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Abstract. Many RDF descriptions today are text-rich: besides struc-
tured data they also feature much unstructured text. Text-rich RDF data
is frequently queried via predicates matching structured data, combined
with string predicates for textual constraints (hybrid queries). Evaluat-
ing hybrid queries efficiently requires means for selectivity estimation.
Previous works on selectivity estimation, however, suffer from inherent
drawbacks, which are reflected in efficiency and effectiveness issues. We
propose a novel estimation approach, TopGuess, which exploits topic
models as data synopsis. This way, we capture correlations between struc-
tured and unstructured data in a uniform and scalable manner. We study
TopGuess in a theoretical analysis and show it to guarantee a linear space
complexity w.r.t. text data size. Further, we show selectivity estimation
time complexity to be independent from the synopsis size. In experi-
ments on real-world data, TopGuess allowed for great improvements in
estimation accuracy, without sacrificing efficiency.

1 Introduction

RDF features descriptions of entities, with each description being a set of triples.
A triple (s,p,0) associates an entity (subject) s with an object o via a predi-
cate p. Many RDF descriptions feature text data. Reasons are twofold: On the
one hand, structured RDF often comprises text via predicates such as comment or
description. On the other hand, unstructured Web documents are frequently
annotated with structured data (e.g., via RDFa or Microformats)ﬂ

Hybrid Queries. Such text-rich RDF descriptions are often queried with
hybrid queries — comprising predicates that match structured data as well as
words in text data. Consider the following example, cf. Fig. a/ b:

SELECT * WHERE {

?m ex:title 7title . ?p ex:name 7name . 7?1 ex:name 7name2 .
?m ex:starring 7p . ?p ex:bornIn 71 .
?m rdf:type Movie . ?p rdf:type Person .

FILTER (contains(?7title,"Holiday") && contains(?name,"Audrey") &&
contains(7name2, "Belgium")) }

! nttp://www.webdatacommons . org
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Fig.1. (a) RDF graph about “Audrey Hepburn” and her movie “Roman Holiday”.
(b) Hybrid query graph asking for movies with title “Holiday” and starring “Audrey”.
(¢) Vocabulary W comprising all words from attributes values in the data graph.

Hybrid queries are highly relevant for RDF stores with SPARQL fulltext
extension, e.g., LARQﬂ or Virtuosdﬂ7 or databases with text search, e.g., [16]. In
fact, every store that supports FILTER clauses on texts faces hybrid queries.

Selectivity Estimation. For finding an optimal query plan, RDF stores rely
on selectivity estimates to approximate the result size for a query (fragment). Se-
lectivity estimation techniques use data synopses [J20021] to effectively capture
data correlations and efficiently compute query selectivities [ZUIOJI7UTI].

Unfortunately, with regard to hybrid queries, state-of-art selectivity esti-
mation approaches suffer from two major shortcomings: (I.1) Effectiveness Is-
sues. Previous works utilize data synopses that either do not capture text data,
e.g., [9120], or exploit separate synopses for text and structural data [21]. How-
ever, both cases may lead to inaccurate selectivity estimates, because correlations
between structure and text data are missed. (1.2) Efficiency Issues. While our
previous work [2I] captures correlations in text and structured data, it suffers
from efficiency problems given long texts/many words in the data. That is, the
synopsis size as well as the selectivity estimation performance is directly coupled
with the number of words included in the synopsis. Heuristics must be employed
to scale this approach to large a vocabulary of words.

In contrast, we propose TopGuess, which utilizes relational topic models as
data synopsis. Such synopses not only incorporate text, but also capture correla-
tions with structured data [2/4123]. This way, we have one single synopsis for text
and structured data. Further, TopGuess omits above efficiency issues via a small
and query-specific Bayesian network. In fact, our estimation time complexity is
independent of the synopsis size.

Contributions. (1) We propose TopGuess, which features relational topic
models as synopsis. Our approach allows for a holistic learning of correlations
in text as well as structured data. To the best of our knowledge, this is the
first selectivity estimation work to use topic models as data synopsis. (2) We
provide a theoretical analysis: We show TopGuess to achieve a linear space com-
plezity w.r.t. text data size, cf. Thm. [I] Further, we show its estimation time
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complexity to be independent of the synopsis size, cf. Thm. |4l (3) We conducted
experiments on real-world data. Our results suggest that estimation effectiveness
can be improved by up to 88%, without sacrificing runtime performance.

Outline. First, in Sect. we outline preliminaries. We introduce the
TopGuess approach in Sect. [3] In Sect. |4, we present evaluation results, before
we outline related work in Sect. [l We conclude with Sect. [6l

2 Preliminaries

Data and Query Model. We use RDF as data model:

Definition 1 (RDF Graph). Let £, (¢,) be a set of attribute (relation) labels.
A RDF graph is a directed labeled graph G = (V,E, £y, ¢,.), with nodes V =
Ve W V4 W Vo where Vi are entity nodes, V4 are attribute value nodes, and Vo
are class nodes. Edges (so-called triples) E = Er W E4 W type are a disjoint
union of relation edges Er and attribute edges E 4. Relation edges connect entity
nodes: (s,r,0) € Eg, with s,0 € Vg and r € {,.). Attribute edges connect an
entity with an attribute value: (s,a,0) € Ex, with s € Vg,0 € V4 and a € {,.
Triple (s, type,0) € E models that entity s € Vg belongs to class o € V.

We conceive an attribute value in V4 as a bag-of-words. Further, let a vocab-
ulary W comprise all such words. That is, W is derived from words in attribute
values: for each triple (s,p,0) € E4 we add all words in o to W. See also Fig.

Conjunctive queries resemble the basic graph pattern (BGP) feature of
SPARQL. In this work, we use hybrid queries:

Definition 2 (Hybrid Query). A query Q is a directed graph Gg = (Vg, Eq),
with Vo = Vg, W Vo, W Vo, Vo, as variables, Vo, as constants, and Vg, as
keywords. Edges E¢q are called predicates: (1) Class predicates (s, type, o), with
s € Vg, ,0 € Voo (2) Relation predicates (s, r,0), with s € Vg,,, 0 € Vo, W Vg,
and r € {,. (3) String predicates (s, a,0), with s € Vg, 0 € Vo ., and a € {,.

Fig. [I}b shows an example query. Query semantics follow those for BGPs.
That is, results are subgraphs of the data graph, which match all query predi-
cates. The only difference is due to keyword nodes: a value node o € V4 matches
a keyword w € Vg, if the bag-of-words from o contains word w.

We rely on two data synopses: topic models and Bayesian networks (BNs):

Topic Models. Topic models assume that texts are mixtures of “hidden”
topics, where a topic is a probability distribution over words. These topics are
abstract clusters of words — formed according to word co-occurrences. More
formally, a text collection can be represented by k topics T = {¢1,...,tx}, where
W is the vocabulary (see above definition) and each topic ¢t € T is a multinomial
distribution of words in W: P(w | t) = B and > <y Bew = 1.

Ezxample. Three topics are depicted in Fig. @rc: T = {t1,t2,t3}. Every topic
t assigns a probability (represented by vector B;) to each word in the vocabulary.
Probabilities in B; indicate the importance of words within topic t. For instance,
“Belgium” is most important for topic ts (B, = 0.014).



Bayesian Networks. A Bayesian network (BN) is a directed graphical
model, which compactly represents a joint probability distribution via its struc-
ture and parameters [12]. The structure is a directed acyclic graph, where nodes
stand for random variables and edges represent dependencies. Given a node X;
and its parents Pa(X;) = {Xj,..., X}, X; dependents on Pa(X;), but is con-
ditionally independent of all non-descendant random variables (given Pa(X;)).

BN parameters are given by conditional probability distributions (CPDs).
That is, each random variable X; is associated with a CPD capturing the con-
ditional probability P(X; | Pa(X;)). The joint distribution P(Xy,...,X,) can
be estimated via the chain rule [12]: P(X1,...,X,) = [[, P(X; | Pa(X;)).

Ezample. A BN is shown in Fig. @ Nodes such as Xy, and Xpoiday Stand
for random wvariables. FEdges stand for dependencies between those modes. For
instance, the edge X, — Xholiday denotes a dependency between the parent,
Xm, and the child, Xnotiday- In fact, given its parent, Xnoliday %5 conditionally
independent of all non-descendant variables, e.g., X,. Every node has a CDP.
For example, Xnotiday has a CDP for P(Xhotiday | Xm), cf. Fig. @-b.

Problem. Given a hybrid query @), we aim at an result size estimation
function F(Q) as [9]: F(Q) = R(Q) - P(Q).

Let R be a function R : Q — N that provides an upper bound cardinality
for a result set for query @Q. Further, let P be a probabilistic component, which
assigns a probability to query @ that models whether Q’s result set is non-empty.

R(Q) can be easily computed as product over “class cardinalities” of @ [9].
That is, for each variable v € Vi, we bound the number of its bindings, R(v),
as number of entities belonging v’s class: |{s|(s, type,c) € E}|. If v has no class,
we use the number of all entities, |Vg|, as bound. Finally, R(Q) =[], R(v).

In the remainder of the paper, we provide an effective (I1.1) and efficient (1.2)
instantiation of the probabilistic component P.

3 TopGuess

Targeting the effectiveness (I.1) and efficiency (I.2) issues of existing works w.r.t.
hybrid queries (cf. Sect. , we now introduce our novel TopGuess approach.

More precisely, we present a uniform data synopsis based on relational topic
models in Sect. (I.1), and show in Thm. [1| that this synopsis has a linear
space complezity w.r.t. vocabulary W (1.2). Further, we introduce a probabilistic
component P in Sect. and show in Thm. [ selectivity computation
complexity to be independent of the synopsis size (1.2).

Note, the topic model (data synopsis) is learned at offline time and may
be stored on disk. At runtime, we construct a small BN for each given query —
reflecting our data synopsis as well as query characteristics via topic mixtures.

3.1 Relational Topic Models as Data Synopsis

Synopsis Parameters. For an effective synopsis over text-rich RDF data,
TopGuess exploits relational topic models [2/4IT423]. These topic models sum-
marize the data by means of one uniform synopsis — considering structured and
text data. More precisely, our synopsis comprises of two parts:
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(1) First, the TopGuess synopsis captures text data in a low-dimensional
representation via a set of k topics T = {t1,...,tx}.

Ezample. Fig.|%-c groups words from the vocabulary W = { “Roman”, “Holi-
day”, ...}, ¢f. Fig.|ltc, via three topics, T = {t1,t2,t3}. This way, text data in
Fig. [IFa, e.g., associated via attribute comment, is compactly represented.

Depending on data characteristics, e.g., the amount of text data, a small
number of topics (e.g., 50) may already capture meaningful correlations in the
data. By means of this compact summary, TopGuess achieves a linear space
complexity linear w.r.t. a vocabulary, see Thm. |1} Notice, previous works allow
to learn the optimal number of topics []].

(2) Second, the TopGuess synopsis captures correlations between those topics
and structured data. For our query model, we rely on two correlation parameters
for selectivity estimation: A and w. Note, for other kinds of queries, further types
of correlation parameters may be considered.

— Class-Topic Parameter A\. We capture correlations between a class ¢ € Vg

and topics in T via a vector ., where each vector element, \.(t), represents
the weight between class ¢ and topic ¢t. A higher weight indicates that a class
is more correlated with a topic.
Ezample. Fig.[Fa shows the two class-topic parameters for the classes Movie
and Person: Apovie ANA Aperson- Both indicate correlations w.r.t. topics T =
{t1,t2,t3}. For instance, Amovie States that class Movie is highly correlated
with topic t1, has some correlation with t3, and has no correlation with to.

— Relation-Topic Parameter w. We measure correlations between a relation r
and the topics in 7 via a matrix w,.. Since relation r is observed “between”
two entities, say (s,r,0), the topic of its subject s and its object o is consid-
ered. Given k topics, matrix w, has k x k dimensions and entries such that:
if entity s is associated with topic ¢; and entity o has topic ¢;, the weight of
observing a relation r “between” s and o is given by the entry (i, j), denoted
as wy(t;,t;). Note, TopGuess features a matrix w for each relation.
Ezxample. Fig. @-b depicts the relation-topic parameter for the starring re-
lation: Wstarring. According to Wsiarring, starring is most often observed
(weight 7) if its subject (object) contains words from topic t; (ts).



Parameter Learning. For training above parameters, we do not restrict
TopGuess to a single topic model. Instead, different approaches can be used.
For instance, classical topic models such as LDA [3] may be employed to learn
the first part, i.e., word/topic probabilities, cf. Fig. c. Then, correlations be-
tween those topics and classes/relations must be obtained. For this, topic models
have been extended to consider structured data, so-called relational topic mod-
els [214IT423]. Most notably, a recent approach, the Topical Relational Model
(TRM) [2], trains topics as well as class/relation correlations simultaneously
from RDF data. We used a TRM as data synopsis in our experiments.

Discussion. The TopGuess synopsis comes with key advantages: First, in
contrast to existing work [2I], we do not need separate synopses for structured
and text data. This way, we may learn correlations in a uniform manner.

Moreover, TopGuess parameters are not required to be loaded in mem-
ory. This is a crucial advantage over state-of-the-art selectivity estimation sys-
tems [9I20021], as memory is commonly a limited resource. So, TopGuess can
utilize the complete vocabulary W for learning word/topic probabilities §.

Last, as empirically validated by our experiments, correlations between topics
and structured data suffice for an accurate selectivity estimation. Since even a
small number of topics can capture these correlations, our synopsis does not
grow exponentially in its vocabulary size.

In fact, we can show that a topic-based data synopsis has linear space com-
plexity w.r.t. its vocabulary:

Theorem 1 (Synopsis Space Complexity). Given k topics, a vocabulary
W, classes Vo, and relations £,., TopGuess has a storage space complexity in
O(W| - k+|Vo|-k+ 1] k?).

Proof. For each topic, we store probabilities of every word in W. So, the com-
plexity of K topics is O(|W]- K). A is a matrix with |Vo| x K dimensions, which
associates classes with topics. Thus, its complexity is in O(|V¢| - K). Every rela-
tion in £, is represented as K x K matrix, which has a space complexity in O(K?).
Overall, our synopsis space complexity is in O(|W|- K + |Vo|- K + |{,| - K?*)m

3.2 Probabilistic Component: Query-Specific BN

In this section, we exploit the synopsis parameters for an efficient probabilistic
component (1.2, Sect. . For this, we first construct a small, query-specific BN
and afterwards compute its joint probability in Sect. [3.3] Both steps are done at
runtime. In contrast to [920)21), all synopsis parameters may be kept on disk,
while only the query-specific BN is loaded into memory.

To construct a BN specifically for a query @, we capture every query predi-
cate in ) via a random variable: For a class predicate, (s, type, ¢}, and relation
predicate, (s,r,0), we create a binary random variable X, and X,.. Similarly, for
a string predicate, (s,a,w), we introduce a binary random variable X,,. Most
importantly, we assume that each variable v in ) belongs to one or more topics
in 7. So, we model variable v via a topical random variable, X,. More formally,
X, has a multinomial distribution over the topics:
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Fig. 3. (a) Query-specific BN for the query in Figb. It contains three topical vari-
ables (color: gray, e.g., X;n), two class predicate variables (color: pink, e.g., Xmouvic),
two relation predicate variables (color: blue, e.g., Xstarring), and three string predicate
variables (color: red, e.g., Xnoliday).- Observed variables (pink/blue/red) are indepen-
dent from each other and only dependent on hidden topical random variables (gray) —
as dictated by Def. 4] (b) CDP for random variable Xnoiiday, cf. parameters in Fig. c.

Definition 3 (Topical Random Variable). For a set of topics T, a query
Q, and its variable v € Vg, , the random variable X, is a multinomial topical
random variable for v, with topics T as sample space.

Based on topical random variables, we perceive query variables as topic miz-
tures. Thus, X, captures query variable v’s “relatedness” to every topic. In the
following, we denote the set of all string, class, relation, and topical random
variables for query @ as X,,, X., X,, and X,,.

We create a simple BN structure by means of a fixed structure assumption:

Definition 4 (Topical Dependence Asmp.). Given a class/string predicate
(v, %, %), the corresponding variable X depends only the topical random variable
X,. Given a relation predicate {v,*,y), the corresponding variable X depends
only on two topical random variables: X, and X,.

The topical dependence assumption lies at the core of the TopGuess approach.
It considers that query predicate probabilities depend on (and are governed by)
the topics of their associated topical random variables. Further, the assumption
allows us to model the query probability, P(Q), via a tree-shaped BN.
Ezample. Fig.[3-a depicts a BN for the query in Fig.[1}-b. Adhering to Def. [}
each topical variable (X,,, X,, and X;) forms a small tree of dependent random
variables. For instance, random variable Xpoiiday s only dependent on its topical
variable, Xp,. In fact, given Xy, Xpoliday @5 conditionally independent of all
other variables, e.g., Xqudrey.- This way, topic miztures of X,,, Xp, and X,
govern the overall query probability, P(Q).
Last, note that the topical dependence assumption leads to a valid BN:

Theorem 2. A query-specific BN constructed according to Def. [ is acyclic.

Proof. BN parts resembling class and string variables form a forest of trees —
each tree has depth one. Such trees are combined via relation predicate variables,
which have no children (cf. Fig. a). Thus, no cycle can be introduced m

3.3 Probabilistic Component: Query Probability Computation

Having formed the BN structure for a given query ), we may compute the query
probability, P(Q), via the chain rule (CR) [12]:

p(Q):p(/\xw:T AX.=T /\XT:T) (1a)



~ II Pxw=T7iXx,) - J] PEXE=T|X,)

CR
{v,a,w) €Q (v,type,c) €Q
[I Px.=1|x,,X,) (1b)
(vry) €Q

In order to solve Eq.[T]we a require CPD for each random variable, cf. Fig. [3}b.
We rely on TopGuess parameters as well as topic distributions of topical random
variables to approximate these CPDs. As topical variables X, are hidden, we
learn their distributions from observed random variables (X, X, X;).

In the following, we first discuss CPD estimation for observed random vari-
ables, given topical random variables (topic distributions). Subsequently, we
present learning of topic distributions for hidden topical variables.

Query Predicate Probabilities. Probabilities for query predicates are in-
fluenced by their associated topical random variables and their TopGuess pa-
rameters. In other words, we may compute the CPDs for X,,, X., and X, using
topic distributions of topical variables and probabilities estimated by the corre-
sponding (8, A, or w parameter:

(1) Class Predicates. Adhering to the topical dependence assumption, the
probability of observing a class, P(X. = T), is only dependent on its topical
variable X,. We use the class-topic parameter A to obtain the weight A.(t),
which indicates the correlation between topic t and class c:

Ac(t)
PX.=T| X,,\) = PXy=t) =——+——
(X =T X0 ) = 30 P0G =5

Ezample. Fig. @»a shows two random variables, Xpovie and Xperson, which
dependent on their topical variables X, and X,. For computing P(Xmovie = T)
and P(Xperson = T), the parameters Amovie and Aperson are used, cf. Fig. @-a.
Assuming P(Xmym = t1) = 0.6, P(X,, = t2) = 0.1, and P(X,,, = t3) = 0.3, we
get: P(Xpmovie =T) = 0.6-0.75 + 0.1-0 + 0.3-0.25 = 0.525.

(2) Relation Predicates. A relation predicate (v, r,y) connects two query vari-
ables, which have the two topical variables X, and X,. Random variable X,
solely dependents on the topics of X, and X,. The correlation between relation
r and these topics is given by the relation-topic parameter w,.:

P(XU = t) Wr(t,tl) 'P(X — t/)
P(X,=T| X, Xy, w,) = ,
’ t,t/ZET Zt”,tlii ETwr(t//7t///)

Ezxample. In Fig. @-a, we have the variables Xstarring and Xpornin — both
dependent on two topical variables. For instance, Xstarring depends on X, and
Xp. P(Xstarring = T) is estimated via matric wsiarring, ¢f. Fig. @-b.

(3) String Predicates. For each string predicate (v, a,w), there is a random
variable X,,. The word-topic parameter (B, represents the probability of ob-
serving word w given topic t. Thus, P(X,, = T) is calculated as probability of
observing w, given the topics of v’s topical variable, X,:

ﬂtw
P(Xw=T| Xy, b1 = P(X, =1
( | Xo, Brk) tEET ( )ZyeTﬁt’w



Ezample. Fig.[3a depicts three random variables for string predicates. Given
P(X,n) as in the above exzample, the probability for “holiday” is (cf. Fig.[3b):
0.011 0.002 0.004

Xhotiday = T) = 0.6 - 1 B3 —"=04
PXnotiday =T) =06 5oz +0-1- 5z + 0.3 57 = 047

Learning Topic Distributions. Finally, we wish to estimate topic distri-
butions for the hidden topical variables based on X,,, X., and X,.. We aim at
finding a topic distribution for every topical variable, so that the query probabil-
ity in Eq. 1] is maximized. Thus, this optimal topic distribution directly gives us
P(Q). Let 6,: denote a set of topic parameters for topical random variable X,,.
Further, let 8 = {0, | v € V,.,t € T} be the set of all parameters 6,,. Then,
we search for parameter 6 that maximizes the log-likelihood of Eq.

argmax £(6 : X, X, X;) (2)
[%

where £(0 : X,,, X, X,.) is the log-likelihood defined as:

5(9 : quXCaXr) = P(X’unxmxr | G,ﬂ,w,)\)

=3 > logP(Xy | X0, B)+ Y Y logP(Xe| Xy, A)

v X, € XY v X.eXY

+3° ) logP(X, | Xy, Xy, w)

vy X, XY

where X? and XY is the set of all string/class random variables having X, as
parent. XY is the set of all relation random variables with parents X, and X,,.

We use gradient ascent optimization to learn the parameter 6. First, we
parametrize each P(X, = t) with 6,; such that

eeut

P e et

to obtain a valid probability distribution over the topics. Obtaining the gra-
dient requires dealing with the log of the sum over the topics of each topical
variable. Therefore, we make use of theorem [12]:

P(X, =1)

Theorem 3. Given a BN and D = {o[l],...,0[M]} as a partially observed
dataset. Let X be a variable in that BN with Pa(X) as its parents. Then:
aL(0 : D) 1 M

9P( [pa) ~ P(a [ pa) 2o T (0 PRI0m)0)

This provides the necessary form of the gradient. Now, the gradient of the log-
likelihood w.r.t. parameter 6, is:

0L(0 : X, X, X,) 000 : Xy, X, X,) OP(X, =)
86‘vt - aP(Xv = t) 89“

(i) (ii)

3)




The (i)-part of the gradient, Eq. [3} may be obtained via Theorem

000 : Xy, X, X,) 1
= Xy =1 | Xy,
P, =1 PXKa=1D |, XE:XU Pl | X, B)

+ Y PXu =t X, N)+Y, > PX,=t]| X, X,,w)

Xe.eXy Yy X,eXpY

Using the Bayes rule we get:

O Xy, X, X,) 3 P(X, =t)P(Xu | ;1)
OP(X, =t) >op P(Xy = t")P(Xy | B,1)

P(X, =t)P(X. | A\ t)
+
XCZG:X;’ Zt’ P(Xv = t/)P(Xc | )‘vt/)

‘ P(X, = 1), P(X, | Xy, t)
P S )5 POY | Xy )

v oX.eXpY
Finally, the (ii)-part of the gradient in Eq. [3|is given by:

OP(Xy =t) _ e e
004, (X, efve)?

Time Complexity. Query probability estimation has a complexity bound:

Theorem 4 (Time Complexity for P(Q) Estimation). Given k topics and
a query @, the time for computing P(Q) in Eq. || is in Oy - |Q| - k), with ¢ as
number of iterations needed for optimization and |Q| as # predicates in Q.

Proof. Complexity for P(Q) is comprised of: (1) Estimation time for the joint
probability of Q’s query-specific BN. (2) Time necessary for learning optimal
topic distributions.

Given topic distributions for each X, the former step requires only a simple
summing out of the variables X,. Thus, its time is € O(|Q| - K), with |@Q| and
K as number of query predicates and topics, respectively.

For the latter step, let an optimization algorithm require 1 iterations to reach
an optimum. Note, 1) is a constant only driven by the error threshold of the
optimization problem, thus, independent of |@Q|, K or synopsis size S. For each
such iteration we require an update of variables X,,, X., and X,., as well as topic
model parameter 6. Note, while the number of random variables X;, ¢ € {w, ¢, r},
is bounded by |Q|, € is bound by K. Thus, we update O(K - |Q|) values —
each in constant time, O(1). Overall, the second task requires a complexity of
Ot - K -|Q]). Therefore, step (1) and (2) combined take O(¢) - K - |Q]) time m

Note, 1 is determined by the specific algorithm used for optimization. So,
overall complexity for computing P(Q) is independent of the synopsis size.



4 Evaluation

We conducted experiments to analyze the effectiveness (I.1) and efficiency (I1.2)
of TopGuess. Overall, our results are very promising: we achieved up to 88% more
accurate selectivity estimates, while runtime was comparable to the baselines.
Further, in contrast to the baselines, we noted TopGuess’s runtime behavior to
be much less influenced by the synopsis size — thereby confirming Thm.

4.1 Evaluation Setting

Systems. We employ two categories of baselines: (1) String predicates are com-
bined with structured predicates via an independence assumption: ind baseline.
That is, the selectivity of string predicates and structured predicates is esti-
mated using two separate synopses: a string synopsis (explained below) and a
histogram [I0]. Obtained probabilities are combined in a greedy fashion while as-
suming independence. (2) We reuse our previous work on BNs for text-rich data
graphs [21]: bn baseline. Here, all query predicates are captured uniformly via a
single BN. To handle sting predicates, we employ n-gram string synopses [22]

A n-gram synopsis summarizes the vocabulary by “omitting” certain n-
grams. Thus, a synopsis represents a subset of all possible n-grams occurring
in the data. A simplistic strategy is to choose random n-gram samples from the
data. Another approach is to construct a top-k n-gram synopsis. For this, n-
grams are extracted from the data together with their counts. Then, the & most
frequent n-grams are included in the synopsis. Further, a stratified bloom filter
(sbf) synopsis has been proposed [22], which uses bloom filters as a heuristic
map that projects n-grams to their counts. Note, we refer to omitted n-grams
as “missing”. The probability for missing n-grams cannot be estimated with
a probabilistic framework, as such strings are not included in a sample space.
So, a string predicate featuring a missing n-gram is assumed to be independent
from the remainder of the query. Its probability is computed via a heuristic. We
employ the leftbackoff strategy, which finds the longest known n-gram that is
the pre- or postfix of the missing n-gram. Then, the probability of the missing
n-gram is approximated based on statistics for its pre-/postfix [22].

Combining string synopses with the two categories of baselines yields six
systems: indsample, indiop-k, and indgye rely on the independence assumption,
while bngample, btop-k, and bngys represent BN approaches.

Data. We employ two real-world RDF datasets: DBLP [I5] and IMDB [6].
From both datasets we have large vocabularies: 25,540,172 (DBLP) and
7,841,347 (IMDB) words. Note, while DBLP and IMDB feature text-rich at-
tributes, they differ in their overall amount of text. On average an attribute in
DBLP contains 2.6 words, with a variance of 2.1 words. In contrast, IMDB at-
tributes contain 5.1 words, with a variance of 95.6 words. Moreover, we observed
during learning of the bn baseline that there are more data correlations in IMDB
than in DBLP. We expect correlations between query predicates to have a strong
influence on the system effectiveness.

Queries. We used IMDB [6] and DBLP [I5] keyword search benchmarks:
We generated 54 DBLP queries from [15]. Further, we constructed 46 queries



IMDB DBLP
bn/ind TopGuess| bn/ind TopGuess
Mem.|{2,4,20,40F <0.1 |{2,4,20,40} <O0.1
Disk 0 281.7 0 229.9

Table 1. Data synopsis memory/disk space in MB.

for IMDB based on queries in [6]. We omitted 4 queries from [6], as they could
not be translated to conjunctive queries. Overall, our load features 100 queries
with: 0-4 relation, 1-7 string, 1-4 class predicates, and 2-11 predicates in total.
Further query statistics as well as a complete query listing is given in Sect. [7]

Synopsis Size. We employ baselines with varying synopsis size. For this, we
varied # words captured by the string synopsis. The top-k and sample synopsis
contained # words € {0.5K,1K,5K,10K}. The sbf string synopsis captured
{2.5K,5K,25K,50K } words for each attribute. Note, sbf systems featured most
keywords occurring in our query load. Different string synopsis sizes translated
to a memory consumption of baselines € {2, 4, 20, 40} MB. ind and bn baselines
load their synopsis into main memory. In contrast, TopGuess keeps a large topic
model at disk and constructs a small, query-specific BN in memory at runtime
(< 100 KBytes). Table [1] depicts further details.

Implementation and Offline Learning. For ind and bn baselines, we
started by constructing their string synopses. Each synopsis was learned in < 1h.

Then, we constructed bn systems based on [21]. That is, we capture words and
structured data elements using random variables and learn correlations between
them, thereby forming a BN structure. For efficient selectivity estimation the
network is reduced to a “lightweight” model capturing solely the most important
correlations. Then, we calculate model parameters (CPDs) based on frequency
counts. For ind systems, we do not need the model structure and merely keep
the marginalized bn parameters. Structure and parameter learning combined
took up to 3h. To compute query selectivities the bn systems need inferencing
strategies. For this, we used a Junction tree algorithm [21].

TopGuess exploits an “off-the-shelf” TRM from [2]. The number of topics
is an important factor — determining which correlations are discovered. We ex-
perimented with a varying number of topics € [10,100]. We found 50 topics
are sufficient to capture all strong correlations in our datasets. The TopGuess
learning took up to 5h and its parameters were stored on hard disk, cf. Table
At query time, we employed a greedy gradient ascent algorithm for learning the
topic distributions. To avoid local maxima, we used up to 10 random restarts.

We implemented all systems in Java 6. Experiments were run on a Linux
server with: 2 Intel Xeon CPUs at 2.33GHz, 16 GB memory assigned to the
JVM, and a RAID10 with IBM SAS 10K rpm disks. Before each query execution
we cleared OS caches. Presented values are averages over five runs.

4.2 Selectivity Estimation Effectiveness

We employ the multiplicative error metric (me) [7] for measuring effectiveness:
max{F.(Q), Fa(Q)}
me(Q) = —
D= (7@ 7.Q)
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Fig. 4. Effectiveness: (a)+(b) for DBLP and (e)+(f) for IMDB. Efficiency: (c)+(d) for
DBLP and (g)+(h) for IMDB. Y-axes are given in logarithmic scale.

with F.(Q) and F,(Q) as exact and approximated selectivity. Intuitively,
me(Q) is the factor to which F,(Q) under-/overestimates F.(Q).

Overall Results. Figs.[{}a/e (b/f) show the multiplicative error vs. synopsis
size (# predicates) for DBLP and IMDB. Baseline system effectiveness strongly
varies with their synopsis size. In particular, for small synopses < 20 MB ind and
bn performed poorly. We explain this with missing words in their string synopses,
which led to heuristics being used for probability computation. In simple terms,
ind and bn systems traded synopsis space for estimation accuracy.

TopGuess, on the other hand, did not suffer from this issue. All its parameters
(cf. Sect. could be stored at disk and solely the query-specific BN was loaded
at runtime. Thus, TopGuess could exploit very fine-grained probabilities and
omitted any kind of heuristic. We observed that TopGuess reduced the error
of the best bn system, bng,, by 88% (33%) for IMDB (DBLP). Further, we
outperformed the best ind system, indgg, by 99% (35%) on IMDB (DBLP).

Synopsis Size. Figs. a/e show estimation errors w.r.t. in-memory syn-
opsis size. An important observation is that the synopsis size is a key factor
for effectiveness. Top-k and sample-based string synopsis systems were strongly
affected by their (string) synopsis size. Given a small synopsis < 4 MB, we
observed that top-k/sample-based systems performed poorly. Here, many rele-
vant query keywords were missed, leading to inaccurate heuristics being applied.
With increasing synopsis size € [4,20] MB, the performance of top-k approaches
converged to the most accurate baseline (sbf-based systems). For instance given
4 MB space, the bnyep-k approach preformed 95% worse than bng,s on IMDB, but
only 33% worse given 20 MB. Further, we noted sbf-based approaches to perform
fairly stable. We explain this with sbf systems using bloom filters as an effec-
tive summary. Such systems were able to capture most query keywords. Thus,
few heuristic-based estimations were necessary. However, sbf-based systems also
have a limited memory space and must eventually omit words.

In contrast, we observed TopGuess to use < 0.1 MB memory for IMDB as
well DBLP. We explain this extremely compact BN with: (1) TopGuess has a
network size, which is bound by the query size. (2) The BN only contains random
variables that either are binary or have a sample space, which is bounded by the



number of topics. For example, over the DBLP query load TopGuess needed on
average 40 KB. Yet, TopGuess resolves the issue of missing words completely:
the TopGuess parameters (stored on disk) capture all words in the vocabulary.
At runtime, TopGuess retrieves the necessary statistics for a particular query
and constructs its query-specific BN. This way, TopGuess achieved up to by
88% (33%) better results on IMDB (DBLP) than the best baselines.

Overall, we can conclude that estimation effectiveness is driven by accurate
string predicate probabilities. Thus, there is a strong need for a data synopsis
allowing for extensive word/text data statistics.

Correlations. We found system performances to vary for IMDB and DBLP.
For the IMDB dataset, bngys could reduce errors of the indghs approach by up
to0 93%. On the other hand, for DBLP improvements were much smaller. These
differences are due to the varying degree of correlations in our two datasets.
While learning the BNs for bn, we observed less correlations in DBLP than in
IMDB. For instance, for DBLP queries with string predicates name and label,
we noted no significant correlations. Thus, the probabilities obtained from bn
systems were almost identical to the ones from ind.

In contrast, even for the less correlated dataset DBLP, TopGuess outperforms
the best baselines, indg,s and bngye, by 35% and 33%. We explain this our a
fine-grained, query-specific BN. More precisely, we observed that bn approaches
exploited data correlations, which were observed in the data graph. However,
TopGuess captured even minor correlations via its topic miztures at query time
— learned for each query individually.

Query Size. We depict the multiplicative error vs. # query predicates in
Figs. b/ f. As expected, estimation errors increase for all systems in # predi-
cates. For our baselines, we explain this behavior with: (1) Given an increasing
# predicates, the chances of missing a query keyword increase. (2) When missing
a single query keyword, the error is “propagated” throughout the computation.

However, while the TopGuess approach also led to more misestimates for
larger queries, the degree of this increase was smaller. For instance, considering
IMDB queries with 7-11 predicates, we could observe that TopGuess performs
much more stable than bn or ind baselines, cf. Fig. [4}f.

4.3 Selectivity Estimation Efficiency

We now analyze the estimation efficiency vs. synopses size (# query predicates),
cf. Figs. c /g (d/h). For TopGuess, the reported times comprise parameter
loading, BN construction, and topic learning. For bn and ind, the times represent
only selectivity computation, i.e., no model learning or parameter loading.

Overall Results. Considering bn and ind systems, we saw that their string
synopsis was a key performance factor. Intuitively, the more words were missed,
the “simpler” and the more efficient these systems became. However, such gains
came at the expense of effectiveness: the fastest baseline system, indsample, also
computed the least accurate selectivity estimates.

Comparing the two systems with the best effectiveness, TopGuess and bngy,
TopGuess led to a better performance by up to 45%. Unfortunately, in compar-
ison to top-k systems, TopGuess resulted in a performance decrease of 40%. We
explain these drawbacks with the time-consuming disk 1/0O, which was needed for



loading the statistics. However, while bn and ind clearly outperformed TopGuess
w.r.t. small synopses < 4 MB, TopGuess results are comparable for synopses
> 20 MB. We expect such effects to be more drastic for “large” bn/ind synopses
> 100 MB. So, TopGuess guarantees a much more “stable” behavior.

Synopsis Size. Figs. c/g show time vs. synopsis size. For the baselines, we
saw a correlation between synopsis size and runtime behavior: While bn and ind
reach a high efficiency for synopses < 4 MB, their performance decreases rapidly
for synopses > 20 MB. We explain this effect with the larger CPDs, which led
to longer probability estimation times. We observed sbf-based approaches to
be less driven by their synopsis size. This is because their computational costs
are mainly determined by bloom filters. In contrast, TopGuess did not suffer
from this issue at all. That is, for a given query, TopGuess only loads/processes
statistics necessary for that query. All others statistics are kept on disk.

Query Size. All systems had increasing estimation times in query size,
cf. Figs. d/h. This is because each additional query predicate translated to
more probability computations. However, as TopGuess exploits a compact query-
specific BN, we expected it’s performance to be less influenced by query size. To
confirm this, we compared the standard deviation of the estimation time w.r.t. a
varying # query predicates. For instance, the standard deviations was 82.48 ms
(213.48 ms) for TopGuess (bn). The low deviation for TopGuess indicates that
its probability estimation times varied less than those from bn systems.

5 Related Work

For selectivity estimation on structured data, existing works exploited vari-
ous data synopses: join samples [I], graph synopses [I8], or graphical mod-
els [9120027]. In particular, those synopses have been applied for selectivity esti-
mation of structured SPARQL/BGP queries on RDF data, e.g., [7TOI7IT9].

In contrast to TopGuess, such synopses do not consider correlations in text
data or between text and structured data. In fact, the only work capturing cor-
relations w.r.t. both kinds of data is [2I]. However, [2I] suffers from effectiveness
(I.1) and efficiency issues (1.2), cf. Sect. f as discussed throughout the paper.

With regard to selectivity estimation on text data, language models and other
machine learning techniques have been employed [BITTIT3I22]. Some works aim at
substring or fuzzy string matching [5I13]. Other approaches target “extraction”
operators, e.g., dictionary-based operators [22]. However, such works do not con-
sider correlations among multiple string predicates or correlations between string
predicates and query predicates for structured data.

6 Conclusion

We proposed a holistic approach for selectivity estimation of hybrid queries
(TopGuess). We showed space and time complexity bounds for TopGuess. Fur-
ther, we conducted empirical studies on real-world data and achieved strong
effectiveness improvements, while not requiring additional runtime.
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7 Appendix

Below, we present statistics as well as a complete listing of queries used during
our experiments. Note, queries for the DBLP dataset are based on [I5], while
IMDB queries are taken from [6]. All queries are given in RDF NTriples nota-

tion [

Table 2. Query Statistics

Predicates: | #Relation #String

0 1 [2,4]|[1,2] 3 [4,7]
# Queries |3344 23 | 28 35 26

Predicates:| #Class #Total

1 2 [3,4]][2,3] [4,6] [7,11]
# Queries (4930 21 | 28 31 41

Listing 1.1. Queries for DBLP [15]

# @prefix dc:

# http://purl.org/dc/elements/1.1/>

# @prefix foaf:

# <http://xmlns.com/foaf/0.1/>

# Qprefix rdf:

# <http://www.w3.0rg/1999/02/22 —rdf—syntax—ns#> .
# Q@prefix rdfs:

# <http://www.w3.0rg/2000/01/rdf—schema#> .

# @prefix dblp:

# <http://lsdis.cs.uga.edu/projects/semdis/opus#> .

# ql

?7x rdfs:label ”clique”

?7x dblp:last_modified_date 72002—12—-09”
?7x rdf:type dblp: Article.in_Proceedings
?7x dblp:author 7y

?7y rdf:type foaf:Person

?7y foaf:name "nikos”

# q2

7y rdf:type foaf:Person
?7y foaf:name "nikos”

?7y foaf:name ”zotos”

*http://www.w3.org/TR/rdf-testcases/#ntriples
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# q3

7x
7x
7x
7x
Ty
7y

rdfs:label ”"constraint”
dblp:last_modified_date ”72005—02—25"
rdf:type dblp: Article_.in_Proceedings
dblp:author 7y

rdf:type foaf:Person

foaf:name ”chuang”

# q4

7x
7x
7x
7x
7x
7y
7y

rdfs:label "mining”
rdfs:label ”clustering”
dblp:year 72005”
rdf:type dblp: Article
dblp :author 7y
rdf:type foaf:Person
foaf:name "nikos”

# 95

7x
7x
7x
7x
7y
7y

rdfs:label ”spatial”
dblp:last_modified_date ”72006—03—31"
rdf:type dblp: Article_.in_Proceedings
dblp:author 7y

rdf:type foaf:Person

foaf:name " patel”

# q6

7x
7x
7x
7y
7y

rdf:type dblp: Article
rdfs:label "middleware”
dblp:author ?y

rdf:type foaf:Person
foaf:name ”"zhang”

# q7

7x
7x
7x

rdf:type dblp: Article_in_Proceedings
rdfs:label "middleware”
rdfs:label ”"optimal”

?7x dblp:author 7y

?7y rdf:type foaf:Person

?7y foaf:name ”ronald”

# a8

?x rdf:type dblp: Article_.in_Proceedings
?7x rdfs:label "partition”

?7x rdfs:label "relational”

?7x rdfs:label "query”

# 99

?7x rdf:type dblp: Article_.in_Proceedings

7x
7x
7y

rdfs:label ”partition”
dblp:author 7y
rdf:type foaf:Person



?7y foaf:name " patel”

# ql0
?7x rdf:type dblp:Proceedings

?x rdfs:label "recognition”
?7x rdfs:label ”speech”

?x rdfs:label "software”

?x dc:publisher ?p

# qll
?7x rdf:type dblp:Proceedings

?7x rdfs:label "data”
?7x rdfs:label "mining”

?x dc:publisher <http://www.springer.de/>

# q12

?7x rdf:type dblp:Proceedings
?x rdfs:label 7australia”
?x rdfs:label 7stream”

?x dc:publisher <http://www.springer.de/>

# ql3

?7x dblp:year 720027

?7x rdf:type dblp:Proceedings
?7x rdfs:label 7industrial”
?7x rdfs:label ”"database”

?x dc:publisher ?7p

# ql4

?7x rdf:type dblp: Article_.in_Proceedings
?7x dblp:last_modified_date ”2006—03—09”

?7x dblp:author 7y
?7y rdf:type foaf:Person
?7y foaf:name ”jignesh”

# qld

?7x rdf:type dblp: Article_.in_Proceedings

?7x rdfs:label ”algorithm”
?7x rdfs:label ”"incomplete”
?7x rdfs:label ”"search”

# ql6

?7x dblp:journal_name ”SIGMOD”
?7x rdf:type dblp: Article

?7x rdfs:label 7web”

?7x rdfs:label ”search”

# ql7

?x rdf:type dblp: Article_.in_Proceedings

?x rdfs:label 7semistructured”
?x rdfs:label ”search”



?x
7y
7y

dblp:author 7y
rdf:type foaf:Person
foaf:name ”goldman”

# ql8

7x
7x
7x
7x
7x
7y
7y

rdf:type dblp: Article_in_Proceedings
rdfs:label ”query”

rdfs:label ”cost”

rdfs:label "optimization”
dblp:author 7y

rdf:type foaf:Person

foaf:name ”arvind”

# ql9

7x
7x
7x

dblp:year 72007”
rdfs:label ”software”
rdfs:label ”time”
rdf:type dblp: Article
dblp:author 7y
rdf:type foaf:Person
foaf:name ”zhu”

# q20

7y
7y
7y

rdf:type foaf:Person
foaf:name ”zhu”
foaf:name ”yuntao”

# q21

7x
7x
7x
7x
7x
7y
7y

dblp:year 72003”

rdfs:label ”data”

rdfs:label ”content”

rdf:type dblp: Article_.in_Proceedings
dblp:author 7y

rdf:type foaf:Person

foaf:name "nikos”

# q22

7x
7x
7x
Ty
7y

rdfs:label ”spatial”

rdf:type dblp: Article_.in_Proceedings
dblp:author 7y

rdf:type foaf:Person

foaf:name ”jignesh”

# q23

7x
7x
7x
7x
7x
7x
7y

rdfs:label 7algorithms”

rdfs:label ”"parallel”

rdfs:label ”spatial”

rdf:type dblp: Article_.in_Proceedings
dblp:author 7y

dc:relation ”"cont”

rdf:type foaf:Person



180

182

183

184

185

186

187

188

189

190

191

192

?7y foaf:name " patel”

# q24
?7x rdfs:label "implementation”

?7x rdfs:label 7evaluation”

?7x rdf:type dblp: Article_.in_Proceedings
?7x dblp:last_modified_date ”2006—03—-31"
?7x dblp:cites ?c

?7x dblp:author ?y

7y rdf:type foaf:Person

?7y foaf:name ”patel”

# q25

?7x rdfs:label "optimization”

?7x rdfs:label "query”

?7x rdf:type dblp: Article.in_Proceedings
?7x dblp:author 7y

?x dblp:year 72003”

7y rdf:type foaf:Person

?7y foaf:name ?n

# q26
?x rdfs:label 7xml”

?7x rdfs:label "tool”

?7x rdf:type dblp: Article_.in_Proceedings
?x dblp:year 72004”

?7x dblp:author 7y

?7y rdf:type foaf:Person

?7y foaf:name " patel”

# q27

?7x rdf:type dblp: Article.in_Proceedings
?7x rdfs:label 7architecture”

?7x rdfs:label "web”

?7x dblp:last_modified_date ”2005—09-05"
?7x dblp:author 7y

?7y rdf:type foaf:Person

?7y foaf:name ”wu”

# q28

?7x rdf:type dblp: Article_.in_Proceedings
?7x rdfs:label ”"language”

?7x rdfs:label "software”

?7x rdfs:label "system”

?7x dblp:year 720017

?7x dblp:author 7y

7y rdf:type foaf:Person

?y foaf:name "roland”

# q29
?7x rdf:type dblp: Article.in_Proceedings



?7x rdfs:label "middleware”

?7x dblp:last_modified_date ”2006—01—-17"
?7x dblp:author ?y

?7y rdf:type foaf:Person

?7y foaf:name ”sihvonen”

# q30
?7x rdf:type dblp: Article_.in_Proceedings

?7x rdfs:label "middleware”
?7x rdfs:label "virtual”

?7x dblp:year 720017

?x dblp:author 7y

7y rdf:type foaf:Person

?7y foaf:name ”kwang”

# q31

?7x rdf:type dblp: Article
?7x rdfs:label ”7java”

?7x rdfs:label "code”

?7x rdfs:label "program”
?x dblp:author 7y

?7y rdf:type foaf:Person
?7y foaf:name ”roland”

# q32

?7x rdf:type dblp: Article
?7x rdfs:label ”"signal”
?7x rdfs:label "space”

?7x dblp:author 7y

?7y rdf:type foaf:Person
?7y foaf:name ”zheng”

# 33

?x dblp:author 7y

7y rdf:type foaf:Person
7y foaf:name ”fagin”

?7y foaf:name "roland”

# q34
?7x dblp:author 7y

7y rdf:type foaf:Person
?7y foaf:name ”zheng”
?7y foaf:name 7 qui”

# a35

?7x rdf:type dblp: Article_.in_Proceedings
?7x rdfs:label ”"processing”

?7x rdfs:label "query”

# q36
?7x rdf:type dblp: Article.in_Proceedings



7x
7x

rdfs:label ”xml”
rdfs:label ”processing”

# q37
rdf:type dblp: Article_.in_Proceedings

7x
7x
7x
7x
7x
7y
7y

rdfs:label ”biological”
rdfs:label ”sequence”

dblp:last_modified_date ”72007—08—-21"

dblp:author 7y
rdf:type foaf:Person
foaf:name ”jignesh”

# q38

7x
7x
7x
7x
7x

rdf:type dblp:Book

rdfs:label ”"decision”

rdfs:label ”"intelligent”
rdfs:label "making”

dc:publisher <http://www.springer

# q39

7x
7x
7x
7x

rdf:type dblp:Proceedings
rdfs:label "databases”

rdfs:label ”biological”
dc:publisher <http://www.springer

# q40

7x
7x
7x

rdf:type dblp:Book
rdfs:label "mining”
rdfs:label ”"data”

# q41

7x
7x
7x
7x
7x
7x

rdf:type dblp:Book

rdfs:label "mining”

rdfs:label ”"data”

dc:publisher <http://www.springer
dc:relation 7trier.de”
dc:relation ”books”

# q42

7x
7x
7x
7x
7x
7x

rdf:type dblp:Book

rdfs:label 7intelligence”
rdfs:label ”computational”
dc:publisher <http://www.springer
dc:relation ”7trier.de”

dblp:year 720077

# q43

7x
7x
7x
7x

rdf:type dblp:Book
rdfs:label "biologically”
rdfs:label ”inspired”
rdfs:label ”methods”

.de/>

.de/>

.de/>

.de/>



333

334

335

336

337

341

# qd4

?7x rdf:type dblp:Book

?x rdfs:label "networks”
?x rdfs:label "neural”

# q45
?7x rdf:type dblp:Book

?7x rdfs:label "learning”
?x rdfs:label "machine”
?x dc:publisher <http://www.springer

# q46

?7x rdf:type dblp:Book

?7x rdfs:label "software”

?7x rdfs:label ”"system”

?x dc:publisher <http://www.springer

# q47
?7x rdf:type dblp:Book

?x rdfs:label "architecture”
?7x rdfs:label "computer”

# q48

?7x rdf:type dblp:Book
?x rdfs:label 7web”
?7x dblp:year 720067
?7x dc:publisher ?p

?7x dblp:editor ?e

7e foaf:name ”kandel”
7e foaf:name ”abraham?”

# q49

?7x rdf:type dblp:Book

?x rdfs:label ”"theoretical”

?x rdfs:label ”science”

?x dc:publisher <http://www.elsevier

# q50
?7x rdf:type dblp:Book_Chapter

?x rdfs:label "search”
?x rdfs:label ”semantic”

# q51

?7x rdf:type dblp: Article
?7x rdfs:label ”search”
?7x rdfs:label ”"concept”
?7x rdfs:label ”"based”

# q52
?7x dblp:journal_name ”sigmod”

.de/>

.de/>

.nl/>



384

?7x rdf:type dblp: Article
?x rdfs:label ”"model”
?x rdfs:label 7information”

# b3

?7x dblp:journal_name ”sigmod”
?7x rdf:type dblp: Article

?7x rdfs:label "dynamic”

?7x rdfs:label "networks”

# qb54
?7x rdf:type dblp: Article_.in_Proceedings

?7x rdfs:label "storage”

?7x rdfs:label 7adaptive”
?7x dblp:author 7y

?7x dblp:year 720037

7y rdf:type foaf:Person

?7y foaf:name ”jignesh”

Listing 1.2. Queries for IMDB [6]

# @Qprefix imdb:

# <http://imdb/predicate/>
# @prefix imdb_class:

# <http://imdb/class/>

# @prefix rdf:

# <http://www.w3.0rg/1999/02/22 —rdf—syntax—ns#>

# ql

?7x rdf:type imdb_class:name
?7x imdb:name ” washington”
?7x imdb:name ”denzel”

# q2

?7x rdf:type imdb_class:name
?x imdb:name ”eastwood”

?x imdb:name " clint”

# a3

?7x rdf:type imdb_class:name
?7x imdb:name ”john”

?7x imdb:name ”wayne”

# q4

?7x rdf:type imdb_class :name
?x imdb:name ”smith”

?x imdb:name 7 will”



# d5

?7x rdf:type imdb_class :name
?x imdb:name ” ford”

?x imdb:name ”harrison”

# q6

?7x rdf:type imdb_class:name
?x imdb:name ” julia”

?7x imdb:name "roberts”

# q7

?7x rdf:type imdb_class:name
?x imdb:name ”tom”

?x imdb:name ”hanks”

# a8

?7x rdf:type imdb_class:name
?x imdb:name ”johnny”

?7x imdb:name ”depp”

# q9

?7x rdf:type imdb_class:name
?7x imdb:name ”angelina”

?7x imdb:name 7 jolie”

# ql0

?7x rdf:type imdb_class:name
?7x imdb:name ” freeman”

?x imdb:name ”morgan”

# qll
?7x rdf:type imdb_class: title

?7x imdb: title ”gone”
?x imdb: title ”with”
?x imdb: title ”the”

?7x imdb: title ”wind”

# ql2
?7x rdf:type imdb_class: title

?7x imdb: title ”wars”
?x imdb: title "star”

# ql3
?7x rdf:type imdb_class: title

?x imdb: title ”casablanca”

# ql4
?7x rdf:type imdb_class:title

?x imdb: title 7the”
?x imdb: title ”lord”
?7x imdb: title "rings”



# qlb

?7x rdf:type imdb_class: title
?x imdb: title ”the”

?x imdb: title ”sound”

?x imdb: title " music”

# q16

?7x rdf:type imdb_class: title
?x imdb: title 7 wizard”

?x imdb: title ”o0z”

# ql7

?7x rdf:type imdb_class: title
?x imdb: title ”the”

?x imdb: title ”notebook”

# ql8

?7x rdf:type imdb_class: title
?7x imdb: title ”forrest”

?7x imdb: title ”gump”

# ql9
?7x rdf:type imdb_class: title

?x imdb: title "the”
?7x imdb: title ”"princess”
?x imdb: title ”bride”

# q20

?7x rdf:type imdb_class: title
?7x imdb: title ”the”

?7x imdb: title ”godfather”

# q21

?x imdb: title 7t

?7x rdf:type imdb_class: title
?7x imdb: cast_info 7z

?7r rdf:type imdb_class:char_name

?r imdb:name ” finch”
?r imdb:name " atticus”

?7z rdf:type imdb_class:cast_info

7z imdb:role 7r

# q22

?x imdb: title 7t

?7x rdf:type imdb_class: title
?x imdb: cast_info 7z

7z rdf:type imdb_class:cast_-info

?7r imdb:name ”indiana”
?r imdb:name ” jones”
7z imdb:role 7r



?r rdf:type imdb_class
# q23

?x imdb: title 7t

?7x rdf:type imdb_class:
?x imdb:cast_info 7z

7z rdf:type imdb_class:
7z imdb:role 7r

?7r rdf:type imdb_class
?r imdb:name ”james”

?r imdb:name ”bond”

# q24

?x imdb: title 7t

?7x rdf:type imdb_class:
?x imdb:cast_info 7?7z

?7z rdf:type imdb_class:
7z imdb:role 7r

?7r rdf:type imdb_class
?r imdb:name "rick”

?r imdb:name " blaine”
# q25

?x imdb: title 7t

?7x imdb: cast_info 7z

7z rdf:type imdb_class:
7z imdb:role 7r

?r rdf:type imdb_class
?r imdb:name " kaine”

?r imdb:name 7 will”

# q26

?x imdb: title 7t

?7x rdf:type imdb_class:

?x imdb: cast_info 7z
7
7z imdb:role 7r
rdf:type imdb_class
imdb:name 7dr.”
imdb : name
imdb:name " lecter”

# q27

?x imdb: title 7t
7x
?x imdb:cast_info 7z
Tz
7z imdb:role 7r
rdf:type imdb_class
imdb :name ”norman”

imdb:name ” bates”

rdf:type imdb_class:

”hannibal”

rdf:type imdb_class:

rdf:type imdb_class:

:char_name

title

cast_info

:char_name

title

cast_info

:char_name

cast_info

:char_name

title

cast_info

:char_name

title

cast_info

:char_name



190

191

192

193

194

195

# q28

?x imdb: title 7t

?7x rdf:type imdb_class
?7x imdb: cast_info 7z

7z rdf:type imdb_class:

7z imdb:role 7r

?r rdf:type imdb_class
?7r imdb:name " darth”
?r imdb:name " vader”

# q29
?x imdb: title 7t

?7x rdf:type imdb_class:

?x imdb: cast_info 7z

?7z rdf:type imdb_class:

7z imdb:role 7r

?7r rdf:type imdb_class
?r imdb:name ”the

?r imdb:name " wicked”
?r imdb:name " witch”
?r imdb:name ”the”

?r imdb:name " west”

# q30
?x imdb: title 7t

?7x rdf:type imdb_class:

?x imdb:cast_info 7?7z

?7z rdf:type imdb_class:

7z imdb:role ?r

?7r rdf:type imdb_class
?r imdb:name "nurse”
?7r imdb:name "ratched”

# q31
?7x imdb: title 7t

?7x rdf:type imdb_class:

?x imdb: movie_info 7i

71 rdf:type imdb_class:

71 imdb:info ”frankly”
?7i imdb:info 7 dear”

?7i imdb:info ”don’t”
71 imdb:info 7 give”

?7i imdb:info ”damn”

# q32

?7x imdb: title 7t

?7x rdf:type imdb_class
?7x imdb: movie_info 7i
71 rdf:type imdb_class
71 imdb:info ”going”

ctitle

cast_info

:char_name

title

cast_info

:char_name

title

cast_info

:char_name

title

movie_info

ctitle

:movie_info



imdb:info ”make”
imdb:info " offer”

imdb:info "can’t
imdb:info "refuse”

# 433

7x
7x
7x
71
71
71

imdb: title 7t

rdf:type imdb_class:title
imdb: movie_info 71
rdf:type imdb_class: movie_info
imdb:info ”understand”
imdb:info ”class”
imdb:info ”contender”
imdb:info ”coulda”
imdb:info ”somebody”
imdb:info ”instead”
imdb:info "bum”

# q34

7x
7x
7x
71

imdb: title 7t

rdf:type imdb_class:title
imdb: movie_info 7i

rdf:type imdb_class: movie_info
imdb:info ”toto”

imdb:info ”feeling”

imdb:info ”not”

imdb:info ”kansas”

imdb:info ”anymore”

# 435

7x
7x
7x
71
71
71
71

imdb: title 7t

rdf:type imdb_class: title
imdb: movie_info 7i

rdf:type imdb_class: movie_info
imdb:info ”here’s”

imdb:info ”looking”

imdb:info ”kid”

# q36

7x
Tc
7x
Tc
?r
?r
7c
’p
7p

rdf:type imdb_class:title
rdf:type imdb_class:cast_info
imdb: cast_info ?c

imdb:role 7r

rdf:type imdb_class:char_name
imdb:name ”skywalker”

imdb: person 7p

rdf:type imdb_class:name
imdb:name ” hamill”

# q37

7x

imdb:year 720047



rdf:type imdb_class
imdb: title 7t
imdb: cast_info ?c

rdf:type imdb_class:

imdb: person 7p
rdf:type imdb_class
imdb :name ”hanks”

# q38 #

?r
Tr
7x
7x
7x
7x
7x
Tc
7c

imdb :name 7rn
rdf:type imdb_class

rdf:type imdb_class:

imdb: title
imdb: title ”mine”
imdb: title ”ours”
imdb: cast_info ?c

”yours”

rdf:type imdb_class:

imdb:role 7r

imdb: person 7p
rdf:type imdb_class
imdb:name ”henry”
imdb :name ”fonda”

# a39

7x
7x
7x
?c
Tc
r
Tr

rdf:type imdb_class
imdb: title
imdb: cast_info 7c
rdf:type imdb_class
imdb:role 7r
imdb:name 7rn
rdf:type imdb_class
imdb: person ?p
rdf:type imdb_class
imdb :name " russell”

imdb :name ”crowe”

# q40

7x
7x
7x

7x
r
Tr
?c

rdf:type imdb_class:

imdb: title ”star”
imdb: title "trek”
imdb: cast_info 7?c
rdf:type imdb_class
imdb:name ?rn

rdf:type imdb_class:

imdb:role 7r

imdb: person 7p
rdf:type imdb_class
imdb:name ”spiner”

imdb:name " brent”

ctitle

cast_info

rname

:char_name
title

cast_info

‘name

ttitle
?gladiator”

:cast_info

:char_name

{hame

title

:char_name

cast_info

‘name



?7x imdb:year 719517

7x imdb: title 7t

?7x rdf:type imdb_class
?7x imdb: cast_info ?c

?7c rdf:type imdb_class:

?7c¢ imdb: person 7p

?7p rdf:type imdb_class
?7p imdb:name ”audrey”
?7p imdb:name ”hepburn”

# q42
?7p rdf:type imdb_class

?7p imdb:name 7n
?7c imdb:person 7p

?7c rdf:type imdb_class:

?7c imdb:role 7?r
?7r rdf:type imdb_class
?r imdb:name ”jacques”

?r imdb:name ”clouseau”

# q43

?7p rdf:type imdb_class:

?7p imdb:name 7n
?7c imdb:person 7p

?7c rdf:type imdb_class:

?c imdb:role 7r

?7r rdf:type imdb_class
?r imdb:name ”jack”

?r imdb:name "ryan”

# q44
?7p rdf:type imdb_class

ctitle

cast_info

‘name

‘name

cast_info

:char_name

name

cast_info

:char_name

‘name

?7p imdb:name ”stallone”

?7c imdb:person 7p

?7c rdf:type imdb_class:

?7c imdb:role 7r
?7r rdf:type imdb_class
?r imdb:name "rocky”

# q4b5

?7p rdf:type imdb_class
?7p imdb:name 7n

?7c imdb:person 7p

?7c rdf:type imdb_class:

?7c imdb:role 7r
?7r rdf:type imdb_class

cast_info

:char_name

nhame

cast_info

:char_name

?r imdb:name ”terminator”

# omitted q46 to q49

# q50



ss7 || 7a rdf:type imdb_class: title

sss || 7a imdb: title 7 lost”

350 || 7a imdb: title 7ark”

00 || 7a imdb: cast_info 7ca

s01 || 7ca rdf:type imdb_class:cast_info
302 || 7ca imdb: person 7p

303 || ?7p rdf:type imdb_class:name

94 || 7p imdb:name ?n

s05 || 7ci rdf:type imdb_class:cast_info
306 [| 7ci imdb: person 7p

307 || 71 rdf:type imdb_class: title

o8 || 71 imdb: cast_info ?ci

300 [| 71 imdb: title ”indiana”

wo || 71 imdb: title ”jones”

w01 || 71 imdb: title 7last”

102 || 71 imdb: title ”crusade”
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