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Abstract

We propose an approach to compute navigation instructions on mobile
devices carried by people during a building evacuation in order to guide
them to safe areas or exits. The mobile devices form an ad hoc network
via local communication links and use this network to collect informa-
tion about the current evacuation situation. This information is used for
path planning in order to optimize escape routes with respect to multiple
objectives, such as congestion avoidance and risk minimization. Due to
delays and link breakages in the network communication, the prediction of
emerging congestions becomes a major challenge. We propose two conges-
tion indicators which are based on uncertain knowledge gained from local
communication between the mobile devices. It is shown that dynamic
multi-objective evacuation path planning reduces congestions and accel-
erates the evacuation process compared to a state-of-the-art evacuation
planning approach for mobile devices.

1 Introduction

The growing world population and the simultaneous technological progress let
buildings become increasingly large and more complex. Hence, the question of
how to evacuate people from such buildings as fast and smoothly as possible
becomes all the more important. It is urgent to address this matter, especially,
since panic often causes deaths and injuries. Nevertheless, the equipment of
buildings for evacuation support is comparatively outdated. Todays approaches
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to prevent disasters and support a well-ordered evacuation are to install safety
devices, such as sprinkler systems, fire or smoke alarms, fire extinguishing instal-
lations, emergency exits, fire escapes, exit signs, and emergency maps. In [6],
reports from survivors of the attacks of September 11th, 2001 indicate that the
main obstacles during escape are congestions in bottleneck-areas and closed or
blocked passages due to smoke formation or damaged building fabrics. In addi-
tion, it is reported that even people who were familiar with the building’s layout
had difficulties to find their way due to smoke formation or lack of illumination.
Although some of these problems can be addressed with appropriate signage or
emergency lights, there remains the open question about what to do when a
designated escape route is not usable anymore. Exit signs and emergency maps
in todays buildings are static and analogous. Consequently, they are not able
to adapt to unforeseen changes.
The rapidly growing spread of communication devices, such as smart phones or
tablet PCs, opens up new opportunities to meet the challenges of a modern,
adaptable evacuation system. The mobile devices can be used to point out es-
cape directions and navigate their users to safe areas or exits. Since these devices
possess processing capabilities, they can process information about changes in
the evacuation environment and adapt the path planning accordingly. The abil-
ity of mobile devices to form ad hoc networks through wireless communication
with other nearby devices offers the possibility to exchange information about
the current evacuation situation. This knowledge can be integrated in evacua-
tion route planning to decide for the optimal way leading outside the building
under the given circumstances. Apart from the given adaptability, mobile de-
vices in an ad hoc network offer the advantage that there is no need for a central
computing unit which would be a potential single-point of failure. The failure of
a central server could lead to a total breakdown of the entire evacuation support,
which is why decentralized systems are especially attractive for deployment in
emergency situations.
The circumvention of potential congestions is an obvious objective when choos-
ing an evacuation route. But, apart from that, there are other criteria to con-
sider. For example, the avoidance of risky areas can be crucial for the safety of
the evacuees. Additionally, each criterion can be more important for some evac-
uees than others. A handicapped person, for example, would probably be willing
to take a longer path if it is more accessible. Therefore, we propose the dynamic
multi-objective distributed evacuation planning (DMO-DEP) which is capable
to consider many aspects simultaneously and to weight them depending on the
evacuees’ individual characteristics. The hereafter addressed objectives are risk
minimization and congestion avoidance, although it is easily possible to further
extend the list of considered criteria. To able to adapt the path planning to
newly available information we propose to use an incremental, heuristic search
algorithm from the area of robotics, called D* Lite [11] to compute the optimal
path for each evacuee to an exit of the building. D* Lite includes previous search
results when adapting to changes and, hence, reduces necessary computations.
Experiments show that the DMO-DEP approach is able to improve the over-
all evacuation time by decentralized path planning on mobile devices based on
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local information compared to a situation without communication between the
devices. Additionally, the evacuation process can be accelerated and waiting
times for evacuees are reduced compared to a state-of-the-art distributed path
planning algorithm for mobile devices.
This paper is structured as follows. Section 2 gives an overview of related
work. The D* Lite algorithm is described in Section 3. Section 4 introduces the
DMO-DEP algorithm and Section 5 contains an experimental investigation of
the performance of DMO-DEP. Section 6 concludes the paper.

2 Related Work

Route optimization, or path planning, is usually performed on a macroscopic
graph representation of the environment, where nodes represent different regions
in which people are gathered (e.g. rooms) and edges link nodes which are
connected by doors or hallways in the real building. Such a graph model serves
as a basis to calculate the quickest flow, i.e. minimizing the time for a certain
number of evacuees to reach the exit. Exact solutions to this problem can be
found with a time-expansion of the underlying graph model, where multiple
copies for each node are made to represent the node’s state at a certain time
step [1]. In [12], a heuristic approach to solve the quickest flow problem is
presented. It adapts a routing protocol to stepwise schedule evacuees on various
paths by reserving capacities on the nodes and edges for the time when they are
occupied. Another routing protocol is adapted in [18] to achieve load balanced
traveling of pedestrians in a building between fixed destinations. In evacuation
planning, however, the goal is to find the optimal path for a single evacuee
instead of optimizing flows, i.e. sets of evacuees. Such a shortest path can
be found by applying the Dijkstra [4] or A* [9] algorithms or with a heuristic
approach, such as ant colony optimization (ACO) [5]. When edge costs can
change, the naive approach is to recompute the shortest path from scratch.
To avoid this, the D* algorithm [17] and its improved version D* Lite [11]
are proposed which reuse previous results and, hence, reduce the necessary
computations significantly. Instead of distances, general edge costs are often
minimized. When regarding more than one optimization objective, these costs
can be a weighted sum of multiple cost components. In [3,16,20], such composite
costs are used to optimize path planning on a macroscopic evacuation graph
model.
Path planning based on local observations and decisions is presented in [19].
Pedestrians are modeled to leave a building on the shortest path, unless they
have to wait for a certain time in a jamming queue. Then, they start observing
the traffic at alternative doors and change their route choice if it seems worth it.
In [15], a congestion avoidance approach for traffic based on local observations is
introduced. A network of traffic lights observes the traffic flow at intersections
and exchanges this information. Cars are routed on a next-hop basis to the
intersection with the best traffic-flow on the way to their destination. A similar
approach is presented in [8], where sensor nodes observe risk factors, exchange
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this information, and send evacuees to the next best sensor node on the way to
the building’s exit. A scenario in which mobile devices are used for observation
of an evacuation scenario is considered in [13]. Mobile devices collect information
about the locations of other mobile devices in the building. This information
is used to construct a macroscopic evacuation graph model and the approach
from [12] is used to solve the quickest flow problem. The mobile devices then
select evacuation paths that correspond to their current location.

3 D* Lite

The D* Lite algorithm [11] is performed on a graph representation G = (N,E)
of the environment, which is different from the macroscopic evacuation graph
described before. The environment is divided in a grid of patches (nodes N) and
adjacent patches in the von-Neumann neighborhood, i.e. surrounding patches
without the diagonal patches, are connected in the graph via edges E : (N×N).
Edges have costs c(e) assigned and D* Lite computes the path from a start patch
(ns ∈ N) to a defined target patch (nt ∈ N) with minimal costs. The search
starts at the target patch and is directed towards the start patch with the help
of a heuristics value which is mostly the Euclidean distance between each patch
n ∈ N and the start patch h(n). The procedure of D* Lite is described in the
following.
The algorithm computes values d(n) for n ∈ N which represent the traveling
costs from n to nt until d(ns) is determined, starting at the target patch nt. The
shortest path can subsequently be derived by following the lowest cost edges.
Let U ⊂ N be a sorted set in the sense that all nodes n ∈ U are sorted in
ascending order with respect to key1(n) = min(d(n), d̄(n)) + h(n) and, if two
elements are equal, according to key2(n) = min(d(n), d̄(n)). Let U.first denote
the first element in this sorted set U , i.e. the element with minimal key value.
We further assume that Adj(n) returns all adjacent nodes of a node n with
respect to the von-Neumann neighborhood. Algorithm 1 shows the procedure
to compute the values d(n) for all patches on the path with lowest traveling
costs between ns and nt. The values d̄(n), n ∈ N are auxiliary variables.

If a change in costs is detected for a certain edge, the update procedure in
Algorithm 1 is called for all affected nodes and for all nodes in list U recursively.
The consistency check between d(n) and d̄(n) in line 5 of procedure update(n)
ensures that the updates are constrained to the affected area and do not spread
to all subsequent patches.

4 Evacuation Path Planning

In this section, we propose the DMO-DEP approach for computation of naviga-
tion instructions on mobile devices during a building evacuation. Each device is
assumed to know the building’s layout, e.g. by downloading it when entering the
building, and computes an optimal evacuation route from it’s current position
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Algorithm 1: D* Lite

Input: graph G = (N,E), start node ns, target node nt, heuristic
h(n)∀N , costs c(e)∀E

1 d(n) =∞∀n ∈ N , d̄(n) =∞∀n ∈ N , d̄(nt) = 0
2 U.add(nt)
3 computePath()

4 Procedure computePath()

5 while (key(U.first) < key(ns)) ∨ (d̄(ns) 6= d(ns)) do
6 Define u = U.first
7 if d(u) > d̄(u) then
8 d(u) = d̄(u)
9 update(u)

10 end
11 d(u) =∞
12 for p ∈ Adj(u) do
13 update(p)
14 end

15 end

1 Procedure update(n)
2 if n 6= nt then
3 d̄(n) = min∀s∈Adj(n)(c(n, s) + d(s))
4 U.add(n)
5 if d(n) = d̄(n) then
6 U.remove(n)
7 end

8 end

to an exit of the building according to various objectives. Information about
the current evacuation situation is gathered via local communication between
nearby devices and with the help of the mobile ad hoc network that arises from
these communication links. The information is used to assign costs to edges in
the graph model of the environment described in Section 3 and the dynamic path
planning algorithm D* Lite (cf. Section 2) is applied to find the minimum cost
path for each mobile device. The computed evacuation path can be displayed
on the device’s screen as navigation instructions. We concentrate on path plan-
ning and assume that each device knows its localization, for example, with the
help of an indoor localization system [7]. The costs that are minimized consist
of various cost components, which are weighted with evacuee-specific weights,
thereby, respecting characteristics of the evacuees in the relative importance of
each cost component.
The patches n ∈ N in the environment model have approximately the size of an
average person and all patches in the von-Neumann neighborhood are connected
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via bidirectional edges e ∈ E : (N ×N). A mobile device a can assign costs to
each edge e = (n,m), which describe the costs for the device’s user to walk from
patch n to m. These costs are described as a weighted sum of cost components
for each considered optimization criterion o ∈ O:

ca(e) =
∑
o∈O

(wa
o · cao(e)) (1)

with weights wa
o ∈ [0, 1] and

∑
O wa

o = 1. The weights can be different for
each device depending on its user’s characteristics. They can for example be
derived from profile information about the device’s user, such as age or handi-
caps, which are manually configured. However, we leave the challenge of finding
optimal weights to future work. When the costs for all edges in the discretized
layout are known, the D* Lite algorithm is used to find the minimum cost path,
i.e. the sequence of patches < ns, ..., nt >. From the known sequence of patches,
a sequence of rooms is extracted which we call evacuation instruction. A path
between these rooms can then be displayed on the screen of the mobile device
in order to guide the user to an exit. The transformation from patches to rooms
might not be necessary, but it ensures that the displayed path is the shortest
path between rooms instead of a possibly winding sequence of patches.
One obvious cost component that has to be regarded for evacuation path plan-
ning is the traveling distance for an edge cdistance(e). This costs component is
equal for all devices a ∈ A and corresponds to the size of each patch. Apart
from the traveling distance, we concentrate on two other objectives for choosing
evacuation routes: risk minimization and congestion avoidance. For this, we
define cost components that reflect the risk an evacuee is exposed to on a route
towards the exit, as well as the congestion potential on this path.

4.1 Risk Minimization

In order to avoid risky paths, we assume that there are sensors inside the build-
ing which can measure potential danger indicators such as gas concentration or
heat, similar to the scenario examined in [8]. The sensors forward a risk level
risk(R) ∈ [0, 1] for the room R which they observe to all devices that enter
the room using the same means of communication that the mobile devices use
among themselves. This information has an age value assigned to it that is
initially set to zero when the message is received from a sensor node and in-
creased according to the time that passes on the mobile device’s system clock.
All devices constantly disseminate detected risk information in the ad hoc net-
work and whenever this information is forwarded to other mobile devices, the
current age is also communicated. This ensures that all devices keep the most
recent information in case they are informed about the risk level of a room via
different sources. The risk level cost component carisk(e) is assigned to all edges
e(n,m) between nodes in the affected room R. By assigning the risk value to all
patches in a room, it becomes comparatively more expensive to cross a larger
room with the same risk level.
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carisk(e(n,m)) = risk(R),∀n ∈ R (2)

4.2 Congestion Avoidance

One objective of DMO-DEP is to use the information about other evacuees’
locations in the building to evaluate evacuation paths with respect to their con-
gestion potential. While the congestion prediction and avoidance is a well-known
task in traffic optimization, it is a much more challenging task in a pedestrian
scenario. This is mainly due to the comparatively unorganized situation that
arises when evacuation is accompanied by panic, which makes it hard to predict
the evacuation process [10]. This challenge is further aggravated by the uncer-
tain information situation due to communication delays and link breakages in
the network. As a consequence, predicting waiting times on a certain route is
almost impossible. Fortunately, it is enough for evacuation planning to be able
to compare two possible routes with each other. For this, we propose two indica-
tors that are not meant to estimate the time evacuees need to travel on a certain
route but to give information about potential congestion formations. For this,
each mobile device constantly disseminates its own location information in the
ad hoc network and collects these information from other devices. An age value
is assigned to each information which is set to zero for the own location and
incremented according to the devices’ system clocks when forwarded in order to
be able to identify more recent information.

Load The first congestion indicator is derived from the idea that many evac-
uees on a smaller area are more likely to jam up in front of exits. Therefore,
we propose load costs which are computed for each edge e(n,m) in a room
n,m ∈ R ⊂ N as the number of devices d ∈ D that are located in this room
with respect to the size of the room as follows:

caload(e(n,m)) =
|{d ∈ D : n(d) ∈ R}|

|{n ∈ R}
|,∀n ∈ R (3)

with n(d) referring to the patch on which the device d is located. One could
argue that relating the number of devices in a room to the size of the room’s
doors is more effective, but a room can have multiple doors and yet only one
determines the flow rate. Since it is hard to tell which doors will be used by
how many evacuees, the described load parameter is the more straightforward
congestion indicator.

Entropy Congestion is an emergent phenomenon, i.e. a formation of order
from disorder based on self-organization, and as such is measurable by applying
the concept of entropy, as suggested in [14]. Entropy is a well-known metric
to measure the amount of order in a system. Low entropy is equivalent to a
higher system order and vice versa. Hence, in a room where a congestion builds
up, the locations of the corresponding mobile devices are distributed unevenly

7



and the respective entropy value would be low. To compute the entropy of the
evacuee’ locations in a room the following considerations are made. Patches in
a room can be organized in rows and columns reflecting their horizontal and
vertical order respectively. Let a room R contain x× y patches, i.e. x columns
and y rows. Let further num(i), num(j) denote the number of devices d ∈ D
located on column i or row j respectively. The entropy of a room R is computed

as e(R) = −
∑

n∈R p(n)ld p(n) with p(n) = num(x(n))+num(y(n))∑x

i=1

∑y

j=1
num(i)+num(j)

and x(n),

y(n) denoting the row and column of a patch n.
To infer the corresponding costs for rooms with high agent concentration,

the entropy is normalized to lie in the range [0, 1] using the maximum entropy
emax(R) = ld(x · y) of a room R, when it is completely occupied by agents, and
the minimum entropy value emin(R) = ld(x + y)− 2

x+y , when a single agent is
in the room. The costs are then computed as:

caentropy(e(n,m)) = 1− (
e(R)− emin(R)

emax(R)− emin(R)
),∀n ∈ R (4)

5 Experimental Study

In this section, the DMO-DEP approach is tested in a simulative experimental
study. We want to verify, whether the congestion indicators are useful to avoid
jammed evacuation routes and whether the risk avoidance mechanism works.

5.1 Evacuation Simulation

For the experimental study we use a simple evacuation model similar to the two-
dimensional cellular automaton described in [2]. The simulation environment
is shown in Figure 1. In each time step, an agent exchanges messages with
nearby devices to collect information, computes its optimal evacuation path,
and is allowed to move to an accessible adjacent patch in its von-Neumann
neighborhood. The evacuee follows the shortest path measured in Manhatten
distance metric that connects its current patch with the closest patch belonging
to the next room according to the evacuation path computed via DMO-DEP.
If there is no free patch in the von-Neumann neighborhood but in the Moore-
neighborhood, i.e. all adjacent patches including the diagonal patches, and
this patch is closer to the target than the current patch measured in Euclidean
distance, the individual moves in two time steps to this patch in the Moore
neighborhood. This has the effect that agents cluster in front of doors in an
arc-like shape instead of lining-up in front of it. In each simulation cycle all
agents are executed once in random order.

5.2 Evaluation of Risk Minimization

To evaluate the DMO-DEP approach, we start with a scenario to test the risk
avoidance of the evacuees. For this, the risk level in room 4 and 10 of the building
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Figure 1: Building layout used for the experiments.
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Figure 2: Risk avoidance for two different agent classes. More risk aversive
agents are depicted in black.

layout are set to a value of 1 and two different classes of evacuees are simulated.
One which is more risk aversive with weights wrisk = 0.9, wdistance = 0.1 and
less careful agents with wrisk = 0.8 and wdistance = 0.2. Figure 2 shows a sample
situation during an experiment run, in which the mechanisms for risk avoidance
can be observed. The agent depicted as a blue square is a risk aversive agent.
The snapshot shows that the risk-aversive evacuee makes a detour to avoid room
4, while the agents with higher risk tolerance pass through the rooms with higher
risk level. Also, the dissemination of risk information can be observed in this
simple example because the risk-aversive agent did not need to go inside room
4 to know about its risk level, but was informed about this by other agents.

To get an insight about the impact of risk avoidance on the evacuation
time, we repeat this experiment with 60 randomly located agents and set the
weights in the cost function to wrisk = 0.9, wdistance = 0.1 for all agents. Table
1 displays the average results for 40 repetitions. This evaluation reveals an
intuitively expected effect. The reduced average time that an agent spends
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Table 1: Numerical evaluation of risk avoidance.

DMO-DEP: distance risk

total evac. time 59.1 89.6
avg. evac. time 31.0 36.2
avg. risk time 2.8 0.8
avg. waiting time 0.5 0.7

in rooms with higher risk levels comes at the cost of an increased evacuation
time. Simultaneously, the average waiting time per agent is higher because more
evacuees take less risky routes towards the exit which increases the congestion
potential on these paths.

5.3 Evaluation of Congestion Avoidance

The next experiment tests the impact of the two proposed congestion indicators
on the evacuation performance. For this, we first consider an evacuation scenario
in which agents are distributed across the two rooms with number 3 and 4.
Congestions will occur in both rooms when the agents only consider the distance
as an optimization criterion. Figure 3 illustrates a sample situation that occurs
when only distance costs are optimized (a), with additional load costs (b), and
with entropy costs (c). The weights for scenarios (b) and (c) are chosen as
wload = wentropy = 0.8 and wdistance = 0.2. From these snapshots, it can be
observed that both congestion indicators prevent the emergence of jamming
queues. Additionally, it becomes apparent that entropy and load costs influence
the behavior of the evacuees in different ways. While minimizing load costs
keeps up a high concentration of agents in the building, this is not the case
when entropy costs are considered. In Figure 4, the numerical evaluation of the
three depicted experiment runs is shown which mainly confirms the previous
observations. Both, the integration of entropy and load costs reduce the overall
evacuation time by 23% for the experiment with entropy costs and 33% for the
experiment with load costs. Also, the average evacuation time per evacuee and
the average waiting time, i.e. cycles without movements per agent, are reduced
significantly.

To confirm the generality of these results and to compare them with the per-
formance of the capacity constrained distributed swarm evacuation approach
(CCRP) presented in [13], we test an evacuation scenario with 60 evacuees,
which are randomly distributed in the building and perform 40 repetitions.
Costs are set to wload = wentropy = wdistance = 0.5. The macroscopic evacuation
graph for CCRP is depicted in Figure 1. Table 2 shows the results. DMO-DEP
improves the total evacuation time compared to the CCRP approach by one
round on average and the average evacuation time by three rounds, even with-
out congestion indicators. The reason for this lies in the less abstract evacuation
model where distances are reflected more precisely and edges can are bidirec-
tional compared to the macroscopic graph representation used for CCRP. The
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(a) Distance costs (b) Load costs (c) Entropy costs

Figure 3: Evacuation situation after 24 cycles with only distance costs (a),
distance and load costs (b) and distance and entropy costs (c) to optimize.
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Figure 4: Numerical evaluation of the simulations depicted in Figure 3
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Table 2: Comparison of DMO-DEP with and without congestion indicators and
CCRP.

distance load entropy CCRP

total evac. time 58.1 59.4 59.1 60.3
avg. evac. time 30.8 31.2 31.0 32.6
avg. waiting time 0.5 0.3 0.5 2.5

average waiting time shows that CCRP navigation instructions expect more
evacuees to wait at jammed doors compared to DMO-DEP, which makes DMO-
DEP more attractive for evacuation planning since waiting in panic situations
is unnatural. The reason why the improvements of DMO-DSEP are relatively
subtle, lies in the random initial distribution of agents which does not lead to
massive congestion emergence compared to the scenario in Figure 4. Integra-
tion of the load indicator further reduces the total evacuation time by one round
on average, which confirms its effectiveness. In contrast to load, entropy-based
congestion indication increases the evacuation time with simultaneous decrease
in waiting time. The reason for this lies in the avoidance of high agent con-
centrations. Evacuation can sometimes be faster when evacuees wait in small
jamming queues in front of doors instead of always preferring detours. We con-
clude from this that entropy-based congestion indication is effective to avoid
jamming queues, but has to be applied with caution.

6 Conclusion and Future Work

We present DMO-DEP, an approach to compute optimal evacuation paths with
respect to several objectives in order to use mobile devices for evacuation sup-
port. The capability to form ad hoc network connections and exchange in-
formation is used to avoid congestions during the evacuation process. The
application of a dynamic path finding algorithm allows for fast replanning of
navigation instructions, incorporating newly available information in the path
planning process and, hence, make it adaptive. It is shown that even though the
information from the ad hoc network communication is uncertain, it can be used
to evaluate different routing options and it is sufficient to speed up the evac-
uation process compared to a situation without information exchange. With
DMO-DEP, a decrease in evacuation time compared to the CCRP approach
from [13] is achieved. In addition, the average waiting time per agent can be
reduced significantly, which makes it more likely for evacuees to follow the nav-
igation instructions of DMO-DEP. We investigated two congestion indicators
based on the number and concentration of evacuees in rooms, as well as a risk
aversion strategy. It is shown that DMO-DEP is able to integrate agent specific
characteristics in the navigation planning, as well as multiple objectives. Both
indicators were shown to be successful in the prevention of jamming queues, but
the entropy based indicator slows down the evacuation process due to the high
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preference of detours, and has to be applied with caution. For future work, we
want to concentrate on finding a way to learn the best weights for congestion
indication for specific buildings. Additionally, it is important to investigate how
uncertainty in location information influences the results.
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