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Abstract. The web ontology language OWL is still a very young lan-
guage. Experience with the language will build an increasing pool of
ontology design patterns and best practises.

In this paper we introduce macros for OWL ontologies. Macros are able to
formally specify and capture design patterns for the knowledge engineer-
ing task with OWL ontologies. Thus the user is enabled to conveniently
reuse them. Macros lead to an enhanced maintainability of the ontology,
to a higher level of abstraction in the specification (and thus closer to
the human conceptualization), to a faster and less error-prone creation
of the ontology (and thus to lower costs) and to automation of several
tedious tasks in the ontology life cycle.

We present example macros, discuss further applications, advantages and
problems of macros, and discuss the development of an implementation
to enable the usage of macros.

1 Introduction

When the W3C defined the web ontology language OWL [21], they tried to
meet a list of requirements stated earlier [10]: extensibility, non-monotonicity,
compliance to existing standards like XML or RDF, internationalization and
others. They also aimed for a powerful and expressive semantic language, yet
retaining decidability. Human readability and ease of use of the serialization
were obviously secondary goals, as anyone agrees who had the chance of using
OWL-ontologies in RDF /XML-Syntax.

Also one of the goals was to provide a small number of orthogonal features
that are easy to combine. Although it is perfectly possible to state certain facts,
it sometimes may be very tedious: imagine the following simple sentence: ”One
either hates or loves Star Wars”. The naive understanding of this sentence has
to be expressed by a surprisingly big number of steps:

We create two classes, StarWarsHater and Star WarsLover

We make them both subclasses of Person

We make the two classes disjoint of each other

We create an anonymous class description that is the union of the two classes
Person is made a sublass of this anonymous class description



We see, that it is perfectly possible to state the simple meaning intended with
the given sentence, but it is surely more complicated than it needs to be, prone
to errors or omissions, and hard to understand when reading the ontology, as it
is far away from our initial intuition of the sentence. Why shouldn’t we be able
just to state that Person has a Partition in Star WarsHater and Star WarsLover?

OWL DL is in a position similar to the one programming languages have
been decades ago: the user base is growing rapidly, and the language captures
the whole powerful semantics of the description logic SHOZN (D), just like
programming languages were able to capture all possible algorithms. But soon
programmers recognized numerous tedious tasks which were repeated over and
over again.To ease these tasks, they introduced macros, easy shortcuts for a more
complex combination of terms. They were used by the human programmer and
expanded automatically in a preprocessing step before sent to the compiler. Thus
the level of abstraction on the user’s side raised without changing the language,
boosting his productivity without forcing him or others to update their tools —
just by introducing a local preprocessing step.

In this paper we will suggest to follow the same step that was done in pro-
gramming languages in OWL as well. Introducing macros will provide several
benefits. We will explore how to introduce macros and some of the advantages
and disadvantages of applying them. In the next section we will first introduce
the most powerful application of macros, by aiming for a higher level of abstrac-
tion. Then we will present some obvious and well-known patterns which easily
fit into the given framework. In section 4 we show how macros can also be used
for several other tasks in the ontology life cycle, tasks that are more specific for
macros applied in ontologies. We will discuss several possibilities of implement-
ing the system in section 5 and explore their advantages and problems. Finally
we review some related work in section 6, before we close with a short outlook
and concluding remarks.

2 Captured knowledge engineering patterns

The literature on describing and capturing patterns for knowledge or ontological
engineering is growing increasingly faster in the last few years (see, e.g., [22, 23,
6]). Those patterns often describe how language primitives can be combined in
order to achieve a specific, well-defined and formalized goal, like partitions (see
subsection 3.1) or similar.

Unlike patterns in software engineering [5], the patterns we speak of in onto-
logical engineering are still extremely simple. Most of them may be implemented
as simple macros, A macro, as used within this paper, is defined as a symbol,
possibly with parameters, that is replaced in a preprocessing step (called macro
expansion) according to a defined set of rules. In OWL ontologies the symbol
is an URI, the parameters are bound to the symbol with RDF statements, and
the resulting replacement are a set of RDF statements created out of the macro
according to its definition. In the next section we will describe a few example
patterns. Here we will analyse some generic properties of macros.



2.1 Closing the gap

Ontologies are specifications of conceptualizations [9]. In order to specify the
conceptualizations we have to use the means given to us by the chosen ontology
language, in our case the web ontology language OWL. The means are the lan-
guage primitives like unionOf, subPropertyOf and others [21], and their possible
combinations.

Human ontological patterns usually don’t map one to one with the primi-
tives of an ontology language. This is because the choice of human ontological
patterns is not driven by requirements like decidability of all combinations of
patterns or strict formal semantics. But they are in our mind and we are able to
share them with other people. This becomes most obvious when teaching stu-
dents description logics or OWL and looking at the common mistakes students
make. Tutorials like [13] and experience reports [20, 4] point us to such mistakes.
They are not common because students are equally stupid around the globe, but
because there is a mismatch between human knowledge patterns and the offered
ontological primitives.

An example of such a mismatch is the use of the universal quantifier. A
student who is new to OWL and DL could make the following statement:

Horse = VhasParent.Horse

It is obvious for the student that everything whose parents are horses must be a
horse as well. What the student did not think of — and, as said, this is a common
mistake — is, that the very paper you are reading would classify as a horse as
well, as all its parents are horses — since it has no parents at all. The student,
seeing the error, wants to correct it naively. He may turn the statement to

Horse = dhasParent.Horse

this time forgetting about mules, who would incorrectly be classified as horses,
because one of their parents is a horse (and the other a donkey). What the
student actually wanted to say was

Horse = dhasParent. T UVhasParent.Horse

Now horses must have at least one parent, and all of them have to be horses as
well.

The last statement specifies formally the students conceptualization. But
as it is no primitive of the ontology language, the mapping of the students
conceptualization to the specification is lost. When maintaining the ontology
later, another student (or even the same one) has to understand the indented
conceptualization captured in this statement and treat it accordingly.

It would be much easier if we just added a new symbol. Imagine the following
statement:

Horse = VhasParent.Horse

Furthermore, we define VR.C colloquially as ”"every R must be a C” and speci-
fying its semantics formally as IR. T LUVR.C. The colloquial definition of V is the



same as the formal definition of V — the difference is, that the colloquial definition
implicitly includes the 3-part, because, as we have seen from the aforementioned
experience reports, humans tend to do it anyway. A system including both, the
V macro as well as the V constructor would need to provide an alternative,
colloquial definition of V like "if there is an R, it must be a C”).

The new symbol, V, is just a macro: it does not add to the expressive power
of the language, nor does it change any of its computational properties. It’s just
syntactic sugar. But it still allows the user to work on a level closer to his own
conceptualization than before.

2.2 Advantages of macros

If a knowledge engineering pattern appears repeatedly in an ontology, using a
macro will greatly enhance the readability of the ontology. The ontology will not
become only shorter and more crisp: the biggest advantage is that the macros
guarantee locality, as they are only one symbol, usually with parameters. Imagine
a pattern consisting of several ontological primitives like the one described in the
previous section. As the pattern has several syntactically independent parts, they
may appear in the written down ontology in arbitrary order (especially when
exported from a graphical ontology engineering tool). Even in an ontology with
a mere hundred axioms, the human reader will have a hard time to figure out
the applied knowledge engineering patterns without the help of a dedicated tool
searching for such patterns. But when using macros the pattern is represented
by a single axiom and does not litter the ontology with one sole concept specified
by several syntactical fragments.

Using macros also reduces the number of possible errors. As we don’t have
to make a manual translation of the pattern we want to apply to the language
primitives, and as we reduce the number of axioms that need to be specified,
we make the ontology more robust. As these manual translations are tedious as
well as demanding with regards to the skills of the user — we need users trained
well enough with the patterns in order to apply them — using macros actually
make it also more enjoyable to build ontologies, as the user does not have to
bother with several low level problems. This step compares to the advent of high
level languages in software engineering. The maintainability of the ontology is
enhanced as well, due to the smaller number of axioms, locality of the macros
and explicit complex semantics of the macros.

As we will see in section 6, tools like Protégé [18] already offer the user the
ability to apply certain knowledge engineering patterns. But this ability is con-
strained to the implemented patterns (whereas the macro system is extensible)
and the information about the applied patterns is not saved explicitly in the
ontology, and thus the higher maintainability and readability is lost (although
the advantage of making less errors when creating the ontology is retained).

In section 4 we describe further advanced scenarios where macros will proof
useful.



2.3 Disadvantages of macros

Introducing macros to a project also comes with a list of disadvantages and
problems: macros introduce a preprocessing step between the human-maintained
ontology and the one used by the application. If the application issues messages
about the ontology, for example error messages, it will refer to a different ontol-
ogy than the one the user actually knows (even though they are both semantically
equivalent, they will use different constructs). If, in the given example, the rea-
soner would say, that JhasParent.T is inconsistent, we would not find this con-
struct in our ontology, as it was automatically created out of VhasParent.Horse
description.

Maybe reasoners and — even more important — ontology engineering suites
will learn to deal with macros (probably starting with a small and generic set of
macros instead of enabling them all) and treat them transparently, thus hiding
the preprocessing step and the two different ontologies. But this is no condition
for the successful usage of macros.

A further disadvantage is the increased number of language elements one
has to deal with when working with ontologies. But practise and experience
will probably lead to a rather consistent set of generic macros that will find
widespread use in the community, some of them probably even more widespread
than certain language primitives. But if one does not want to cope with certain
macros he always has the possibility to expand them and work on the set of
ontology primitives the language provides.

2.4 Project-specific macros

One further advantage of introducing macros instead of implementing new lan-
guage primitives is that everyone could create new macros as the need arises in
a specific project. If an ontology engineer finds that certain ontological patterns
appear repeatedly in a project, due to the domain’s ontological structure, she
may create project- or domain-specific macros. This will bring all the advantages
described above: a smaller gap between the conceptualization and its specifica-
tion, enhanced readability and maintainability, less opportunities for errors and
higher speed of development and thus reduction of costs.

Although using project-specific macros will lead to a higher long-term effi-
ciency, it may be problematic for users who only want to dip into an ontology
briefly, as they would have to understand the project-specific macros first. Also
there is almost no hope for generic tools to introduce appropriate treatment of
project-specific macros — but again, we may simply use the macro tool to expand
the macros in an ontology and then work with the standard language ontology.
We also hope that some ontology tools will, instead of just implementing a set
of generic macros, implement the macro framework sketched in this paper and
thus enable all users to invent and use their own macros.



3 Example macros

In this section we present a small set of examples. This list is neither intended
to be complete nor representative. As mentioned before, the ontological macros
were explicitly meant to be extended even for a local project, and don’t have to
be generally applicable knowledge engineering patterns (although we expect a
library of such patterns to emerge from more intensive use of OWL in the near
future).

3.1 Partition

A partition of C into Dy, Dy, D3, ... requires that every instance of C' must also
be an instance of exactly one of D; or Dy or Ds... This is a very common
pattern and may be found in diverse domains like biology, where every instance
of a biological order must be an instance of a biological family belonging to this
order, or in universities, where we may partition the members of a faculty in
professors, students and post-docs, and so on. In DAML+OIL [15], there was
the disjoint union-language primitive that had the same semantics.
So we define
CuDq, Do, ..., D,

as
CEDluDQU...UDn

D;ND;=L1(vi,jll <i<j<n)

3.2 Local Unique Name Assumption

The Non-Unique Name Assumption is one of the pillars of the Semantic Web,
and within the open world of the Semantic Web it is a highly needed one. It
means, that two names may refer to the same thing. As we don’t register all
names centrally (and as we cannot register all meanings of names anyway), the
only way to deal with several names for one meaning is to accept that we may
not assume that two names refer to different things unless stated so explicitly.

Although this is necessary in the context of the Semantic Web, most ontolo-
gies today are created locally (but with the Semantic Web in mind): for example,
if we write an ontology about all the members of a course, it is obvious (but still
often forgotten) that all names we create refer to different individuals, that we
actually have some local unique name assumption. Stating this explicitly is a
very tedious and error-prone task. If we add a new student, we have to assert he
is different from all the other students (see listing 1.1). Deleting a student is even
more difficult, as we must assure to delete all assertions claiming the difference
from the deleted student. This soon will become a hard to handle mess.

Listing 1.1. Using differentFrom

<Student rdf:ID="Tony” />



<Student rdf:ID="Martin”>
<owl:differentFrom rdf:resource="#Tony” />
</Student>
<Student rdf:ID="Mary”>
<owl:differentFrom rdf:resource="#Tony” />
<owl:differentFrom rdf:resource="#Martin” />
</Student>

But OWL already introduces some kind of macro by allowing to use the
AllDifferent construct. But as we can see in listing 1.2, this also brings the
disadvantage of having to handle individuals at two distinct locations in the
ontology, the list of AllDifferent-Individuals and the individual-declaration itself
(if writing by hand you could keep this at the same place by declaring the
individuals inside the AllDifferent-construct. But tools who read and write the
ontology would not have to stick to this style guide and could rewrite the ontology
so that there are at two different locations again).

Listing 1.2. Using AllDifferent

<Student rdf:ID="Tony” />
<Student rdf:ID="Martin” />
<Student rdf:ID="Mary” />
<owl:AllDifferent>
<owl:distinctMembers rdf:parseType="Collection”>
<Student rdf:about="#Tony” />
<Student rdf:about="#Martin” />
<Student rdf:about="#Mary” />
</owl:distinctMembers>
</owl:AllDifferent>

Instead we could use a macro that declares that all individuals in this ontol-
ogy with a certain namespace have to be different.

Listing 1.3. Using localUNA

<macro:localUNA rdf:resource="#" />
<Student rdf:ID="Tony” />

<Student rdf:ID="Martin” />
<Student rdf:ID="Mary” />

As Tony, Martin and Mary are all of the local base namespace ”#7”, they
would all be asserted as mutually different individuals.

Semantically all the listings in this section were equivalent. Using macros —
either the predefined one from the OWL-specification or the ones introduced in
this paper — leads obviously to the advantages in maintainability and readability
described in section 2.




3.3 transitiveOver

Within the SEKT project! the upper level ontology PROTON? is being devel-
oped [24]. Whereas the ontology is mostly within OWL DLP [8], it introduces
one extension to the formal semantics of OWL [21] which is the transitiveOver
relation. transitiveQuver is a relation between two relations p and ¢ such that if
p transitiveOver g, a p b and b ¢ ¢ also a p ¢ must hold. An obvious example is
the relation locatedIn which is transitiveOver the relation subRegionOf. So if we
know that Ireland subRegionOf Furope and the ISWC2005 locatedIn Ireland, we
would also infer that ISWC2005 locatedIn FEurope is true.

Expressing this in OWL DL is not possible, as this needs a logic capable of
property chaining. With macros we have two different options of solving this
problem: using materialization or using SWRL.

Materialization means that we use the macro facilities in order to explicitly
assert the statements that we would have to infer otherwise. So, if we had an
ontology with the above example, the macro expander would delete the actual
macro axiom (locatedIn transitiveOver subRegionOf) and instead insert the in-
ferred new axiom ISWC2005 locatedIn Europe. In subsection 4.2 we discuss the
issue of materialization.

Using the Semantic Web Rule Language SWRL [14] instead would circum-
vent the need for materialization, but requires a reasoner able to deal with the
resulting SWRL enhanced ontology, like Hoolet® or KAON24. The expansion
would have to turn a triple like

Listing 1.4. Declaration of transitive Qver

<owl:ObjectProperty rdf:resource="locatedIn”>
<macro:transitiveOver rdf:resource="subRegionOf” />
</owl:ObjectProperty>

into the following statement (in RDF-syntax).

Listing 1.5. SWRL-description of transitiveQuver

<owlr:Variable rdf:ID="x" />

<owlr:Variable rdf:ID="y” />

<owlr:Variable rdf:ID="z" />

<owlr:Rule>

<owlr:antecedent rdf:parseType="Collection”>
<owlr:individualPropertyAtom>
<owlr:propertyPredicate rdf:resource="#locatedIn” />
<owlr:argumentl rdf:resource="#x" />
<owlr:argument2 rdf:resource="#y” />
</owlr:individualPropertyAtom>

! http://www.sekt-project.com

2 http://proton.semanticweb.org
3 http://owl.man.ac.uk/hoolet/
4 http://kaon2.semanticweb.org




<owlr:individualPropertyAtom>
<owlr:propertyPredicate rdf:resource="#subRegionOf” />
<owlr:argumentl rdf:resource="#y” />
<owlr:argument2 rdf:resource="#z" />
</owlr:individualPropertyAtom>

</owlr:antecedent>

<owlr:consequent rdf:parseType="Collection”>
<owlr:individualPropertyAtom>
<owlr:propertyPredicate rdf:resource="#locatedIn” />
<owlr:argumentl rdf:resource="#x" />
<owlr:argument2 rdf:resource="#z" />
</owlr:individualPropertyAtom>

</owlr:consequent>

</owlr:Rule>

4 Advanced applications

Macros can also be used for further applications than mere modelling. In this
section we will skim over different use cases where macros will proof helpful.
We do not expect this list to be complete. Whereas most of the aforementioned
advantages were true for macros used in programming languages as well, and
thus well-known, the scenarios described here are rather unique for macros in
ontologies and not tested yet in comparable settings.

4.1 Language weakening

Right now there exists no efficient DL reasoner able to deal with the whole
OWL DL language. Most reasoners have some kind of constraints, like not being
able to deal with nominals. Also it may be beneficial to give up on certain
costly language features and turn them into semantically inequivalent, weaker
counterparts, but therefore gaining efficiency in reasoning, so called approximate
reasoning.

For example, a nominal declaration C' = {01, 02,03} could be turned into a
simple class membership declaration C'(01), C(02), C(03), thus loosing the closed
world assertion of the first statement, but turning a SHOZN (D)-Ontology into
a semantically close SHZN (D)-Ontology (this is further described in [11]), effec-
tively turning an OWL DL ontology into an OWL DLP ontology [25]. Reasoners,
who can handle OWL DLP could now work with the resulting ontology.

4.2 Materialization

As already stated in subsection 3.3, macro expansion could also be used for
materialization, that is, the explicit assertion of inferrable facts. This can be
good for a variety of reasons: speeding up inferences, substituting the lack of an




appropriate reasoner for the desired expressivity of language or evaluation and
maintenance tasks. But materialization has to be used carefully: it can easily
lead to quite an explosion in size of the assertional knowledge and cause further
problems in the context of the Semantic Web. These issues remain open for
discussion.

4.3 Using more expressive languages

OWL is not the most expressive knowledge representation language. Other lan-
guages, especially based on larger fragments of First Order Logic than OWL DL,
were used for years and are able to capture much more refined specifications than
OWL DL allows. RDF [16] was created as a general framework for various KR
languages that build on a common syntactic and semantic foundation for the
exchange of assertional data. Both RDF Schema [1] and OWL are based on this.

A simple example is extending OWL DL with qualified number restrictions,
that is, stating that an object property has a cardinality with regards to a
certain concept, for example there could be the role member between band and
musician without any cardinality restrictions, but one could still state that the
role is constrained to a maximal cardinality of 1 to the concept drummer, which
means that a band may have several members, but only one of them may be a
drummer.

OWL DL is not able to express this, but DAM+OIL [15] is, with the maz-
Cardinality@-restriction. So when reusing a DAML+OIL- ontology one does not
need to loose the additional information, but may instead declare an appropri-
ate translation to OWL DL, thus being able to use the translated ontology with
standard OWL tools and still keep the DAML-ontology as the source ontology.

4.4 Several flavours of an ontology

As seen in the last subsection, with macros we are able to offer several versions of
the same ontology, and still keep the maintenance costs low because we only work
on one reference version. This version may specify the conceptualization as close
as possible, regardless of complexity and size considerations, with many axioms
(a so-called heavyweight ontology), and then one may automatically create a
lightweight version of it, removing some constructors due to the performance hit
they would introduce or due to the available tools’ abilities.

We could also decide to expand the same macro in different ways, depend-
ing on the task for the expanded ontology. We could use a more heavyweight
version of an ontology for the purpose of mapping to a second ontology or as
a reference for the original ontology engineering, but create a second one for
the on-line-inferencing. Remembering the example in subsection 3.3, we could
create different ontologies depending on the tools we are going to plan to use.
Whereas Sesame [2] has a native support for the transitiveOver-semantics, we
would need the SWRL-translation to use it with a SWRL-Reasoner like Hoolet,
or a materialization process for applying it with a simple triplestore like Jena®.

® http://jena.sourceforge.org



5 Implementation

There are several possibilities to implement the proposed system and integrate
it into existing methodologies, tool chains or IDEs. In this section we will sketch
and discuss these alternatives. We do not discuss user interfaces for creating and
using macros. These requirements follow from the rest of the paper:

easy to use as a preprocessing system. Either as a library that can be accessed

from another more complex system or from the command line. The result

must be a standard compliant ontology.

— fast to implement. Macros are a basic and easy feature, the implementation
should not be complicated.

— easy to extend. It should be possible to create new patterns for the macro

system without having to dwell deep into the code or having to learn a lot

of background skills.

be amenable to round-trip development. The system should not only be able

to expand macros, but the design should allow for an extension to detect

patterns in the ontology and contract them to macros again.

Now we explore the different possibilities to develop the proposed system.

XSLT The standard exchange format for OWL ontologies is RDF /XML, an
XML-syntax. The W3C has put a lot of thought into creating a language for
the transformation of XML-documents, called XSLT [3]. There are numerous
implementations for using XSLT — so why not use it?

XSLT has several problems with regards to OWL. First, RDF/XML-
serialization does not lend at all to easy transformation via XSLT, as there
are numerous different possibilities to serialize the same semantic content. This
problem could be overcome by using the OWL XML presentation syntax [12],
which did not yet succeed to become very wide spread though it offers quite some
advantages over the RDF /XML-syntax. We have provided a tool that is able to
translate from OWL XML presentation syntax to RDF /XML- serialization and
back®.

But even then XSLT has severe drawbacks. Instead of simply declaring the
macro, we would have to program the transformations in a functional program-
ming language, which is a precious skill. And the detection of the patterns and
translation back to macros would need to be written and maintained separately.
Otherwise it would be a very welcome choice.

A dedicated tool The second option is writing a dedicated tool that reads the
ontology, discovers the macros defined in the tool and replaces them accordingly
to the programmed algorithms. It would be a pragmatic and quick solution, but
not very extensible, as new patterns would need to be programmed anew. Having
project-specific macros is very hard if the tool is actively developed, as the user

5 http://km.aifb.uni-karlsruhe.de/owlrdf2owlxml



would need to merge the changes from the main branch of the tool with the
project-specific ones. It is impossible to use this tool for roundtrip-engineering
without writing new algorithms for detecting the patterns and reducing them to
macros.

A dedicated tool with externally declared rules The third option is cre-
ating a tool that reads the patterns declared in external files. This certainly
raises the biggest effort in the first run, but will pay off later due to the ease of
creating new macros. As both, the patterns and the macros are specified in the
external files, the system may also be extensible to a roundtrip-engineering tool
(although this certainly would require further research). The tool will provide an
API so other tools could reuse it as a library and perform the macro expansion
transparently.

Using SWRL and Metamodelling Most of the functionality we have seen in
this paper translate well to a rule-based system. Why not reuse the work done
for rules in the Semantic Web instead of creating new tools?

Macro expansion is different from simple rule application. Expanding a macro
is like materializing the head of the rule and removing its body. A system based
on SWRL does not work this way: it infers the head, but does not touch the
body. Further on, most of the rules we propose in our macros would be Second
Order Logic rules, as they often include OWL language construct. Research on
metamodelling like [17] explicitly disallow using language constructs in meta-
modelling.

Still, lessons learned in the syntactic definition of SWRL will surely help a
lot in designing a macro specification ontology a macro tool would be based
on. This also should ease learning, as it reuses many known ideas from other
Semantic Web technologies.

6 Related work

Further ontological patterns may be found in several publications like [7,22,
23,6]. Also other ontology languages like DAML~+OIL [15] contain some of the
patterns described here as language primitives, or else may be used as sources
of inspiration for further patterns.

In Protégé [18] the ontology engineer may use wizards to quickly apply some
ontological patterns. This is a great help for the engineer, and lowers the number
of possible mistakes drastically. There exists for example a wizard for the quick
creation of a partition. Other shortcuts within the Protégé IDE (like creation
of closures, or — probably best known — the definition of either necessary or
necessary and sufficient conditions in class descriptions, which actually are not
OWL primitives but are idioms translated within the IDE) also allow for some
of the advantages gained with the help of macros as described herein.

But tools like the wizards allow only for the simple initial application of a
knowledge engineering pattern. As they are not explicitly included within the
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ontology the information about applied patterns is lost to the IDE. Changes in
parts of the ontology created with the help of wizards do not happen at the same
abstraction level as their creation — this means, the ontology engineer must have
a deep understanding of the applied wizards in order to manage and maintain
the wizards work successfully afterwards. The information about the applied
pattern is lost after its application.

Finally, adding new patterns in Protégé is not possible without adding source
code, whereas in the approach presented in the paper only a further pattern must
be defined and the rest of the work is handled by the system. This is especially
helpful for project-specific patterns, where the work needed to adapt a Ontology
Engineering tool like Protégé is much more expensive than the expected benefit.

Another example of actually using higher abstractions than the OWL DL
constructs is given by the W3C Semantic Web Best Practise group in [19]: not
only does the note describe several patterns which could be used in order to cre-
ate further macros, but they also introduce a graphical notation for taxonomical
relationships that carry information such as exhaustive decomposition of classes
which is not representable by a single OWL constructor. Interestingly this means
that in their notes the W3C introduced a graphical notation for a complex rela-
tion even before such a representation for simple ontology primitives. This hints
at the relative importance of such constructors. An example is shown in figure
1.



7 Conclusions

In this paper we have described and discussed the introduction of macros to
OWL. Macros allow for a higher level of abstraction, enhance maintainability,
increase the speed of ontology creation, and ease several tasks in the ontology
life cycle. Some example macros and an elaboration of further applications of
the macro system highlight the benefit of the suggested system.

Next steps are implementing a macro tool and collecting experiences with
its usage, defining the macro specification ontology and create a comprehensive
library of interesting, generic macros. Then an integration of the macro system
in IDEs like Protégé, SWOOP7 or OntoStudio® has to follow, thus introducing
macros to a wider audience. Work has to be done to find out how macros can
be visualized and handled within IDEs, and if this is possible for generic macros
as described herein. With the experience gained by now, the feasibility of a
round-trip engineering tool for macros should become clear.

It is hard to create and manage ontologies on the Semantic Web. We showed
that macros help in many of the involved tasks in several different steps of the
ontology life cycle. Macros sweeten the daily work of the ontology engineer by
providing syntactic sugar for the Semantic Web.
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