user involvement is required for aligning ontologies.

We are well aware of the drawbacks of this approach since the created structures will

not be “clean” ontologies. However, as our case study indicates the created structures
are good enough to be a fair input for the revision phase.
Instance assignment. Besides instances of the created concepts the user has mainly in-
stances of concept Source e.g.Folder and File and wants to relate them to his concepts.
In particular, documents play a predominant role in our case study. Since the global on-
tology certainly differs from existing local structures, we face the typical bootstrapping
problem that the documents need to be aligned with the defined concepts. Our tool
offers two possibilities to facilitate the assignment of documents to classes.

Manual Assignment Instances of concept Source can manually be selected and as-
signed to any concept in the ontology.

Automatic Assignment Automatic text classification is nowadays very effective. Hence
we provide an interface for classifiers to suggest document classifications. Classifier
training can take place remotely for the core ontology or according to established
procedures [21]. The classifier has to produce a set of RDFS statements, stating
which files should be classified where in the concept hierarchy. This has not been
implemented yet.

Analyzing

As described in the methodology, the board will come together in fixed time lines or
when a certain threshold of change requests has been reached. They will subsequently
analyze the activities which have taken place. They will gather the ontologies from all
participating peers on one central peer. The main task of the board is to incorporate the
change requests into the core ontology and to identify common usage patterns. Our tool
supports the board members in different ways to fulfill their task.

View selection. The number of newly created concepts within the peer network can be
large. The board members can use queries to select only parts of the ontology to be visu-
alized. Instead of loading the entire local node repository, a SeRQL query can be used

to generate a view on the repository. Queries can be defined manually, or predefined
ones — visualizing certain branches of the ontology — can be selected.

Colors. The board needs to separate extensions made by different users and is interested
in their relative activity. Since each peer uses its own name space to create URIs, exten-
sions to the core made by different peers can be distinguished. The tool highlights the
concepts, relations and instances of different peers by changing their background color.
The saturation and brightness of the color indicates the number of concepts coming
from a particular peer.” White is preserved for name spaces which the users can chose
not to highlight (e.g. the local, swap-peer and swap-common name space are excluded
from highlighting by default).

Adaptation rate. The averaged adaptation rate® of concepts from the core ontology and
also of concepts from different users is an indicator of how well a concept fits the user
needs. If a concept of the core ontology was not accepted by the users it probably has
to be changed. Alternatively, a concept introduced by a user which has been reused by
many other users can easily be integrated into the core ontology. The adaptation rate is
visualized as a tool tip. In our case study e.g. the concept beaches was adapted by all
users. It is calculated from the information stored in the SWAP data model.

Visualizing alignments. Instead of reusing concepts from other users, they can align
them. The semantics of both actions is very similar. However, alignment implies, in
most cases, a different label for the concept, which is determined by the board.

Sorting. To facilitate the analysis process, concepts, relations and instances may be
sorted alphabetically, according to their adaptation rate or the peer activity. Concepts
with the same label, but from different peers can be identified. Equally the concepts
reused by most peers may be recognized.

Revision

The analysis is followed by the revision of the core ontology. The change requests as
well as the recognized common usage patterns are integrated. In a traditional scenario
the knowledge engineer introduces the new concepts and relations or changes the ex-
isting ones while the system meets the requirements described in [18]. The ontology
changes must be resolved taking into account that the consistency of the underlying
ontology and all dependent artifacts are preserved and may be supervised.

Additionally we require, that the reasons for any change do not require too much
effort from the individual user. In particular, changes to the core ontology made because
of overarching commonalities should be easy to integrate for users who created the
concepts in the first place.

Local update

The changes to the core ontology must be propagated to all peers afterwards. The list of
changes is transmitted to the different peers by the Advertisement component. Maedche

7 Brighter and less saturated means less concepts than darker and more saturated.

8 The adaptation rate of a concept indicates how many users have included the concept into their
No of participant who have locally included the concept

local ontology: adaptation rate := No of parficipants

et al. describes in [22] the necessary infrastructure to enable consistent change propaga-
tion in a distributed environment. We do not require that all users adapt their ontology
to the changes introduces by the board members. Furthermore, we allow that they use
different evolution strategies when they accept changes (see [18] for an overview of
different strategies).

After the local update took place the iteration continues with local adaptation. Dur-
ing the next analysis step the board will review which changes were actually accepted
by the users.

4 Case study

We are now going to describe how DILIGENT ontology engineering is taking place in
the IBIT case study and how OntoEdit is supporting it.

In the case study one organization with seven peers took part. The case study lasted
for two weeks. The case study will be extended in the future to four organizations
corresponding to 21 peers and it is expected that the total number of organizations will
grow to 7 corresponding to 28 peers.

Building. In the IBIT case study two knowledge engineers were involved in building
the first version of the shared ontology with the help of two ontology engineers. In
this case, the knowledge engineers were at the same time also knowledge providers. In
addition they received additional training such that later, when the P2P network is going
to be up and running on a bigger scale, they will be able to act as ontology engineers
on the board. This they did already during this study — together with two two experts
from the domain area.

The ontology engineering process started by identifying the main concepts of the
ontology through the analysis of competency questions and their answers. The most
frequent queries and answers exchanged by peers were analyzed. The identified con-
cepts were divided into three main modules: “Sustainable Development Indicators™,
“New Technologies” and “Quality&Hospitality Management”. From the compe-
tency questions we quickly derived a first ontology with 22 concepts and 7 relations
for the “Sustainable Development Indicator” ontology. This was the domain of the
then participating organizations. The other modules will be further elaborated in future
efforts.

Based on previous experience of IBIT with the participants we could expect that
users would mainly specialize the modules of the shared ontology corresponding to
their domain of expertise and work. Thus, it was decided by the ontology engineers and
knowledge providers involved in building the initial version that the shared ontology
should only evolve by addition of new concepts, and not from other more sophisticated
operations, such as restructuring or deletion of concepts.

Local Adaptation. The developed core ontology for “Sustainable Development In-
dicator” was distributed among the users and they were asked to extend it with their
local structures. With assistance of the developers they extracted on average 14 folders.
The users mainly created sub concepts of concepts in the core ontology from the folder
names. In other cases they created their own concept hierarchy from their folder struc-
ture and aligned it with the core ontology. They did not create new relations. Instance

assignment took place, but was not significant. We omitted the use of the automatic
functions to get a better grasp of the actions the users did manually.

Analyzing. The members of the board gathered the evolving structures and analyzed
them with help of the OntoEdit plug-in. The following observations were made:

Concepts matched A third of the extracted folder names was directly aligned with the
core ontology. A further tenth of them was used to extend existing concepts.

Folder names indicate relations In the core ontology a relation inYear between the
concept Indicator and Temporal was defined. This kind of relation is often encoded
in one folder name. e.g. the folder name “Sustind2002” matches the concepts
Sustainable Indicator and Year®. It also points to a modelling problem, since
Sustainable Indicator is a concept while “2002” is an instance of concept Year.

Missing top level concepts The concept project was introduced by more than half of
the participants, but was not part of the initial shared ontology.

Refinement of concepts The top level concept Indicator was extended by more than
half of the participants, while other concepts were not extended.

Concepts were not used Some of the originally defined concepts were never used. We
identified concepts as used, when the users created instances, or aligned documents
with them. A further indicator of usage was the creation of sub concepts.

Folder names represent instances The users who defined the concept project used
some of their folder names to create instances of that concept e.g. “Sustainable
indicators project”.

Different labels The originally introduced concept Natural spaces was often aligned
with a newly created concept Natural environments and never used itself.

Ontology did not fit One user did create his own hierarchy and could use only one of
the predefined concepts. Indeed his working area was forgotten in the first ontology
building workshop.

From the discussions with the domain experts we have the impression that the local
extensions are a good indicator for the evolution direction of the core ontology. How-
ever, since the users made use of the possibility to extend the core ontology with their
folder names, as we expected, the resulting local ontologies represent the subjects of
the organized documents. Therefore, a knowledge engineer is still needed to extend the
core ontology, but the basis of his work is being improved significantly. From our point
of view there is only a limited potential to automate this process.

Revision. The board extended the core ontology where it was necessary and performed
some renaming. More specifically the board introduced (1) one top level concept (Project)
and (2) four sub concepts of the top level concept Indicator and one for the concept
Document. The users were further pointed to the possibility to create instances of the
introduced concepts. E.g. some folder names specified project names, thus could be
enriched by such an annotation.

Local update. The extensions to the core ontology were distributed to the users. The
general feedback of the users was generally positive. However, due to the early devel-
opment stage of the SWAP environment a prolonged evaluation of the user behavior
and second cycle in the ontology engineering process has not yet been performed.

? Year is sub class of class Temporal

5 Lessons learned

The case study helped us to generally better comprehend the use of ontologies in a
peer-to-peer environment. First of all our users did understand the ontology mainly as a
classification hierarchy for their documents. Hence, they did not create instances of the
defined concepts. However, our expectation that folder structures can serve as a good
input for an ontology engineer to build an ontology was met.

Currently we doubt that our manual approach to analyzing local structures will scale
to cases with many more users. Therefore, we look into technical support to recognize
similarities in user behavior. Furthermore, the local update will be a problem when
changes happen more often. Last, but not least, we have so far only addressed the on-
tology creation task itself — we have not yet measured if users get better and faster
responses with the help of DILIGENT-engineered ontologies. All this remains work to
be done in future.

In spite of the technical challenges, user feedback was very positive since (i) the
tool was integrated into their daily work environment and could be easily used and (ii)
the tool provided very beneficial support to perform their tasks.

6 Related work

An extensive state-of-the-art overview of methodologies for ontology engineering can
be found in (cf. [14]). We here briefly present some of the most well-known ontology
engineering methodologies.

CommonKADS [1] is not per se a methodology for ontology development. It covers
aspects from corporate knowledge management, through knowledge analysis and engi-
neering, to the design and implementation of knowledge-intensive information systems.
CommonKADS has a focus on the initial phases for developing knowledge manage-
ment applications, one can therefore make use of CommonKADS e.g. for early feasi-
bility stages.

Methontology [14] is a methodology for building ontologies either from scratch,
reusing other ontologies as they are, or by a process of re-engineering them. The frame-
work consists of: identification of the ontology development process where the main
activities are identified (evaluation, configuration, management, conceptualization, inte-
gration implementation, efc.); a lifecycle based on evolving prototypes; and the method-
ology itself, which specifies the steps to be taken to perform each activity, the techniques
used, the products to be output and how they are to be evaluated.

Even though Methontology already mentions evolving prototypes, none of these
(and similar others) methodologies responds to the requirements for distributed, loosely
controlled and dynamic ontology engineering.

There exists a plethora of “ontology editors’. We briefly compare two of the most
well-known ones to OntoEdit viz. Protégé and WebODE. The design of Protégé [23] is
very similar to OntoEdit since it actually was the first editor with an extensible plug-in
structure and it also relies on the frame paradigm for modelling. Numerous plug-ins
from external developers exist. WebODE [24] is an ontology engineering workbench

that provides various services for ontology engineering. Similar to OntoEdit it is ac-
companied by a sophisticated methodology of ontology engineering, see above Methon-
tology. However, no support of these tools is so far known for distributed, loosely con-
trolled and evolving ontology engineering such as we have presented for OntoEdit.

There are a number of technical solutions to tackle problems of remote collabora-
tion, e.g. ontology editing with mutual exclusion [25, 26], inconsistency detection with
a voting mechanism [27] or evolution of ontologies by different means [17, 18, 22].
APECKS [28] allows users to discuss different modelling decisions online. All these
solutions address the issue of keeping an ontology consistent. Obviously, none supports
(and do not intend to) the work process of the ontology engineers by way of a method-
ology.

The development of the National Cancer Institute Thésaurus [29] could be an in-
teresting application scenario for DILIGENT, because their processes seem to follow
our process templates. However, they focus on the creation of the thésaurus itself rather
than on a generalizable methodology.

7 Conclusion

It is now widely agreed that ontologies are a core enabler for the Semantic Web vision.
The development of ontologies in centralized settings is well studied and established
methodologies exist. However, current experiences from projects suggest, that ontology
engineering should be subject to continuous improvement rather than a one time action
and that ontologies promise the most benefits in decentralized rather than centralized
systems. Hence, a methodology for distributed, loosely-controlled and dynamic ontol-
ogy engineering settings is needed. The current version of DILIGENT is a step towards
such a methodology.

DILIGENT comprises the steps Build, Local Adaptation, Analysis, Revision and
Local Update and introduces a board to supervise changes to a shared core ontology.
The DILIGENT methodology is supported by an OntoEdit plug-in, which is an im-
plementation of the Edit component in the SWAP system. The plug-in supports the
board mainly in recognizing changes to the core ontology by different users during the
analysis and revision steps and highlights commonalities. It thus supports the user in
extending and changing the core.

We have applied the methodology with good results in a case study at IBIT, one of
the partners of the SWAP project. We found that the local extensions are very document
centered. Though we are aware that this may often lead to unclean ontologies, we be-
lieve it to be one (of many) important step(s) towards creating a practical semantic web
in the near future.

Acknowledgements. Research reported in this paper has been partially financed by
EU in the IST project SWAP (IST-2001-34103), the IST thematic network OntoWeb
(IST-2000-29243), the IST project SEKT (IST-2003-506826) and Fundagdo Calouste
Gulbenkian (21-63057-B). In particular we want to thank Immaculada Salamanca and
Esteve Lladé Marti from IBIT for the fruitful discussions and the other people in the
SWAP team for their collaboration towards SWAPSTER.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

. Schreiber, G., et al.: Knowledge Engineering and Management — The CommonKADS

Methodology. The MIT Press, Cambridge, Massachusetts; London, England (1999)

. Camarinha-Matos, L.M., Afsarmanesh, H., eds.: Processes and Foundations for Virtual Or-

ganizations. Volume 262 of IFIP INTERNATIONAL FEDERATION FOR INFORMATION
PROCESSIN. Kluwer Academic Publishers (2003)

. Bonifacio, M., Bouquet, P., Mameli, G., Nori, M.: Peer-mediated distributed knowldege

management. [30] To appear 2003.

. Ehrig, M., Haase, P., van Harmelen, F., Siebes, R., Staab, S., Stuckenschmidt, H., Studer, R.,

Tempich, C.: The swap data and metadata model for semantics-based peer-to-peer systems.
In: Proceedings of MATES-2003. First German Conference on Multiagent Technologies.
LNALI, Erfurt, Germany, Springer (2003)

. Klyne, G., Carroll, J.J.: Resource Description Framework (RDF): Concepts and abstract

syntax. http://www.w3.0rg/TR/rdf-concepts/ (2003)

. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A generic architecture for storing

and querying RDF and RDFSchema. [31] 54-68

. Gong, L.: Project JXTA: A technology overview. Technical report, Sun Micros. Inc. (2001)
. Broekstra, J.: SeRQL: Sesame RDF query language. In Ehrig, M., et al., eds.: SWAP Deliv-

erable 3.2 Method Design. (2003) 55-68

. Karvounarakis, G., et al.: Querying RDF descriptions for community web portals. In: Pro-

ceedings of The French National Conference on Databases 2001 (BDA’01), Agadir, Maroc
(2001) 133-144

Sure, Y., Angele, J., Staab, S.: OntoEdit: Multifaceted inferencing for ontology engineering.
Journal on Data Semantics, LNCS 2800 (2003) 128-152

Pinto, H.S., Martins, J.: Evolving Ontologies in Distributed and Dynamic Settings. In Fensel,
D., Giunchiglia, F., McGuinness, D., Williams, M., eds.: Proc. of the 8th Int. Conf. on Princi-
ples of Knowledge Representation and Reasoning (KR2002), San Francisco, Morgan Kauf-
mann (2002) 365-374

Staab, S., Schnurr, H.P., Studer, R., Sure, Y.: Knowledge processes and ontologies. IEEE
Intelligent Systems 16 (2001) Special Issue on Knowledge Management.

Gangemi, A., Pisanelli, D., Steve, G.: Ontology integration: Experiences with medical ter-
minologies. In Guarino, N., ed.: Formal Ontology in Information Systems, Amsterdam, IOS
Press (1998) 163178

Goémez-Pérez, A., Fernandez-Lépez, M., Corcho, O.: Ontological Engineering. Advanced
Information and Knowlege Processing. Springer (2003)

Pinto, H.S., Martins, J.: A Methodology for Ontology Integration. In: Proc. of the First Int.
Conf. on Knowledge Capture (K-CAP2001), New York, ACM Press (2001) 131-138
Uschold, M., King, M.: Towards a methodology for building ontologies. In: Proc. of 1J-
CAI95’s WS on Basic Ontological Issues in Knowledge Sharing, Montreal, Canada (1995)
Noy, N., Klein, M.: Ontology evolution: Not the same as schema evolution. Knowledge and
Information Systems (2003)

Stojanovic, L., et al.: User-driven ontology evolution management. In: Proc. of the 13th
Europ. Conf. on Knowledge Eng. and Knowledge Man. EKAW, Madrid, Spain (2002)
Guarino, N., Welty, C.: Evaluating ontological decisions with OntoClean. Communications
of the ACM 45 (2002) 61-65

Noy, N., Musen, M.: The PROMPT suite: Interactive tools for ontology merging and map-
ping. Technical report, SMI, Stanford University, CA, USA (2002)

Sebastiani, F.: Machine learning in automated text categorization. ACM Computing Surveys
34 (2002) 1-47

22.

23.

24.

25.

26.

217.

28.

29.

30.
31.

Maedche, A., Motik, B., Stojanovic, L.: Managing multiple and distributed ontologies on
the semantic web. The VLDB Journal 12 (2003) 286302

Noy, N., Fergerson, R., Musen, M.: The knowledge model of Protégé-2000: Combining
interoperability and flexibility. In Dieng, R., Corby, O., eds.: Proc. of the 12th Int. Conf. on
Knowledge Eng. and Knowledge Man.: Methods, Models, and Tools (EKAW 2000). Volume
1937 of LNAL., Juan-les-Pins, France, Springer (2000) 17-32

Arpirez, J.C., et al.: WebODE: a scalable workbench for ontological engineering. In: Pro-
ceedings of the First Int. Conf. on Knowledge Capture (K-CAP) Oct. 21-23, 2001, Victoria,
B.C., Canada. (2001)

Farquhar, A., et al.: The ontolingua server: A tool for collaborative ontology construction.
Technical report KSL 96-26, Stanford (1996)

Sure, Y., Erdmann, M., Angele, J., Staab, S., Studer, R., Wenke, D.: OntoEdit: Collaborative
ontology development for the semantic web. [31] 221-235

Pease, A., Li, J.: Agent-mediated knowledge engineering collaboration. [30] 405-415
Tennison, J., Shadbolt, N.R.: APECKS: a Tool to Support Living Ontologies. In Gaines,
B., Musen, M., eds.: 11th Knowledge Acquisition for Knowledge-Bases Systems Workshop
(KAW98). (1998) 1-20

Golbeck, J., Fragoso, G., Hartel, F., Hendler, J., Parsia, B., Oberthaler, J.: The national cancer
institute’s thesaurus and ontology. Journal of Web Semantics 1 (2003)

van Elst, L., et al., eds. LNAI Springer, Berlin (2003)

Horrocks, 1., Hendler, J., eds. In Horrocks, 1., Hendler, J., eds.: Proc. of the 1st Int. Semantic
Web Conf. (ISWC 2002). Volume 2342 of LNCS., Sardinia, IT, Springer (2002)

