
XWizard: The Online Informatics
Toolbox

– Handbook for Teachers –

Lukas König, Friederike Pfeiffer-Bohnen

s0

s1b
s2

a

s3b
a

a

s4
b

b

a

b

a

a b a a b b a

Script ID-10700

http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-10700#Output
http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-10700#Output

XWizard: The Online Informatics
Toolbox

– Handbook for Teachers –

Contents
1 What is XWizard? 3

2 Access and Short History 3

3 Basic Workflow: Script Processing 4

4 Conversion Methods 7
4.1 Conversion methods which create a new script . 8
4.2 Conversion methods which create a plain text output . 9
4.3 In-Script Application of Conversion Methods (deprecated!) 10

5 The Exercise Mode and Encrypted Scripts 11
5.1 Creating an exercise . 11

6 Hyperlinks to XWizard Scripts 16
6.1 Long URLs . 16
6.2 Short URLs, Script IDs and the XWizard Database . 16

7 PDF Processors and the Conversion Method ’Plain PDF generator code’ 17

8 More Complex Objects: Pre-Processors and Sub-Scripts 20
8.1 Sub-Scripts in LATEX . 20
8.2 Pre-Processors . 23
8.3 Pre-implemented Examples With Compound Objects . 24

9 Simple Animations 28
9.1 Defining basic animations via script . 28
9.2 Conversion methods for creating animations . 30

10 Advanced Usage: Cool Stuff and Crazy Hacks for Neat Guys 30
10.1 The XWizard Script Language 2.0 – Everything is an Object 31

10.1.1 Informal Examples: the for Loop and the if Statement 31
10.1.2 The XWizard 2.0 Syntax and Semantics . 34

Syntax . 34
Semantics . 36

10.1.3 A more advanced Example: Animate to Termination 38
10.1.4 Important Methods (making XWizard Turing-complete) 40

10.2 The XWizard Cache . 43
10.3 The XWizard Web Service . 44
10.4 LATEX abbreviations . 45

11 Known Bugs, Shortcomings and ’Pitfalls’ 45

2

1 What is XWizard?
XWizard is a free (web) tool for the automatic visualization, manipulation and PDF generation
of many types of objects from theoretical computer science (such as Turing machines, push-down and
finite automata, Chomsky grammars etc.). A broad range of algorithms can be applied to the objects,
producing intuitive and customizable views. XWizard is well-suited for students’ self-studies, and it
is powerfull in aiding teachers at the creation of course material such as exercises (the X in XWizard
stands for “eXercise” – and also for “anything”). This handbook explains the most important features
of XWizard from a teacher’s perspective. For more general information, read the document “XWizard:
Handbook for Students” or look at the help pages on the XWizard website.

Hint: Readers interested in the basic workflow and the overall functioning of XWizard can skip the
next section and move on to Sec. 3.

2 Access and Short History
XWizard was created in 20131, and the original version was called Very Fast PDF generator (VFP).
Its purpose was to simplify the creation of course material, meaning that it was orginally solely used
by teachers. Today, XWizard is the name of the web version of VFP, created in 2015 after students
requested an easy-to-use version of VFP for themselves.

XWizard can be accessed via:

www.xwizard.de
or by clicking (or scanning) any of the script links in this document, such as:

Script ID-10700

Today, this web version suits well for most purposes. To get the general idea behind XWizard,
feel free to play around on the website and apply algorithms to example objects by clicking the
“conversion methods” (for example, the conversion method “Simulate one step” of the above script).
Note that script IDs such as the one given above can as well be typed into the script field on the
website.

The download version VFP, which is still the backbone of XWizard, can be retrieved from:

https://sourceforge.net/projects/xwiz/files/XWizard_VFP.zip
VFP (as opposed to XWizard) has to be installed on a personal computer, and it requires additional
software to run2. Both versions have essentially the same range of functionality, however, VFP has
unlimited computational power while XWizard will interrupt very long or memory-intensive calculations.
Nevertheless, from a teacher’s perspective using the web version, which requires only a
browser, will in most cases be the easiest and most appropriate choice, at least for starters.
As both versions are mostly innerchangeable, only the term XWizard will be used in the following, except
where a difference between the two is explicitly addressed, such as this:

XWizard can be switched between English and German language; so far, VFP is only available in
English.

1By the teaching team of the course “Foundations of Computer Science II” at the Karlsruhe Institute of Technology,
taught by Prof. Dr. Hartmut Schmeck, assisted by Lukas König, Friederike Pfeiffer-Bohnen, Micaela Wünsche and Marlon
Braun.

2That is, minimally, Java 8, LaTeX (preferably miktex), Graphviz, and SumatraPDF.

3

www.xwizard.de
http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-10700#Output
http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-10700#Output
https://sourceforge.net/projects/xwiz/files/XWizard_VFP.zip

XWizard and all implementations related to it are free software3. They are allowed to be run for
any purpose (except commercial), and the sourcecode can be studied, changed, and further distributed
in accordance with this legal notice: http://www.xwizard.de:8080/Wizz?impressum&lang=eng.

3 Basic Workflow: Script Processing
The below figure shows the overall structure of the XWizard components for both the web and the down-
load version (XWizard and VFP; as mentioned above, they are basically equal). XWizard objects are
defined by scripts which can be manipulated by conversion methods. Therefore, the main function-
ality of XWizard is established by the conversion methods. However, conversion methods (and basically
everything else) can be encoded into scripts, therefore, in the end, everything boils down to the creation
and interpretation of scripts.

XWizard Web Application

Object 1

Object 2

…

Object n

Very Fast PDF Generator (VFP)

Scripts

Object 1

Object 2

…

Object n

X
W

iz
ar

d
 F

ra
m

e
w

o
rk

Hyperlinks / URLs

IDs / Short URLs

Script formatting

Exercise creation

PDF Generator code

Pre-processor

Functions

Hyperlinks / URLs

-

Script formatting

Exercise creation

PDF Generator code

Pre-processor

W
eb

D

o
w

n
lo

ad

… CM11 CM12

… CM21 CM22

… CMn1 CMn2

…

Conversion methods

… CM11 CM12

… CM21 CM22

… CMn1 CMn2

…

Scripts Functions Conversion methods

XWizard’s basic workflow is given by simply processing a script, translating it into a PDF image and
displaying this image. A script is usually built up of three parts (four, when including the execution of
a conversion method, see below), as illustrated in the following example of a PDA:

pda: ⇐ Script preamble
(s0, 0, k) => (s1, 0k);
(s0, 1, k) => (s3, 1k);
(s1, 0, 0) => (s1, 00);
(s1, 1, 0) => (s2, lambda);
(s1, lambda, k) | (s3, lambda, k) => (s0, k);
(s2, lambda, 0) => (s1, lambda);
(s2, lambda, k) => (s3, bk);
(s3, 0, 1) => (s3, b);
(s3, 0, b) => (s3, lambda);
(s3, 1, 1) => (s3, 11);
(s3, 1, b) => (s3, b1);

Main script part

--declarations--
e=#n#;
s0=s0;
F=s0;
kSymb=k;
inputs=000101010;
simSteps=3;

--declarations-end--

Variable declarations

3https://en.wikipedia.org/wiki/Free_software

4

http://www.xwizard.de:8080/Wizz?impressum&lang=eng
https://en.wikipedia.org/wiki/Free_software

All scripts include the following three parts: a preamble determines the type of object defined
by the script; a main part defines the actual structure of the object; variables in a declarations
part can be used to assign many types of additional properties (both the complete declarations
part and some of the variables can be omitted, in which case the according variables are set to
standard values).

This example script will create the following image (using Graphviz and LATEX in the background):

0 0 0 1 0 1 0 1 0
⇑

s0

s3

s1

s2

(s1 , 1, 0) → (s2 , λ)

⇒ 0
0
0
k0

Script ID-13417

The script can be pasted into the script areas of both VFP and XWizard to produce the given output,
see screenshots below (clicking or scanning the above QR code will open XWizard and automatically
execute the script).

5

http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-13417#Output
http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-13417#Output

VFP:

XWizard:

To simulate the calculation of the displayed PDA, the “simSteps” variable in the script can be
increased; equivalently, the conversion method “Simulate one step” can be clicked (cf. description
of conversion methods below).

When using VFP, the PDF output is automatically updated each time the script area changes.
When using XWizard, the image output is created after clicking the “Draw!” button on the web
page. A PDF can be retrieved by clicking the “Download PDF” link; it appears when scrolling
down below the PDF output.

An overview of the script types available at creation time of this document is given in the following
figure (solid and dotted arrows denote script type transitions by conversion methods; dashed arrows
denote the PDF creation process; diamond nodes represent plain PDF generator script types – these are
basically the raw Graphviz and LATEX types (GNUPlot and JavaPDF are obsolete), see below).

6

Object Types and their Connections in XWizard

BDD

LaTeX PlainDOTPlainJavaPDF

PDF

FSM

RegularExpression

method: 'Regular Expression'

PDA

method: 'PDA'Grammar

method: 'Right-linear Grammar'

Turing

method: 'TM'

Numbers

method: 'PDA'

Properties

Tree234

RedBlackTree

method: 'Red-black tree'method: '2-3-4 tree'

Calc

PlainGNUPlot

PatTree HuffmanLogicCircuit

MARB

A current version of the figure can be retrieved via this link (note that it is itself generated by a simple
XWizard script):

Script ID-15812

For any of these object types, there are example scripts on the XWizard web page:

http://www.xwizard.de:8080/Wizz?lang=eng&hide#Examples

Note that the syntax of scripts will not be discussed here in detail; for this, see the XWizard help
pages:

http://www.xwizard.de:8080/Wizz?help&lang=eng&hide

To sum up this short section, the basic workflow of XWizard is given by taking an input script and
creating a PDF image from it. Nearly all GUI-based abbreviations and simplifications described below
can be substituted by creating an according script; more precisely, all the GUI does is inducing the
creation of appropriate scripts in the background. A major benefit of this structure is that every action
can be archived by simply storing the according script, cf. Sec. 6.

4 Conversion Methods
Besides creating and displaying objects, a main functionality of XWizard is to apply algorithms to scripts,
e. g., to visualize the stepwise computation of a PDA or to minimize an FSM. Algorithms are applied to
objects by using conversion methods, i.e., methods that transform one script into another. Conversion
methods provide a simple user interface for applying algorithms to XWizard objects.

When applying a conversion method, the script belonging to the current object is replaced by the
new script created by the conversion method, and the object defined by the new script is created
and displayed. (Note, however, that there are also conversion methods that produce a plain text
output rather than a new script.)

The easiest way to apply a conversion method to a script is to click the according button in the
“Conversion methods” area of the graphical user interface. For example, a finite state machine (FSM),
such as the following, comes with a set of conversion methods as shown below.

7

http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-15812#Output
http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-15812#Output
http://www.xwizard.de:8080/Wizz?lang=eng&hide#Examples
http://www.xwizard.de:8080/Wizz?help&lang=eng&hide

s0

s1b
s2

a

s3b
a

a

s4
b

b

a

b

a

a b a a b b a

Script ID-10700

4.1 Conversion methods which create a new script
Conversion methods which convert one script into another are the usual – and by far most-frequent –
ones. Available conversion methods are displayed below the script area; the type of the current script
defines which conversion methods are applicable, and only these are displayed. In the above example,
the following conversion methods are shown for an FSM script, grouped along the categories printed in
blue:

• Conversion into – Methods that will create a “new”, i. e., semantically different object:

– Determinize will use the well-known powerset algorithm to create a script that represents a
deterministic FSM equivalent to the original one. (This method is not enabled in the above
example, because the FSM is already deterministic.)

8

http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-10700#Output
http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-10700#Output

– Minimize will create an equivalent FSM with a minimal number of states, using the My-
hill/Nerode equivalence statement.

– PDA, Regular Expression, Right-linear Grammar and TM will create an equivalent
push-down automaton, regular expression, right-linear grammar or Turing machine script,
respectively.

– Simulate one step will let the FSM consume one more character of the given input, or ask
the user to enter an input word if none is given.

– Randomize. . . will create a new random FSM, by asking the user first to enter a number
(of states) and a boolean value (indicating if the new FSM should be deterministic). (Note
that the resulting FSM will always be minimizable, to facilitate the creation of exercises.)

• Display modes – Methods that will change the view on the current object, but not its semantics:

– Toggle minimization table will switch between views showing only the FSM, both the
FSM and its minimization table, and only its minimization table.

– Toggle minimized/determinized FSM will switch between views showing or hiding an
additional view of a minimized and a determinized version of the current FSM.

Showing different equivalent versions of the same FSM allows to simulate them simulta-
neously, which can be interesting both for students and at exercise generation.

• Script formatting – Methods that will change the script appearance, but not the output:

– The two methods Decollapse rules left or right are available for all scripts based on rules
such as A => B. Such rules can be collapsed on the left side (A | B => C) and on the right
side (A => B | C) for better readability. The “Decollapse” methods will undo such collapsing
on the left or right side, respectively.

– The Format script method will collapse the rules where possible, and do some more format-
ting.

Particularly, the methods Format script or Add declarations to script (which one
depends on the current script type) will add the declarations part to a script including
all available variables.

• Additional information – The single method Show minimization chain from this category
is a plain text conversion method (cf. Sec. 4.2). It produces an output ready to be copied into
a LATEX document, showing information about making the current FSM deterministic first and
minimizing it afterwards.

• For teachers – The methods from this category are available for all scripts. As they all relate to
major topics of this handbook, they are explained in detail in Secs. 5, 6 and 7.

Three dots (. . .) at the end of a button name indicate methods that require some user interaction. Some
methods need parameters to be executed, these methods will ask for those parameters before starting
the conversion, cf. the “Randomize. . . ” method explained above. The remaining methods with dots are
those that create a plain-text output. They will just open a new window to show their output, asking
the user to press a confirmation button.

4.2 Conversion methods which create a plain text output
Besides the above-described, regular conversion methods, there are those which create a plain-text output.
For example, the method “Show minimization chain” of an FSM script produces a LATEX code output:

9

In this case, the output is a LATEX code that includes information about the minimization and deter-
minization of the current FSM. Besides this, the main plain-text conversion methods with “straight-
forward applicability”4 are:

• “URL to this script...” and

• “Short URL to this script...”

These methods create URLs to the current script to facilitate script exchange between users, cf. Secs. 6.1
and 6.2. Other than that, plain text conversion methods are used very rarely and can usually be replaced
by a more convenient regular conversion method. For example, the LATEX code of the minimization chain
can be retrieved by selecting an appropriate display mode and creating the “Plain Generator code”, see
Sec.7.

4.3 In-Script Application of Conversion Methods (deprecated!)

Important note: The application of conversion methods via scripts is an advanced feature,
explained in detail in Sec. 10. The way it is done in this section is deprecated and should no
longer be used. It will, however, remain as a feature to allow backward compatibility, particularly,
because the XWizard website currently still relies on this mechanism.

As mentioned above, scripts control XWizard completely; this particularly means that even the
application of conversion methods can be initiated via a special script command. Scripts containing this
command are called conversion scripts, and they start as usual with the regular three parts, which
determine the script to be converted. As a fourth part, a conversion command is written as the last
line of the script. It looks like this:

>CM-NAME<

where CM-NAME is the English name of the conversion method to be applied or, if the conversion method
requires parameters:

>CM-NAME[p1, p2, ...]<

where p1, p2, ... are the method parameters (they can be put in quotes if they are supposed to
include special characters such as white spaces or commas: ["p, a, r, 1", "p, a, r, 2", ...]).
For example, the “Simulate one step” conversion method can be applied to a PDA script by adding the
red-colored last line to it:

4Meaning that they can be used by simply clicking a button. There are many more “hidden” plain-text methods that
can be used in the XWizard script language 2.0, cf. Sec.10.

10

pda:
(s1, 1, 0) => (s2, lambda);
(s3, 1, b) => (s3, b1);
(s3, 0, 1) => (s3, b);
(s3, 0, b) => (s3, lambda);
(s1, 0, 0) => (s1, 00);
(s3, 1, 1) => (s3, 11);
(s3, lambda, k) => (s0, k);
(s1, lambda, k) => (s0, k);
(s2, lambda, k) => (s3, bk);
(s0, 1, k) => (s3, 1k);
(s0, 0, k) => (s1, 0k);
(s2, lambda, 0) => (s1, lambda);

--declarations--
e=#n#;
s0=s0;
F=s0;
kSymb=k;
inputs=000101010;
simSteps=3;
maxNondetCalcDepth=12

--declarations-end--
>Simulate one step< /* This is a conversion command. */

When entering this script, the result will be exactly the same as after clicking the according button
on the script without the conversion command.

5 The Exercise Mode and Encrypted Scripts
XWizard has a distinguished mode called Exercise Mode (which is currently only available in the web
version). In this mode, the user (typically a student) is asked to solve a task displayed at the top of the
page. To get to the solution, the user is allowed to utilize a predefined subset of the XWizard’s functions.
This subset can be flexibly defined by the creator (typically a teacher) of an exercise, and it can involve
both an adjustment of the available conversion methods and a limitation of the script utilization. More
precisely, the Exercise Mode differs in the following regards from the regular mode:

(1) The XWizard website prompts a question, displayed over the script area, and requests the user to
answer it (cf. screenshot below).

(2) Some of the conversion methods may be hidden to prohibit undesired shortcuts to the solution.

(3) The script may be partially or completely encrypted to prohibit users from cheating by changing
it or reading the exercise definition (see below).

(4) When answered correctly, the user is offered a “badge”. (This is so far just a secret code word,
displayed to the user; in future, the implementation of personal “portfolios” is planned, allowing
users to collect badges, experience points or similar things.)

(5) When answered correctly, an additional explanation may be displayed to the user if provided by
the creator.

5.1 Creating an exercise
The exercise mode is defined by a variable called “e” (or “exercise”) in the declarations area of a script.
Therefore, this variable has to be defined according to a specific syntax in order to create an exercise. A
conversion method Create exercise from this script (which is available for every script type in the
“For teachers” category) facilitates this process. When executing the method, the user is asked for the
following parameters (all except the last two are string values; optional parameters can be simply left
empty):

• titleString: A title displayed above the detailed exercise description.

11

• explanationHTML: A detailed description of the exercise which may contain HTML.

• solutionString: A string which represents the solution to be entered by the user. This parameter
is optional, if left empty, the user is not prompted to enter a solution.

• codeToEarn: The “badge”, i. e., a string displayed to the user as a reward if the answer is correct.

• regexForAllowedMethodNames: An optional regular expression (as used in Java) to restrict which
conversion methods are displayed. The regular expression is applied to the English method name
and displays only matching methods. For example the regular expression

.*inimiz.*

will only display the two methods Minimize and Show minimization chain. . .

• regexForAllowedClassNames (for expert use only, can usually be left empty): Another optional
regular expression to restrict the display of conversion methods. It is applied to the class name of
the base class which provides the method.

• regexForAllowedTargetClassNames (for expert use only, can usually be left empty): A third regular
expression to restrict the display of conversion methods. It is applied to the class name of the target
class, i. e., the class of the converted script.

• solExp: Optional explanation to be displayed with the solution after a correct answer has been
given (may contain HTML).

• exEncrypt (boolean): Set this to true if the code of the exercise (not the complete script code) is
to be encrypted (see below).

• encrypt (boolean): Set this to true if the complete script code should be encrypted (see below).

After the input of these parameters, an exercise definition is added to the current script, and this causes
XWizard to enter the exercise mode. (Note that “e=n” or “e=null” is the code for “regular mode”.)

The following script shows an example of how an exercise is encoded in the declarations part of a
script. The output is displayed in the screenshot right below it. Click the script link to see the
example in a browser.

12

grammar:
A => A, A | 0 | epsilon;
E => A, 1, A;
S => E, E, E | S, S | 0;

--declarations--
e=#tit=~Create the parse tree for the word 01011 with the given Grammar.~,

exp=~<P>The output area shows the grammar tree with several derivations
of words generated by the grammar. Since the grammar includes an epsilon
production, the grammar has to be made epsilon-free first by using
the according conversion method. Afterwards, you can use the remaining
conversion method to create the parse tree for 01011. (All other
conversion methods are hidden.)</P><P>Execute these steps and count the
number of non-terminal nodes in the tree. Enter this number into the
solution field.</P>~,

sol=~6~,
cod=~parser-guru~,
met=~.*Epsilon.*|.*Parse.*~,
cur=~.*~,
tar=~.*~,
crypt=~false~,
excrypt=~false~,#;

N=S,E,A;
T=0,1;
S=S;
...

--declarations-end--

In the declarations part, the symbols # and ~ indicate the beginnings and endings of strings
which may include special symbols such as “= , ;” etc. (however, the symbols # or ~ themselves,
respectively, and some reserved words cannot be used unconditionally). To completely secure a
string in the declarations part, it can be put within the following bracket combination: [~(~{ some
text }~)~]. This allows to include all character combinations including subordinate instances of
the bracket combination itself, until the secure part is finished by the matching closing bracket
combination (cf. further explanations in Sec. 8).

13

Script ID-11020

As the example script shows, the exercise definition is, for now, given as plain, human readable text
in the script. Particularly, this means that students are able to see the solution as well as change parts of
the exercise definition. For example, they can change it to show conversion methods which are supposed
to be hidden. As this may be undesired, two levels of encription can be applied to the script. The
first level is activated by setting the exercise parameter

excrypt=true

which leads to an encryption of the exercise definition. The second level encrypts the whole script, and
it can be activated by setting the parameter

crypt=true

The two example scripts below show the respective results; the output on the website remains the same
as shown above.

14

http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-11020#Output
http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-11020#Output

Example script with “excrypt=true”:

grammar:
A => A, A | 0 | epsilon;
E => A, 1, A;
S => E, E, E | S, S | 0;

--declarations--
e=#scrypt:401s3X3o133k2L2R2g202p2z0x3w1Q1G052n0b040u2K0K0l1y2b1k161t0d0Q1J0I

1K0A0B2m1c0T1B3G3726250T1q2y1h0c3d3f2B1T1D350z3j2c3L3a3u2M0b102s2l
061a0J3X0e1K1z3Y430X1v142Z0A0N1T0e1z04283l3O1F1r0O2J2x102O450V1x35
0Y1G2M1E0Q1C283s3f3718400m3X3F170K1m0d3d1O043O2H1O1a1z3G3p082E2k07
2G2H3S3a1k3D382j071d1p45271h012w460z1m180k332e3u263y2E3i0h3C1z1G0P
0H0A1v2X1K3K1n3k0427143O3346143R063Y3S3C3f3r2P3h0w3F3x0P1g0F0t3w0V
3e3M3t0k2k3I3i3F1S2a2y0704440S3M0T033h1e1y3q351d1I0d3T0S01463z0I1Y
1M1h163x1i2a0K2y0D2d0y1g1X2H011m3O3D2g1w2D0p1J1Z471Z2b3j461V0a2O0L
0k3g2H3f2P1l320Y3Q3J3g3j081Q443m300d0o1S3E0R342b1k1W2J1o1G262V3i0R
3D3C3d301n301a1F3o2A2V3z252m0D3y3p1n0M3S1Q0C0a0n3k0r450V2L0t0b102P
1L2y102Z3I1g0B3p15452R0r1v2u0P1r0Y0p1f101g1f3c1j0p1J0I3W1b46322w3B
2q172j3Y2m0I471I0z3k0s0R442b233Z1U0C#;

N=S,E,A;
T=0,1;
S=S;
displayMode=2;
maxdepth=8;
cutNonTerminalBranches=true;
cutTerminalDoubleBranches=true;
maxLengthWords=4;
multiLetterSymbolsHaveIndex=true;
parseTreeNum=0

--declarations-end--

Example script with “crypt=true”:

scrypt:401s3X3p1t0a1t2Q2k452j1C2z2a1U0B2h0O0r0k3o3g0X3w3e3x1l2q0S2B1y360v2p3N3E
2f3G1b1G0i2f2M221U0e1C280W1v2q2w1B0p2T3V1E1e3D1k301j1V14450s1h1o122z3C1f3C
2h3l0M0A2z2i3A3L3N341f3J1n2p3v2l3e3D0t140a1D071I3M2a3X3M2B3G342L2e090d2q3k
283H0d2P0a1X2g1X3z3m010f3B2w0a002k3004372Y3l3B2i2l2i1o1D1m1b302d1d1n3U0R02
0j2e3z1g0R1I082a103j261d0h1z411y1B211U3D3d0o0d3D0825280h021N1K1b3l2x3p1L3a
0t41322y1j2d2h2m0t303k0y122y1Q2Y2j2N2u26273g1q3B221K2P0x3s0C133J0k0k1i3n0y
2b3D3Q1g121y0I0c3j2C3H1h3M31373U2M1K2l422B1P3s3A2w1Q141c1X0g1E3b0L3i0r1t3a
1l0g0s2o2V1o0g3y3l041i3F1G0I2M3D452c1G3k021C2S0U1q2c2h1f0f461k1E0M2r1c200P
2R1f3R221J402W0W043t3N0J132m1M3A2m1W1C2N3W3g3g2U1D1J1Z2X1t2b3U10303F2n2H3g
0y1R012W2D352E3X3d2n1Q2A2n1Z331j0h17062W2G1H0Z2S3G110N1b303H3U3j0i3n383H2c
0B3u1X3x0j2S2E302p400H3F3U0l1e382N1d2U443G0k1C1B1Z0h2V3s1Q2R1N1B0a2W0W2Y2S
2m1e193U3n3j2W0n0b0D3U0N3j400V0w1I1G2m2W0O2A0K2z0d0X2g3q2z3y163W3o1p1O2A0Q
0D1W0e0e40153N3s0N3W1G31103G0H3W1O0Y0C0T3q461i1A1Q0j3s1z3R2J1M173v1A2k3022
01260O3H3F1f1M0W1N3J2H3i392y1P2U3H383R1i3t2v1V2u232O2A0K3d2U3P1G460B151C1N
3o2K1I0w2y2R0g3h1T0B1x3x1L110b2D222Q2m1h0T0K1K140e1u1u160u2P3B201X1i1a0y1W
2h3i3q3r08

Note that encryption is only meant to make cheating difficult – not to make it impossible. It is
achieved by a combination of zipping the text and converting the result to alpha-numeric values.
As the XWizard sourcecode is free, ambitious students can download it and use it to decrypt a
script. Nevertheless, be aware that after applying encryption in XWizard, you will not be able
to undo this easily, therefore it makes sense to backup a non-encrypted version of each script.

15

6 Hyperlinks to XWizard Scripts
XWizard can generate URLs which point to specific scripts, to facilitate the exchange of scripts. This
technique has been used to generate the script links in this document. When following such a link, the
XWizard website will open and automatically load the according script. There are two types of URLs
(“long” or “short”) that can be used for this purpose; they are explained in the following.

Short URLs are preferable in most situations to long URLs in terms of convenience and security,
since long URLs can look ugly and even get too large to be accepted by certain browsers. Never-
theless, long URLs, as opposed to short URLs, carry the whole information about a script which
makes them independent of the XWizard database (see below).

6.1 Long URLs
Every script type comes with a conversion method URL to this script... which generates what is here
called a “long URL” to this script. For example, the following script leads to the URL shown below:

latex:
\mbox{XWizard long URL}

--declarations--
formulaMode=true;
e=#n#;

--declarations-end--

http://www.xwizard.de:8080/Wizz?template=latex%3A%0D%0A%5Cmbox%7BXWizard+long+
URL%7D%0D%0A--declarations--%0D%0AformulaMode%3Dtrue%3B%0D%0Ae%3D%23n%23%3B%0D%
0A--declarations-end--

The URL points to the XWizard website and transmits a parameter “template” which contains the
whole script as a URL-encoded string. When such a link is opened, XWizard will decode the script, copy
it into the script area and show the according output image.

In principle, every script can be converted into a long URL, however, if the URL gets too large, a
browser may reject parts of it which leads to corrupted scripts. Furthermore, malware blockers may
produce alerts due to the unusual form of these URLs. To cope with these issues, short URLs have
been introduced.

6.2 Short URLs, Script IDs and the XWizard Database
A script of similar size as the one shown in the previous section, such as this:

latex:
\mbox{XWizard short URL}

--declarations--
e=#n#;
formulaMode=true

--declarations-end--

can be encoded into this much simpler URL (using the conversion method Short URL to this
script...):

http://www.xwizard.de:8080/Wizz?template=ID-11567

Instead of encoding a complete script within the URL, short URLs make use of the XWizard database.
XWizard (not VFP!) stores every processed script along with different types of corresponding information
into a mysql database. Each script is assigned an ID in the database which can be used to retrieve the
script later. If this ID is passed to XWizard using the “template” parameter, it will be looked up in
the database and checked if it is “web-free”. Of course, not all scripts can be looked up by everyone;
rather, when executing the Short URL to this script... method, a flag is set which makes the script
web-free, meaning that it can be looked up from now on. All other scripts are protected and will not be
shown when the according ID is tried to be retrieved. Therefore, only the creator of a script can decide
to make it publically available via ID. All script links in this document have been created by using this
mechanism.

16

http://www.xwizard.de:8080/Wizz?template=latex%3A%0D%0A%5Cmbox%7BXWizard+long+URL%7D%0D%0A--declarations--%0D%0AformulaMode%3Dtrue%3B%0D%0Ae%3D%23n%23%3B%0D%0A--declarations-end--
http://www.xwizard.de:8080/Wizz?template=latex%3A%0D%0A%5Cmbox%7BXWizard+long+URL%7D%0D%0A--declarations--%0D%0AformulaMode%3Dtrue%3B%0D%0Ae%3D%23n%23%3B%0D%0A--declarations-end--
http://www.xwizard.de:8080/Wizz?template=latex%3A%0D%0A%5Cmbox%7BXWizard+long+URL%7D%0D%0A--declarations--%0D%0AformulaMode%3Dtrue%3B%0D%0Ae%3D%23n%23%3B%0D%0A--declarations-end--
http://www.xwizard.de:8080/Wizz?template=ID-11567

Although convenient, short URLs set up a pitfall when creating “critical” scripts, e. g., scripts for
exam questions, as scripts with public IDs can, in principle, be viewed by everyone. Despite the
unlikeliness of students “guessing” an ID which belongs to a script relevant to their exam, critical
scripts should not be made public by creating short URLs for them.

A public script ID can be typed into the script area of XWizard (not VFP) to retrieve the according
script.

Adding “&lang=ger” or “&lang=eng” to any of the two URL types can specify XWizard’s language
to German or English. Adding “#Output”, “#Codebox”, “#ConversionMethods”, “#Examples”
etc. to the very end of a URL will let XWizard jump immediately to the respective part of the
website.

7 PDF Processors and the Conversion Method ’Plain PDF gen-
erator code’

Every XWizard script is associated to a PDF processor which compiles the script into a PDF. The
translation process is divided into three steps as follows:

(1) (2) (3)
Script ⇒ PDF processor code ⇒ PDF

(user-defined) (obtainable by Plain PDF generator code method)

There, the PDF processor code is plain source code in the language of the PDF processor, i. e., it can
be copied and compiled outside of XWizard as well, using, e. g., pdflatex or graphviz (which is basically
what XWizard does). The current PDF processors used in XWizard are LATEX and Graphviz; overall
the following are implemented so far (however, GNUPlot and JavaPDF are deprecated):

• LATEX,

• Graphviz,

• GNUPlot (only available in VFP; GNUPlot has to be installed),

• JavaPDF (implemented, but not yet used in productive mode).

Technically, an optional fourth step can be executed to convert the resulting PDF into an SVG
image. As SVG is nicer to display with HTML, this step is part uf the regular workflow on the
XWizard website (also, because the animation functionality described in Sec. 9.2 relies on SVG).
In VFP, the SVG mode can be turned on or off; the latter can significantly reduce the calculation
time. (The XWizard web service also returns an SVG image by default, cf. Sec. 10.3.)

In contrast to students, teachers may be interested in manipulating the PDF processor code – for
example, in order to change some specifics in the depiction of an object to point out some peculiarity
relevant to the course.

For example, it might be desired to highlight the nondeterministic transitions in the FSM depicted
below on page 18. However, the FSM script type only allows to define an FSM object in terms of its
structural properties, while the actual depiction is left to an internal algorithm. To get access to the
actual depiction code, i. e., the raw PDF processor code, XWizard offers for each PDF processor a specific
script type which allows to use code directly as accepted by the PDF processor. When using this script
type, plain LATEX or Graphviz (or GNUplot) source code can be inserted as the main script part, to be
sent directly to the PDF processor.

Note that the plain PDF processor script types can be used to just pass code to the PDF processor,
but they can do more than that. First, preprocessors may be added to the code, see Sec. 8.
Furthermore, some changes to the interpretation of the code can be achieved, e. g., by changing the
declarations or by using the LATEX abbreviations, cf. Sec. 10.1.4.

17

When executing the conversion method Plain generator code, the script is converted into the
according plain PDF processor code, embedded in the according plain script type. Now, this script can
be changed as desired, according to the rules of the language of that PDF processor.

This procedure is illustrated using the following FSM script. As suggested earlier, it might be desired
to highlight the non-deterministic transitions (the two outgoing transitions from state s0 labelled a) in
the PDF output in order to point out some peculiarity in a course.

s0

s3
b

s2a

s1a

b

a

a

b
a

b

Script ID-11832

The regular script producing the above automaton looks like this:

fsm:
(s0, a) | (s1, a) | (s2, a) | (s3, a) => s2;
(s0, b) | (s3, b) => s3;
(s1, b) | (s2, b) => s1;
(s0, a) => s1;

--declarations--
e=#n#;
simulateToStep=-1;
input=null;
s0=s0;
F=s3,s2

--declarations-end--

Obviously, there is no way of adding information for highlighting transitions to this script. However,
by executing the Plain generator code method, the script is being converted into raw Graphviz code
which looks as follows (without the text highlighted in red):

18

http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-11832#Output
http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-11832#Output

dot:
digraph G {

rankdir=LR;
node [shape = point]; qi
node [shape = circle];
s1[label=<s₁>];
qi -> s0;
s0[label=<s₀>];
node [shape = doublecircle];
s2[label=<s₂>];
s3[label=<s₃>];
s3 -> s3 [label="b"];
s3 -> s2 [label="a"];
s0 -> s3 [label="b"];
s0 -> s1 [label="a" ,penwidth=3];
s0 -> s2 [label="a" ,penwidth=3];
s1 -> s1 [label="b"];
s1 -> s2 [label="a"];
s2 -> s1 [label="b"];
s2 -> s2 [label="a"];

}

Converting a script into the plain PDF processor code will never change the PDF output. (However,
the above code has been cleared out a little for better readability which slightly changes the output.)

Based on this script, the highlighting of non-deterministic edges can be achieved, for example, by
adding the red-colored text to the plain Graphviz code. This causes Graphviz to draw the desired edges
thicker than the others. This results in:

s0

s3
b

s2a

s1a

b

a

a

b
a

b

Script ID-11836

All kinds of changes can be made to this script as long as the Graphviz syntax is obeyed. The
same is possible with scripts based on LATEX. An according example is shown in the next chapter.

19

http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-11836#Output
http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-11836#Output

8 More Complex Objects: Pre-Processors and Sub-Scripts

Note that this section provides only a basic introduction of XWizard’s pre-processor engine. It is
enough to create basic semi-complex objects, but XWizard can do much more. Interested readers
can skip this section and directly go to Sec. 10. (Chronologically, this section is about what
XWizard could do before the major language extensions in XWizard-script 2.0, described in
Sec. 10.)

Both Graphviz and LATEX are powerful programs on their own, but, as is shown in the following and
particularly in Sec. 10, it makes lots of sense to combine their capabilities to allow for the creation of
even more advanced objects.

As a first example, let’s revisit the push-down automaton from page 5, depicted below. It has been
created as a combination of a Graphviz graph and two LATEX tables. It would be very difficult to achieve
the same by using only one of the two programs. Also, embedding “sub-objects” into other objects can be
convenient for, e. g., easily including an FSM image into a LATEX document. To facilitate this, XWizard
provides so-called “pre-processors”. A pre-processor is simply an XWizard script X which is embedded
into another script Y . During the translation of Y , X is translated first, creating the according PDF
image PX . As the actual father script Y is translated subsequently, Y can import PX , thus combining its
own contents with X’s output. In the PDA example, the Graphviz graph X is a pre-processor embedded
within the main LATEX script Y .

0 0 0 1 0 1 0 1 0
⇑

s0

s3

s1

s2

(s1 , 1, 0) → (s2 , λ)

⇒ 0
0
0
k0

Script ID-13417

This general mechanism is encapsulated in an easy-to-use structure called sub-script which we will
start with.

8.1 Sub-Scripts in LATEX
A sub-script is an XWizard script which is embedded into another XWizard script (just as a pre-
processor, only using a simpler syntax). In principle, a sub-script can be placed at an arbitrary place
inside another script by putting it between @{ and }@ (even within a sub-script or a sub-sub-script etc.).
At compilation time, sub-scripts are – normally – translated into a PDF image and replaced by code to
include the created PDF image at the respective position in a LATEX document. This is the “normal”
use-case of sub-scripts as the following example shows.

20

http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-13417#Output
http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-13417#Output

“Normal” sub-scripts are just regular XWizard scripts which translate to PDF objects. They can
be included into plain LATEX scripts only, as shown below. Therefore, LATEX is (so far) the only
script type that can handle them. However, sub-scripts translating to plain text can be used in
scripts of arbitrary types, cf. Sec. 10.1.

The image below is a complex LATEX object which contains four XWizard sub-objects (a PDA, an
FSM, a Turing machine and a grammar object).

Some of XWizard’s basic object types:

Push-down automata Finite state machines
0 0 0 0 0 1 0 1 0

⇑

s0

s3

s1

s2

(s1 , 1, 0) => (s2 , λ)

⇒ 0
0
0
0
0
k0

s0

s1b
s2

a

s3b
a

a

s4
b

b

a

b

a

a b a a b b a

Turing machines Grammars & Parsing

|a|abab (s0)

a|a|bab (s2)

 a,R

a|a|bab (s3)

 a,R

aa|b|ab (s1)

 a,R

aa|b|ab (s5)

 a,R

aab|a|b (s1)

 b,R

aaba|b| (s2)

 a,R

aabab|*| (s2)

 b,R

aa|b|ab (s3)

 a,R

aab|a|b (s4)

 b,R

aaba|b| (s4)

 a,R

aabab|*| (s3)

 b,R

aabab|*| (s5)

 b,R

aabab|*| (sf)

 *,N

G = ({S}, {�ε, a, b}, P, S)
P = {S →�

ε | a | b | S �
ε S | aSb}

S

S S

a

S

ba

S

b a

S

ba

S

b

Script ID-16124

It can be generated by the following XWizard script (the code of the sub-objects, the sub-scripts, is
highlighted in red):

21

http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-16124#Output
http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-16124#Output

latex:
\documentclass[tightpage,preview]{standalone}
\usepackage{varwidth}\usepackage{amsmath}\usepackage[table]{xcolor}\usepackage{graphicx}\usepackage[space]{grffile}
\begin{document}
\huge~\par
Some of XWizard’s basic object types:
\bigbreak
\begin{tabular}{|c|c|}
\hline
Push-down automata & Finite state machines \\
@{0.75|

pda:
(s1, 1, 0) => (s2, lambda);
(s3, 1, b) => (s3, b1);
(s3, 0, 1) => (s3, b);
(s3, 0, b) => (s3, lambda);
(s1, 0, 0) => (s1, 00);
(s3, 1, 1) => (s3, 11);
(s3, lambda, k) => (s0, k);
(s1, lambda, k) => (s0, k);
(s2, lambda, k) => (s3, bk);
(s0, 1, k) => (s3, 1k);
(s0, 0, k) => (s1, 0k);
(s2, lambda, 0) => (s1, lambda);

--declarations--
e=#n#;
s0=s0;
F=s0;
kSymb=k;
inputs=000001010;
simSteps=5

--declarations-end--
}@ &
@{0.7|

fsm:
(s0, a) | (s3, a) | (s4, a) => s2;
(s0, b) | (s3, b) => s1;
(s1, a) => s0;
(s1, b) | (s2, a) => s4;
(s2, b) | (s4, b) => s3;

--declarations--
e=#n#;
simulateToStep=1;
input=abaabba;
s0=s0;
F=s0

--declarations-end--
}@ \\
\hline
Turing machines & Grammars \& Parsing \\
@{0.5|

turing:
(s0, a) => (s2, a, R) | (s3, a, R);
(s0, b) => (s1, b, R) | (s4, b, R);
(s1, a) => (s2, a, R);
(s1, b) => (s1, b, R);
(s2, a) => (s1, a, R) | (s5, a, R);
(s2, b) => (s2, b, R);
(s3, a) => (s3, a, R);
(s3, b) => (s4, b, R);
(s4, a) => (s4, a, R);
(s4, b) => (s3, b, R) | (s5, b, R);
(s5, *) => (sf, *, N);

--declarations--
s0=s0;
F=sf;
blank=*;
inputs=aabab;
runStepsScript=120;
shortTrace=false

--declarations-end--
}@ &
@{1.5|

grammar parse(a, a, <>, b, b, <>, a, a, <>, b, b)--48:
S => a, S, b | <> | S, <>, S | a | b;

--declarations--
N=S,A;
T=a,b,c;
S=S;

--declarations-end--
}@ \\
\hline
\end{tabular}
\end{document}

The script is based on the plain LATEX script type (cf. Sec. 7) where sub-scripts can be embedded as
follows:

22

@{ *some script* }@

On the LATEX level, the document basically consists of a simple tabular with four cells. Each cell
contains a sub-script which has to be translated by XWizard before the LATEX run. During the XWizard
translation, sub-scripts are translated first and stored in PDF files, say file*X*.pdf for sub-script X.
Subsequently, each sub-script X in the LATEX code is replaced by (basically) the following code:

\includegraphics{file*X*.pdf}

As a consequence, the subsequent LATEX run will include the pre-compiled PDFs at the positions of the
corresponding sub-scripts, thus, inserting the sub-script’s output into the overall script’s output.

Obviously, sub-scripts may only be placed at positions where includegraphics is allowed in LATEX.
Also, the following package imports have to be provided in the preamble of the LATEX document
(Sec. 10.4 describes how this can be replaced by a nicer abbreviation.):
\usepackage{graphicx} % Provides the includegraphics makro.
\usepackage[space]{grffile} % Allows spaces in the graphics file path.

If the included graphic’s size is unsuitable, the sub-script code may be extended by a scaling param-
eter, like this (scaling to 0.5 as an example):

@{0.5| *some script* }@

This will lead to the LATEX code

\includegraphics[scale=0.5]{file*X*.pdf}

which, in turn, will cause LATEX to scale the image to half its original size. A negative number −0.5 will
lead to

\includegraphics[width=0.5\linewidth]{file*X*.pdf}

thus adjusting the image width relative to the current line’s width in the document (there is no particular
reason for this functionality being encoded by negative numbers; it was just straight forward).

Note that a sub-script is allowed to be a plain LATEX script itself, which, recursively, allows it to
contain its own sub-sub-scripts, and so on. For example, in the long script above, the pda script is
a sub-script which translates to a LATEX script with an own sub-sub-script.

Note that, in the context of sub-scripts, the conversion method “Plain generator code” works in
a slightly different way than described above. Executing it once will show the plain LATEX script
including sub-script notations; executing it twice, will show the actual plain LATEX code where the
sub-scripts have been replaced by the “includegraphics” commands.

8.2 Pre-Processors
Sub-scripts are implemented on the foundation of the more general pre-processor mechanism. Every
XWizard script can, in principle, make use of pre-processors in the following way (although only LATEX
does so far):

Main script
...
* Import filename1.pdf *
...
* Import filename2.pdf *
...

--Declarations--
preprocessor1 = [~(~{filename1=*lower-level script 1*}~)~];
preprocessor2 = [~(~{filename2=*lower-level script 2*}~)~];
...

--Declarations-end--

23

There, the declarations part can define an arbitrary number of pre-processors (the according variable
names have to start with the word prep and can continue arbitrarily). The pre-processor code begins
with a file name to store the PDF output in. Behind that, separated by an equals (=) symbol, follows
the actual script code which can be an arbitrary XWizard script. Note that this code can, recursively,
contain further pre-processors in its own declarations part. The declaration of a pre-processor should
therefore always be enclosed in the securing bracket combination to ensure its correct interpretation
(cf. Sec. 5): [~(~{ *pre-processor code* }~)~]

The translation process of a script containing pre-processors works as follows:

(1) (2) (3)

Main script

(a) Translate *LL script 1*
(b) Translate *LL script 2*

. . .
⇒

(finally) Translate *Main script*

PDF processor code ⇒ PDF

When translating a script which includes pre-processors, first the pre-processors will be translated (which,
in turn, means that their sub-pre-processors, if any, will be translated before their own main part – i. e.,
“depth-first”). After all the pre-processors on the different levels have been translated, the main script
is translated, as now it can be assume that the subsequent PDFs exist. Therefore, the main script part
can contain code to include the PDF files given in the pre-processors’ codes. The result is a PDF file
which may contain sub-images generated by arbitrary XWizard scripts.

As mentioned before, the main application for the isolated usage of this type of
pre-processors (i. e., non-plain-text preprocessors) is the LATEX implementation, where
includegraphics commands are generated automatically according to the sub-scripts given. Fur-
thermore, simple animations can be created easily using this mechanism as described in Sec. 9.
However, many more interesting and much more complex results can be achieved when using this
mechanism in its most general form. If sub-scripts can expand (let’s use this word since it’s fairly
similar to what happens in TEX) to plain text (in contrast to just regular objects, i. e., fsm, pda,
. . .), then they can be used in a way similar to programming in an object-oriented language, cf.
Sec. 10.

8.3 Pre-implemented Examples With Compound Objects
The sub-script mechanism described above is the foundation of several pre-implemented script types.
They can be inspected to learn how to use sub-scripts.

For example, FSM scripts can be used to simultaneously show (1) an FSM, (2) a minimized version
of it and (3) the according minimization table in a single image. (See figure below; this view is convenient,
for example, when creating exam questions, as the difficulty of the question can be estimated more quickly
if the additional information is automatically shown while the original FSM’s definition is entered.)

24

FSM:

s0

s1a

s3

b

s4

b

s2
a

s6

s7

a
s9

b

b

a

s8a / b

b

a

b

a

b

a a

s5
b

ba

Minimized:

s0

s1
a

s3

b

s6

s7 a

s9

b

a
b

s8
a / b

b

a

b

s2a

b

a

a

s5

b
b

a

Minimization table:

s1 ×1

s2 ×1 ×1

s3 ×0 ×0 ×0

s4 ×1 − ×1 ×0

s5 ×0 ×0 ×0 ×1 ×0

s6 ×1 ×2 ×1 ×0 ×2 ×0

s7 ×1 ×2 ×1 ×0 ×2 ×0 ×3

s8 ×1 ×2 ×1 ×0 ×2 ×0 ×4 ×3

s9 ×1 ×2 ×1 ×0 ×2 ×0 ×4 ×3 ×4

s0 s1 s2 s3 s4 s5 s6 s7 s8

Script ID-13363

This image is created by the FSM script below. Its main part defines the original FSM only, both
the minimized FSM and the minimization table are created from it on the fly. The variable declarations
“displayMode=1” and “showMinimizedFSM=true” state that these items should be displayed.

fsm:
(s0, a) | (s1, b) => s1;
(s0, b) | (s2, a) | (s3, a) => s3;
(s1, a) | (s4, a) => s2;
(s2, b) | (s6, b) | (s8, a) | (s8, b) => s9;
(s3, b) | (s5, a) => s5;
(s4, b) | (s5, b) | (s7, b) => s4;
(s6, a) | (s9, b) => s7;
(s7, a) => s6;
(s9, a) => s8;

--declarations--
e=#n#;
simulateToStep=-1; /* -1 means don’t simulate FSM. */
input=null;
s0=s0;
F=s4,s6,s7,s8,s9,s0,s1,s2;
displayMode=1; /* Show minimization table. */
showMinimizedFSM=true; /* Show minimized FSM. */
showDeterministicFSM=false;

--declarations-end--

By executing the conversion method “Plain generator code”, the according plain LATEX script can
be displayed (this script, as well as the other plain LATEX scripts in this section, are not shown here
due to their large sizes). The main script part contains LATEX code which includes the headings and
the minimization table (the long code before \begin{document} defines a macro for triangular tables).
Furthermore, two sub-scripts of the plain Graphviz type are placed within the LATEX code; they define
the graphs for the original and the minimized FSM, respectively.

25

http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-13363#Output
http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-13363#Output

Another example are PDA scripts which, as mentioned above, can be used to create a compound
PDF image consisting of two LATEX tables and a Graphiz graph; an according script and image are shown
at the beginning of Sec. 3 or online via the following script link (again, the corresponding plain LATEX
script can be retrieved using the conversion method “Plain generator code”):

Script ID-4135

As a last example of a real application, grammar scripts also can produce complex PDF objects.
There, a plain Graphviz script (showing a parse tree or different views of the grammar) is embedded
within LATEX code showing the Grammar definition:

G = ({A,S}, {a, b, c}, P, S)
P = {S → A | SS | aSb,

A → c | AA}

S

a

S

ba

S

b

S S

A

c

A

c

Script ID-11087

The script generating this image is shown below, the according plain LATEX script can be retrieved
as before via “Plain generator code”.

26

http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-4135#Output
http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-4135#Output
http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-11087#Output
http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-11087#Output

grammar parse(a, a, <>, b, b, <>, a, a, <>, b, b)--48:
S => a, S, b | <> | S, <>, S | a | b;

--declarations--
N=S,A;
T=a,b,c;
S=S;

--declarations-end--

The following complex and rather artificial example shows how scripts can be embedded recursively
to an arbitrary depth within each other:

Some of XWizard’s basic object types:

All of it FSM
Some of XWizard’s basic object types:

Push-down automata Finite state machines
0 0 0 0 0 1 0 1 0

⇑

s0

s3

s1

s2

(s1 , 1, 0) → (s2 , λ)

⇒ 0
0
0
0
0
k0

s0

s1b
s2

a

s3b
a

a

s4
b

b

a

b

a

a b a a b b a

Turing machines Grammars & Parsing

|a|abab (s0)

a|a|bab (s2)

 a,R

a|a|bab (s3)

 a,R

aa|b|ab (s1)

 a,R

aa|b|ab (s5)

 a,R

aab|a|b (s1)

 b,R

aaba|b| (s2)

 a,R

aabab|*| (s2)

 b,R

aa|b|ab (s3)

 a,R

aab|a|b (s4)

 b,R

aaba|b| (s4)

 a,R

aabab|*| (s3)

 b,R

aabab|*| (s5)

 b,R

aabab|*| (sf)

 *,N

G = ({S}, {�ε, a, b}, P, S)
P = {S →�

ε | a | b | S �
ε S | aSb}

S

S S

a

S

ba

S

b a

S

ba

S

b

s0

s1b
s2

a

s3b
a

a

s4
b

b

a

b

a

a b a a b b a

Turing machines All of all of it

|a|abab (s0)

a|a|bab (s2)

 a,R

a|a|bab (s3)

 a,R

aa|b|ab (s1)

 a,R

aa|b|ab (s5)

 a,R

aab|a|b (s1)

 b,R

aaba|b| (s2)

 a,R

aabab|*| (s2)

 b,R

aa|b|ab (s3)

 a,R

aab|a|b (s4)

 b,R

aaba|b| (s4)

 a,R

aabab|*| (s3)

 b,R

aabab|*| (s5)

 b,R

aabab|*| (sf)

 *,N

Some of XWizard’s basic object types:

All of it FSM
Some of XWizard’s basic object types:

Push-down automata Finite state machines
0 0 0 0 0 1 0 1 0

⇑

s0

s3

s1

s2

(s1 , 1, 0) → (s2 , λ)

⇒ 0
0
0
0
0
k0

s0

s1b
s2

a

s3b
a

a

s4
b

b

a

b

a

a b a a b b a

Turing machines Grammars & Parsing

|a|abab (s0)

a|a|bab (s2)

 a,R

a|a|bab (s3)

 a,R

aa|b|ab (s1)

 a,R

aa|b|ab (s5)

 a,R

aab|a|b (s1)

 b,R

aaba|b| (s2)

 a,R

aabab|*| (s2)

 b,R

aa|b|ab (s3)

 a,R

aab|a|b (s4)

 b,R

aaba|b| (s4)

 a,R

aabab|*| (s3)

 b,R

aabab|*| (s5)

 b,R

aabab|*| (sf)

 *,N

G = ({S}, {�ε, a, b}, P, S)
P = {S →�

ε | a | b | S �
ε S | aSb}

S

S S

a

S

ba

S

b a

S

ba

S

b

s0

s1b
s2

a

s3b
a

a

s4
b

b

a

b

a

a b a a b b a

Turing machines Grammars & Parsing

|a|abab (s0)

a|a|bab (s2)

 a,R

a|a|bab (s3)

 a,R

aa|b|ab (s1)

 a,R

aa|b|ab (s5)

 a,R

aab|a|b (s1)

 b,R

aaba|b| (s2)

 a,R

aabab|*| (s2)

 b,R

aa|b|ab (s3)

 a,R

aab|a|b (s4)

 b,R

aaba|b| (s4)

 a,R

aabab|*| (s3)

 b,R

aabab|*| (s5)

 b,R

aabab|*| (sf)

 *,N

G = ({S}, {�ε, a, b}, P, S)
P = {S →�

ε | a | b | S �
ε S | aSb}

S

S S

a

S

ba

S

b a

S

ba

S

b

Script ID-C16107

The translation of the former script and the calculation of the according complex object can take
some 10 to 20 seconds. Therefore, the cached version of the object is retrieved when following the
above link, which avoids a new calculation – hence the “C” in the ID, cf. Sec. 10.2.

27

http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-C16107#Output
http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-C16107#Output

9 Simple Animations
XWizard allows to define animations using features of the SVG image format.

Animations are therefore only displayed in the SVG output of an object, i. e., particularly when
using the XWizard website or the web service, see Sec. 10.3. The current version of VFP also
includes an SVG processor (in beta state) to display animations. Conversely, animations in plain
PDF are not available; all sub-objects required in the process of creating an animation can be
retrieved as separate static PDF files, though.

XWizard uses the set instruction of SVG to create animations, but not the (nicer) animate in-
struction, as the latter is (sadly) deprecated in modern browsers.

So far, animations can be defined as an arbitrary sequence of XWizard objects which are displayed
subsequently when the user clicks into the image, like in this example:

Script ID-C21966

While animations are built upon a quite powerful pre-processing mechanism which offers possibilities
to create various types of object sequences to be animated, cf. next section, it is very easy to create
basic animations.

9.1 Defining basic animations via script
The general idea behind animations is to assign identifiers, e. g., x, y, z, to XWizard objects. Then, an
animation sequence x->y->z can be defined in the declarations part as follows:

animate=x->y->z;

The first object in the sequence, x, will be shown when loading the script. Upon clicking into the image,
x will be replaced by y and another click replaces y by z. Now, the question remains how identifiers can
be assigned to objects. Basically, there are two types of objects in XWizard:

• Those implicitly given by the current script; the predefined identifier this refers to the object given
by the current script.

• Those given by a pre-processor in the current script (cf. Secs. 8 and 10.1). To assign an identifier
to an object given as a preprocessor, the identifier name has to be placed in front of the pre-
processor code, separated by an “equals” sign. There, an identifier can be any alphanumeric string
(except this). For example, the following assignments are possible:

– In the case of sub-scripts (which can be placed virtually anywhere within a script, cf. Sec. 10):

x0=@{ *Any Script* }@

– In the case of regular preprocessor definitions (in the declarations part):

preprocessor=#x1=@{ *Any Script* }@#

or, if there is another identifier x2 defined:

preprocessor=#x1=x2#

For example, this script:

28

http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-C21966#Output
http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-C21966#Output

bdd:1000101010
--declarations--
preprocessor=#x0=@{bdd:0000101010}@#;
preprocessor=#x1=@{bdd:1100101010}@#;
preprocessor=#x2=@{bdd:1010101010}@#;
preprocessor=#x3=@{bdd:1001101010}@#;
preprocessor=#x4=@{bdd:1000001010}@#;
preprocessor=#x5=@{bdd:1000111010}@#;
preprocessor=#x6=@{bdd:1000100010}@#;
preprocessor=#x7=@{bdd:1000101110}@#;
preprocessor=#x8=@{bdd:1000101000}@#;
preprocessor=#x9=@{bdd:1000101011}@#;
animate=#this->x0->x1->x2->x3->x4->x5->x6->x7->x8->x9#;
--declarations-end--

will create the following animation containing 11 separate images of “BDD” objects:

Script ID-21974

There, the download section below the animated image provides not only a link to the PDF of the main
document (i. e., this), but also links to PDF documents of all the sub-objects, i. e., x0, . . . , x9 in this
case:

In addition to explicitly named objects and this, the animation sequence may also contain refer-
ences to individual pages of a multi-page document. For example, if a LATEX script creates a PDF
document with five pages, an animation can be created out of these pages like this:

animate=#page1->page2->page3->page4->page5#;

29

http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-21974#Output
http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-21974#Output

XWizard scripts without animations are a special case of those with animations, where the animate
variable is set to:

animate=this;

Therefore, this is the default value for animate.

9.2 Conversion methods for creating animations
Several script types provide conversion methods for creating standard animations. For example, finite
state machines or push-down automata provide a method which creates an animation of them being sim-
ulated on a given input until termination (cf. first example in this section; script ID-C21966). It can
be created by executing the conversion methods Animate FSM simulation or Animate PDA simulation,
respectively. A similar method is available for binary decision diagrams. These methods insert the fol-
lowing code (in the FSM case; a very similar code in the other cases) into the declarations part of the
according script:

prep0=#x0=this.sim#;
@{prepA=#xA=x~{A-1}~.sim#;}@.for[A, 1, x0.inputLength]
animate=this@{->xB}@.for[B, 0, x0.inputLength];

An example of the effects of this code can be observed here:

Script ID-22384

The syntax and semantics of this code will be discussed in Sec. 10.1. However, it is important to note
that this code will work for any FSM and any input string to simulate it on. This means that, as long as
this code is present, the FSM script around can be changed as desired, and the resulting animation will
always automatically adjust to contain all simulation steps of this FSM until termination on the given
input string. In other words, the only thing the “Animate...” conversion methods do is virtually just
inserting these three lines of code into the given script. The same can be achieved by copying them from
this page and pasting them into an arbitrary FSM script by hand. All the actual animation semantics
comes from XWizard’s pre-processor mechanism.

This may sound like an irrelevant technicality – but it’s not! An important benefit of leaving all
the work to pre-processors is that all imaginable animations (well, most) can be created by only
altering XWizard scripts. There is no need to go into the Java sources, compile, deploy etc.

So far, these are the only available conversion methods for standard animations, but more and different
types are planned – and much more is possible when coding directly without using conversion methods.

10 Advanced Usage: Cool Stuff and Crazy Hacks for Neat Guys
The functionality described in this section is not so crazy, actually, but it is the type of things that are
usually wrapped up by a developer to be used as a nice-to-look-at package by regular users. Nevertheless,
everything in this document can be performed on the regular XWizard script level, there is no need to
dive into Java etc. Therefore, all the stuff here is considered standard XWizard functionality – as opposed
to the contents of the “XWizard Developers’ Handbook”. So, don’t be scared and continue reading!

30

http://www.xwizard.de:8080/Wizz?template=ID-C21966
http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-22384#Output
http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-22384#Output

10.1 The XWizard Script Language 2.0 – Everything is an Object
The script language described so far can – plain chronologically – be seen as the first version of the
XWizard script language. It already includes a basic support for pre-processors (cf. Sec. 8.2), but only
as a means to embed the image of an XWizard object into another XWizard object. Furthermore, it
includes the possibility of encoding the execution of a conversion method inside the script it’s supposed
to be executed on – however, in a rather clumsy, hardly generalizable way (cf. Sec. 4.3).

The XWizard script language 2.0 combines these two properties by allowing conversion methods to
be executed on sub-scripts within another script. Furthermore, as conversion methods can return not
only another script, but also a plain-text output as result (depending on the method type, cf. Sec. 4),
it makes sense to allow conversion methods to be executed on arbitrary parts of a script (not only parts
that encode a regular XWizard object). Put plainly, (nearly) everything can be used as an “object”.
This allows for the implementation of programming structures such as “for loops” or recursive method
calls which work on arbitrary strings. Overall, arbitrary computable functions can be solved using this
mechanism, meaning that XWizard is Turing-complete.

This sounds good – and it is good; nevertheless, plain XWizard script is probably not a very
convenient way of computing complex functions. It is not efficient, and non-trivial functions tend to
get quite cryptic. It has never been a developmental objective to make the language so expressive
to allow for arbitrary computations – it rather happened as a side effect of providing a set of
convenient functions in a clean way. (Basically, it was the result of cleaning up the first pre-
processor mechanism described in Sec. 8.2.) Therefore, use these functions as desired, but please
don’t complain if some things are not as nice as in, say, Java or Python. . .

If desired, a nicer language (such as lua) could easily be implemented within XWizard, in a similar
way, lua is implemented in LuaLATEX.

As first informal examples, let’s look at how a “for loop”-like behavior and an if statement can be
implemented using plain-text conversion methods.

10.1.1 Informal Examples: the for Loop and the if Statement

The following code snippet is a valid FSM script:

fsm: (s0, a) => @{sX | }@.for[X, 1, 4] s5;

When ignoring the “for” part (that is, @{sX | }@.for[X, 1, 4]) and the preamble, the remaining
string (s0, a) => s5; is just plain old classic fsm code which creates a transition from state s0 to state
s5 when reading a on the input tape. The part @{sX | }@ looks like a sub-script (cf. Sec. 8.2), but it is
not a valid script of one of the classic types.

Internally, plain-text parts are handled as scripts of a special type called DummyRepresentable.
These are objects of the same super type as regular scripts (i. e., RepresentableAsPDF), so tech-
nically, plain text does not really differ from classic scripts.

However, for is the name of a plain-text conversion method that can be applied to an arbitrary
string. This string, here “sX | ”, is called the method’s body (more precisely, the body of a method
chain consisting, in this case, of the single method for; in general several or zero methods can be applied
to a body, see below). The body is given within the bracket combination @{ *body* }@, and the method
to be applied is given in Java-like notation by a dot, followed by the method’s name, followed by a list
of parameters in square brackets (just like in the case of the deprecated in-script conversion methods, cf.
Sec. 4).

31

As in Java, a sequence of methods can be applied to an object like this:

@{ *body* }@.method1[...].method2[...].method3[...]...

Furthermore, if the *body* represents a regular XWizard script, all regular conversion methods of
this script type can be applied to it. For example, the determinization method can be applied to
an FSM script, and the minimization method to the resulting FSM like this:

@{ *some FSM script* }@.det.min

There det and min are abbreviations of the full method names Determinize and Minimize, re-
spectively. The full names can always be used (including white spaces, if present), abbreviations
are available for some of the most important methods only.

Therefore, the meaning of @{sX | }@.for[X, 1, 4] is more or less the following: Apply to the
object given by “sX | ” the conversion method for with the three parameters X, 1, 4, and replace
@{sX | }@.for[X, 1, 4] by the method’s returned result. In the for case, the result is given by
copying the string within the brackets four times, as the loop variable X runs from 1 to 4, and replacing
in the string all occurrences of X by the current value of the variable. In other words, the string “expands”
(let’s borrow this term from TEX, although it’s not quite the same) to:

s1 | s2 | s3 | s4 |

and the complete snippet becomes after compilation:

fsm: (s0, a) => s1 | s2 | s3 | s4 | s5;

Therefore, the resulting object looks something like this:

s0

s3

a
s4

a

s5
a

s1

a

s2

a

Script ID-22063

Besides just using a plain loop variable X in the string, standard arithmetic expressions such as X − 1,
X ∗ 5 etc. can be applied to it if put like this:

~{ *expression* }~

For example, fsm: (s0, a) => @{s~{X-1}~ | }@.for[X, 1, 4] s5; would expand to

fsm: (s0, a) => s0 | s1 | s2 | s3 | s5;

and hence result in the following object:

s0

a

s3

a

s5a

s1

a

s2

a

Script ID-22064

32

http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-22063#Output
http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-22063#Output
http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-22064#Output
http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-22064#Output

The loop variable can be any alpha-numeric string, and it may even contain certain special characters,
particularly “#”. As all occurrences of this string will be replaced in the parenthesized string, it is
good practice (and will be practiced from now on) to use variable names such as #X, #Y etc. to make
undesired replacements unlikely. Note that this will never collide with LATEX’s notation of # or ## as
macro parameter prefixes, as XWizard’s compiler runs before a potential LATEX run, removing all #
characters during expansion. (Except, of course, if a macro is created within a for method; then the
loop variable might replace parts of the parameter names – which can be avoided by just using a different
loop variable.)

As a final example of the for loop, let’s look at the following more complex FSM script:

fsm:
(s0,a)=>s1;
@{(s#v, a) => s~{#v-1}~ | s~{#v+1}~; (s~{#v-1}~, b) => s#v;}@.for[#v, 1, 5]

There, the body contains two separate transition definitions, cf. single-underlined parts, one of which
transitions from the state numbered #v when reading a to both the state numbered #v-1, and the state
numbered #v+1 (cf. double-underlined parts), and the other of which transitions from the state numbered
#v-1 when reading b to the state numbered #v. As the variable #v loops from 1 to 5, the for method
expands to (with line breaks included for nicer readability):

(s1, a) => s0 | s2;
(s0, b) => s1;
(s2, a) => s1 | s3;
(s1, b) => s2;
(s3, a) => s2 | s4;
(s2, b) => s3;
(s4, a) => s3 | s5;
(s3, b) => s4;
(s5, a) => s4 | s6;
(s4, b) => s5;

This results in transitions between states numbered from 0 to 6, and the whole script including the
middle line creates this object:

s0 s1
a / b s3 s4

a / bs2
a a

s5
a / ba / b

a a
s6

a
a

a / b

Script

Besides for loops, conditional decisions in an if-then-else manner can be interesting in the creation
of scripts. XWizard provides an if conversion method implemented with the following syntax:

@{ *body* }@.if[*expression*]

The body can be an arbitrary string, representing, as a whole, the *then case*, or it can contain two
parts like this:

@(*then case*)@ @(*else case*)@

The if method expands to the *then case* if the *expression* expands to the string true. Otherwise,
it expands to the *else case*, which, if not explicitly given, is defined to be the empty string.

Typical methods that can be used in the *expression* include:

• smeq[x, y], resulting in true iff x ≤ y.

• sm[x, y], resulting in true iff x < y.

33

http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=#Output
http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=#Output

• greq[x, y], resulting in true iff x ≥ y.

• gr[x, y], resulting in true iff x > y.

• eq[x, y], resulting in true iff x = y.

• neq[x, y], resulting in true iff x 6= y.

• Less typical, but nice: isPrime which expands to true, iff its body is a prime number.

Note that these methods (like all methods) have to be applied to an object; except for the isPrime
method, this can be any object as it has no influence on the expansion; usually this will do fine:

this.smeq[x, y]

An example of a simple IF statement is:

@{Yes, 2 is smaller than or equal to 3}@.if[this.smeq[2, 3]]

For such expressions to work, conversion method parameters are allowed to contain calls to other
(plain-text) conversion methods. For example, something like this:

@{ *some expression* }@.for[#v, 1, this.states]

is a valid expression (where this.states expands to the number of states, e. g., of the current
FSM). It can have unexpected results, though, if the loop itself is involved in the creation of the
actual “this” object, as has been the case in the three above examples of the for method. Then,
the states created by the loop obviously cannot be counted by this.states. The evaluation order
of sub-scripts and pre-processors is explained in the next section (this is the part that can actually
get a little crazy, as methods can be applied to all parts of a script, even within the declarations).

10.1.2 The XWizard 2.0 Syntax and Semantics

The XWizard script language 2.0 is quite powerful, but admittedly it can get a little confusing in the
beginning, and sometimes there may be unexpected outcomes such as the one described in the box
above.5 In the following, a semi-formal overview of the syntax and semantics of the XWizard language
is given, without going too deep into details. The XWizard developer’s handbook is planned to provide
more comprehensive information about implementation details.

Syntax The new parts of the XWizard language that are described in this section all rely on the
concept of pre-processors and sub-scripts (i. e., inscript pre-processors), as explained in Sec. 8.2.

More precisely, they rely on the more general concept allowing plain-text method calls to pre-
processors, as shown in the examples of the last section. The distinction between “pre-processors”
and “sub-scripts” then becomes rather arbitrary as in the context of plain-text methods these terms
merge into each other. This is due to that fact that sub-scripts can be used even in the middle
of a regular pre-processor definition (i. e., a pre-processor definition using a prep variable in the
declarations part; the animation code in Sec. 10.1.3 is an example for this). Then, additional pre-
processors may be created automatically as the final pre-prosessor definition is expanded. From
now on, “pre-processor” will be used as the most general term, while “sub-script” will only refer to
expressions used in the middle of a script like this:

@{ *Body* }@.for[#v, 1, this.states]

5The reasons for this are two-fold. Firstly, since XWizard scripts can include code of other programs, namely LATEX
and Graphviz, its constructs should be fairly unique to not collide with the syntax of these programs – which would lead
to a lot of escaping. Therefore, e. g., bracket combinations that include an @ symbol have been chosen as they virtually
do not appear in non-XWizard code. The second reason is that the XWizard language grew rather organically, without a
formal syntax or semantics, up to a point where the complexity became barely treatable. After a major restructuring of
the code, it once again became treatable, and there are (quite certainly) no major bugs in the current version; most of the
unintuitive effects were eliminated by this as well, and the expansion process is quite clear and simple now. Lukas König
is currently trying to find some free time to actually provide a formalization of the XWizard semantics.

34

The idea of pre-processors is basically, to allow creating XWizard objects inside of other XWizard
objects which can be referenced at different places or manipulated by applying methods to them. There-
fore, pre-processors can be given names which can be used as identifiers to refer to the according object
like a variable in common programming languages. As explained in Sec. 9, every regular pre-processor
definition includes an identifier name x like this: prep=#x=@{ *some object* }@#. In the case of sub-
scripts, an identifier name can be simply put in the beginning of the sub-script code, followed by an
equals sign. The syntax of sub-scripts is therefore (omitting the optional “scale” in the beginning of
regular scripts, cf. Sec. 8.2):

identifier name =︸ ︷︷ ︸
optional

object reference︸ ︷︷ ︸
@{*identifier name*}@
or actual object

method sequence︸ ︷︷ ︸
empty or
.*method name*[p1, p2, ...]
method sequence

There, *identifier name* can be any alphanumeric string (including this which is, however, forbidden
before the equals sign; as part of a method parameter, an *identifier name* can be given without
the surrounding brackets as well). An “actual object” is given by

@{ *script* }@

where *script* can be a regular XWizard object or just any plain string. According to the actual type
of *script*, the available methods for the leftmost method in the *method sequence* are changing
(for example, an FSM script will only allow FSM methods to be called on it); in turn, the leftmost
method’s return value determines the available methods for the next method in the chain and so on.
Every conversion method available for a certain script type can be called by using its plain English name
(including blanks). However, for the most important methods abbreviations are available, such as det
for Determinize, min for Minimize and so on, cf. Sec. 10.1.4.

After the closing bracket @{ *script* }@ of a sub-script *script*, arbitrary many stars ∗∗... can
be appended like this: @{ *script* }@∗∗∗.m1.m2... The number of stars determines the priority of the
script during expansion (the more, the higher), meaning that the regular expansion order (left to right,
inner to outer) can be controlled by giving a lower-priority script one or more stars. Details follow in
the “Semantics” paragraph.

Method parameters (if any) are put in square brackets after the method name and separated by
commas. A parameter can be anything from a simple constant to a large text fragment, and it can itself
contain subsequent method calls. Simple parameters can just be put plainly as in:

for[#x, 1, 4]

Long strings which can include white space, commas and most other special symbols, can be put in
quotation marks as in:

setLongText["a long text, please", simplePar2]

Even more complex strings can be put within the secure bracket combination:

setVeryComplexText[[~(~{strange]]par {@}}1}~)~], "long par 2", simplePar3]

Where strange]]par {@}}1 is the string interpreted as the actual parameter value. Nested method
calls can be put just as anywhere else as:

method[this.smeq[2, 3], @{fsm:}@.rand[5, true].minimize.states, x.inputLength]

where x would have to be set as the identifier of some object elsewhere.

35

Identifiers can be used plainly as in [...x.inputLength...] within method parameters. At other
places in the script, they have to be put in brackets: @{x}@.inputLength.

Hint: if a parameter is supposed to be the string var although an identifier var is already
defined (rather than the value of var), an empty sub-script or the method idd can be used as
follows:

var=@{varValue}@
@{...}@.myMethod[var] /* Parameter is “varValue” */
@{...}@.myMethod[@{var}@] /* Parameter is “varValue” */
@{...}@.myMethod[@{}@var] /* Parameter is “var” */
@{...}@.myMethod[@{var}@?.idd] /* Parameter is “var” */

The star in the last line lets var be evaluated before the assignment has been performed. The
method idd marks the result as plain text. (The same could be achieved by [@{@"{var}"@}@?] –
not by just [@"{var}"@], though.)

Besides sub-scripts, explicit pre-processor definitions can be given in the declarations part using the
prep variables. Most of the syntax described above applies there, too. So, for example, the following
would be valid pre-processor definitions:

prep1=[~(~{x0=this.sim}~)~];
prep2=[~(~{x1=x0.sim}~)~];
prep3=[~(~{x2=x1.sim}~)~];
prep4=[~(~{x3=x2.sim}~)~];
prep5=[~(~{x4=x3.sim}~)~];
prep6=[~(~{x5=x4.sim}~)~];

This is so far as much as there is to be said about the XWizard script syntax. As mentioned earlier,
there is no formal grammar defining the language of all correct XWizard scripts, so this semi-formal
description has to suffice for now (more details will be given in the Developer’s handbook; and of course,
the full truth can be found in the Java sources).6 The next paragraph describes how the expansion of
sub-scripts and the evaluation of pre-processors work.

Semantics The following semantics description, too, is semi-formal and supposed to give a broad
overview of what is happening only. Basically, the translation of an XWizard script is a rather simple
process. A script S, possibly containing pre-processors, sub-script parts and declarations, is subject to
the following sequence of actions:

1.) Cut out the script preamble from S (for example fsm:).

2.) Set the declared variables to preliminary values. Meaning:

• set default values for all variables, and

• overwrite the values of those that are already completely given in the declarations part of
S. Particularly, regular pre-processor variables are evaluated now if they can be interpreted
completely. (What “completely” means is somewhat subtle, but not really important here;
basically it means that for every snippet varname=*sth*; XWizard tries to assign *sth* to
the variable varname. If the variable exists, and its type matches what is given by *sth*, the
variable is assigned the according value; nevertheless, the value can be overwritten later if a
new assignment of varname occurs, possibly after some expansion.)

3.) As long as S contains sub-scripts, repeatedly do the following:

i.) Find the first sub-script S′ to process as follows. Let n be the highest number of stars
appended to any of the sub-scripts of S. (In all example scripts so far, n was zero.) Of all the
sub-scripts with n stars, S′ is the inner-most sub-script of the left-most top-level sub-script
in S.

6This rough syntax description is certainly not unambiguous, but let’s be realistic – the number of people who actually
came so far as to this page in reading this document must be so small (and hence my appreciation for them so big) that
I’ll gladly answer all their questions via email.

36

mailto:lukas.koenig@kit.edu

ii.) If S′ is a plain-text script or not within the declarations part of S, replace S′ with
its respective expanded result (possible sub-sub-scripts in S′ are not expanded yet if S′ is a
plain-text script; otherwise the star-based priority would be corrupted).

In the non-plain-text case, each script type decides individually how to expand sub-
scripts. For now, only the LATEX-based \includegraphics expansion is implemented,
cf. Sec. 8.2. Non-plain-text methods obviously only make sense outside the declarations.

If S′ contains the identifier this, the respective object is defined to be S without any
sub-scripts. If the resulting script becomes syntactically incorrect due to cutting out the
sub-scripts, it is translated “as far as possible” – which depends on the lower-level script
processor.

Note that by default, identifier definitions expand to the object they are assigned. So
assigning x some object will always lead to the object occurring at the position of the
assignment. The method nil, which always expands to the empty string, can be used to
cut out these objects after the assignment:

@{test}@ /* Expands to ’test’. */
x=@{test}@ /* Expands to ’test’ and defines x to be ’test’. */
@{x=@{test}@}@.nil /* Expands to ” and defines x to be ’test’. */
@{x}@ /* Expands to ’test’ with any of the 2 above lines. */
anything.nil /* Always expands to ”. */

iii.) Look if there are new variables that are now completely defined in the declarations part and
set them like before.

After the expansion process has terminated, no sub-scripts are left in S and all variables from the
declarations part have been set to their final values. Then, the declarations part is cut out of S, and
only the main part of the final script is given to the actual individual script processor (such as FSM or
PDA).

Note that, when talking about scripts “expanding to plain text”, this only makes statements about
the last method of a chain. For example, in a chain like:

@script@.m1.m2.m3.m4

only m4 will determine if the whole code expands to a script or to plain text. All the in-between
methods m1 to m3 may, principly, switch between regular scripts and plain text.

37

What do we actually need the star for? There are many situations where it makes sense to allow
for controlling the expansion order (for example, look at the two method definitions for fac and
fib in Sec. 10.1.4). But it can be made very obvious at the example of for loops which would not
work without it when containing nested sub-scripts. Within a LATEX script, the following FSM
sub-script might be expected to produce the images of three FSMs, each transitioning from s0,
when reading a, to a different target state s0, s1 or s2:

@{fsm: (s0, a) => sv;}@.for[v, 0, 2]

However, this is not what happens. As for is a plain-text method, the result will be the three
scripts of the respective FSMs:

fsm: (s0, a) => s0;fsm: (s0, a) => s1;fsm: (s0, a) => s2;

The first idea coming to mind – putting additional brackets around the body to tell XWizard that
the result is a script – would indeed lead to subsequently expanding the scripts into images:

@{@{fsm: (s0, a) => sv;}@}@.for[v, 0, 2]

But this time, the result would be three times the same automaton where the (s0, a) transition
points to sv. This is due to the fact that XWizard expands sub-scripts in a depth-first order,
meaning that fsm: (s0, a) => sv; will be processed, before the for loop on the next-higher
level had a chance of replacing v by the actual looped values. Using the star as follows:

@{@{fsm: (s0, a) => sv;}@}@∗.for[v, 0, 2]

XWizard can be forced to first expand the outer sub-script using the for method to:

@{fsm: (s0, a) => s0;}@@{fsm: (s0, a) => s1;}@@{fsm: (s0, a) => s2;}@

Afterwards, these sub-scripts are translated to the three different automata as desired. The three
different outcomes can be observed via script ID-23643.

After this semi-formal, moderately fuzzy description, the XWizard semantics should be fairly clear.
Try, as a self-test, to figure out what this extra-cryptic FSM script involving the identifier x and a loop
variable named #x does:

fsm:
@{x=@{1}@}@.nil
(s@{x}@, @{x}@) => s@{#x}@.for[#x, x, x.add[x].add[x].add[x]];
--declarations--
s0=s@{x}@;
F=s@{x}@;
--declarations-end--

The solution can be looked up here:

Script ID-23645

10.1.3 A more advanced Example: Animate to Termination

The XWizard language 2.0 allows to express quite complex statements which, for example, facilitate the
creation of sophisticated animations. To demonstrate this, let’s once again look at the code snippets
produced by the “Animate” commands mentioned in Sec. 9.2. In general, these snippets look very similar

38

http://www.xwizard.de:8080/Wizz?template=ID-23643
http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-23645#Output
http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-23645#Output

for all the different script types that provide such methods. In the FSM case, the Animate Simulation
method creates the following code which, when inserted into the declarations part of a script, creates an
animation of the current FSM, simulated on the current input word (cf. script ID-C22384):

prep0=#x0=this.sim#;
@{prepA=#xA=x~{A-1}~.sim#;}@.for[A, 1, x0.inputLength]
animate=this@{->xB}@.for[B, 0, x0.inputLength];

The code may seem a little overwhelming at first sight, but when looking more closely it can well be
understood with the knowledge of the XWizard syntax and semantics provided above. First we observe
that the top line is plain pre-processor code which just assigns to the identifier x0 the current FSM
(this) simulated for one step (using the sim method). So, just with this pre-processor we would be able
to create an anmiation of only the first simulation step by assigning the animate variable as follows:

animate=this->x0;

Now, we would like to have so many additional pre-processors x1, x2, x3, . . . , xn that all the steps n
to be simulated are captured, each pre-processor representing the FSM being simulated one step further
than the last. As (ε-free) FSMs run for as many steps as the number of symbols in their input word
(+/− one or so), we need the indexes i of the identifiers xi to run from 1 to the length of the input
word. The method inputLength provides this length, and a for loop can now be used to create the
code for the required pre-processors. The middle line

@{prepA=#xA=x~{A-1}~.sim#;}@.for[A, 1, x0.inputLength]

accomplishes this. The loop variable A runs in the desired range, which makes the string it is invoked on

prepA=#xA=x~{A-1}~.sim#;

expand to:

prep1=#x1=x0.sim#;prep2=#x2=x1.sim#;prep3=#x3=x2.sim#;...

up to pre-processor prepn, if n is the input length. Put more nicely with line breaks, we get:

prep1=#x1=x0.sim#;
prep2=#x2=x1.sim#;
prep3=#x3=x2.sim#;
...

We invoke the method inputLength on x0, and not on this, because for this no input
(input=null) might have been defined. In this case, the first method in the top line of the
animation code would have to be different from the other ones inside the loop. Rather than the
parameter-less sim method it would have to be, for example, sim[*string*] where the parameter
string provides the word to simulate on.

This is exactly what we wanted as, when counting the first pre-processor x0=this.sim, we now have
all the objects to create the animation from the initial state to termination. The only code still missing
is the animation code itself:

animate=this->x0->x1->x2->...;

up to xn. This code is created by the bottom line of the animation code:

animate=this@->xB@.for[B, 0, x0.inputLength];

The loop variable B runs from 0 to n=x0.inputLength, which makes the inner string the loop method
operates on

->xB

expand to

->x0->x1->x2->...

39

http://www.xwizard.de:8080/Wizz?template=ID-C22384

When including the part before the loop, animate=this, and the part after the loop, ;, we get the
correct animation line as desired:

animate=this->x0->x1->x2->...;

Overall, the three lines of code expand to (line breaks included for readability):

prep0=#x0=this.sim#; /* Top line */
prep1=#x1=x0.sim#; /* Middle line */
prep2=#x2=x1.sim#;
prep3=#x3=x2.sim#;
...

animate=this->x0->x1->x2->...; /* Bottom line */

When looking, more generally, on all the different script types providing this type of animations,
the code can be generated in always the same manner, only depending on three parameters: The
method names m1, m2, m3, for:

(1) the first call on this (performing the first step in whatever type of change is desired to be
animated), put as this.m1 in the top line;

(2) the other calls to the subsequently created objects (performing the rest of the steps to be
animated), put as xA=x~{A-1}~.m2 in the middle line;

(3) the plain-text method returning the maximum number of objects to be created, put as x0.m3
in the middle and bottom lines, as third parameter of the for loops.

Debugging hint 1: It can help to click one of the script formatting methods (i. e., Format script
or Add declarations to script). This will expand the pre-processors, at least as far as they are
syntactically “tolerable” (which is far more than what would be considered “correct” by an actual
parser).

Even better debugging hint 2: The method Stepwise script expansion creates a LATEX
document with all the steps in the script translation process from the raw script given by the user
to the final script which is subsequently translated by the subordinate script processor.

Another debugging hint 3: The “preprocessor tree”, representing the nesting hierarchy of all the
sub-scripts in the final script, can be retrieved by the method prepTree. It may also help to just
look at the pre-processors of a script using the methods get[prep] (for only the explicitly named
pre-processors of the respective sub-script), get[preph] (for all pre-processors, even the “hidden”
ones created automatically, of the respective sub-script) or get[prepa] (for all pre-processors
created in the current run, not only the ones belonging to the sub-script which get is called upon).

10.1.4 Important Methods (making XWizard Turing-complete)

Tab. 1 lists the most important plain-text methods generally applicable to all scripts (or at least to all
plain-text scripts) in XWizard, available at writing time of this document. New methods may have been
added in the meanwhile, but this list is supposed to be kept fairly up-to-date. Non-plain-text methods
are not covered here as their functioning usually depends on the script type they work on.7

An important method, from a technical point of view, is the newMethod method. It can be used
to define new customized methods within the script. For example, the following code can be used to
define a new conversion method fak such that @{n}@.fak expands to the factorial n! (using the simple
recursive rule that 1! = 1 and n! = n · (n− 1)! for n > 1):

@{@{
@(1)@ /* THEN case. */
@(@{@{#0#}@.sub[1].fak}@.mult[#0#])@ /* Recursive ELSE case. */
}@?.if[this.smeq[#0#, 1]]}@??.newMethod[fak, 0]
7Meaning they are far to many and far to complex, and they are described in full detail on the XWizard website:

http://www.xwizard.de:8080/Wizz?help&lang=eng.

40

http://www.xwizard.de:8080/Wizz?help&lang=eng

Table 1: Important plain-text methods in XWizard.

Method Description Note

obj.for[#a, nb, ne] Runs variable #a from i = nb to ne, copying
obj and replacing each occurrence of #a by i.

x.if[exp] Both versions expand to x if exp = true. exp = false yields y, if given,
or else the empty string.@{@(x)@ @(y)@}@.if[exp]

smeq[x, y] Expands to true if x ≤ y, and to false otherwise. These methods do not interact
with the object they are called
on. Easiest usage: call on
this. Non-integer parameters
x, y cause exception.

sm[x, y] Expands to true if x < y, and to false otherwise.
greq[x, y] Expands to true if x ≥ y, and to false otherwise.
gr[x, y] Expands to true if x > y, and to false otherwise.
eq[x, y] Expands to true if x = y, and to false otherwise.
neq[x, y] Expands to true if x 6= y, and to false otherwise.
x.add[y] Expands to the integer value of x+ y. Non-integer parameters y or

non-integer objects x cause
exception. The result of
x.div[y] is rounded down to
next integer.

x.sub[y] Expands to the integer value of x− y.
x.mult[y] Expands to the integer value of x · y.
x.div[y] Expands to the integer value of x/y.
x.mod[y] Expands to the integer value of xmod y.

x.id

Expands to the script represented by x. This is x
itself, if x is plain text. Otherwise, it’s the script of
the object represented by x. Can be used to retrieve
the script after the application of plain-text methods,
e. g., *FSM*.det.min.id.

Can have side effects for
non-plain-text scripts, though,
e. g., cutoff of inner
declaration parts. Then, idd
can be used, see below.

x.idd = @"{x.id}"@ Same as id, but puts result in plain-text tags. To avoid further processing.
x.nil Expands to the empty string.
x.get[var] Retrieves the value of variable var. E. g., from the decl. part of x.
x.prepTree Retrieves the nesting tree of all sub-scripts of x.

b.newMethod[nam, n]

Uses b as “body” to create a new plain-text method
named nam with n parameters. The body can be an
arbitrary script containing sub-scripts etc. The new
method can be used subsequently as
x.nam[p1, ..., pn]. It expands to the body b where
every occurrence of the parameter pattern #i# is
replaced by pi. (x is considered zeroth parameter p0.)

Should be prioritized higher
than b using stars. nam can be
called recursively within its
own body. This is the key
mechanism providing
Turing-completeness.

b.newMethodD[nam, n, d] Same as above, but d sets parameter pattern. Default: #n#

b.sethard[c] Lets every future occurrence of b be expanded to c
instead of regular expansion: @{1.fib}@.sethard[1]

Can be used, e. g., for dynamic
programming. Expands to c.

41

There, it is crucial to define a correct expansion order. While it can be quite subtle to make it right on
every level within the method body (the example wouldn’t work without the additional brackets around
@{#0#}@.sub[1].fak in the third line), it is always necessary to let newMethod expand before any sub-
script in the body. I. e., newMethod has to be given one more star than the most stars used in the body (no
sub-script at all counts as “−1 stars”, so newMethod needs no star in that case). Another example is the
following method fib such that @{n}@.fib expands to the n’th Fibonacci number (in a very inefficient
manner, using the naive recursive rule that fib(n) = n for n ≤ 1 and fib(n) = fib(n − 1) + fib(n − 2)
otherwise; it’s just a proof of concept with exponential runtime):

@{@{
@(#0#)@ /* fib(n)=n for n<2 */
@(@{@{@{#0#}@?.sub[1].fib}@?}@.add[@{#0#}@*.sub[2].fib])@ /* Rec. expansion */
}@??.if[this.smeq[#0#, 1]]}@???.newMethod[fib, 0]

The correct expansion order is crucial here, too. These subtleties are not discussed here, though, as they
are too technical for the “Teacher’s Handbook”. The following scripts show how the new methods fac
and fib can be used:

Script ID-23844 Script ID-23830

Both these two methods serve as a proof of concept only, but what they prove as a side effect is how
confusing complex functions tend to get in XWizard. Therefore, the newMethod method’s main applica-
tion area will (similar to \newcommand in LATEX) probably be mostly among the simpler use cases, for
example to avoid double code as in:

@{This is a text I will use slightly differently #0# times}@.newMethod[cp, 0]

The snippet

@{100}@.cp

will then expand to:

This is a text I will use slightly differently 100 times

Without going too much into detail note that the Fibonacci function actually can be made efficient
in the same way as is done via the concept of dynamic programming in many programming
languages. For this, the method @{}@.sethard[...] can be used to store the already calculated
values of fib and reuse them when they are needed in future. Doing so, the exponential runtime
of the above approach becomes (nearly) linear. The fib method then looks like this:

@{@{
@(#0#)@
@(@{#0#.fib}@.sethard[

@{@{@{@{#0#}@?.sub[1]}@?.fib}@?}@.add[@{@{#0#}@?.sub[2]}@?.fib]])@
}@??.if[this.smeq[#0#, 1]]}@???.newMethod[fib, 0]

The underlined part is new, the parameter of the sethard method is basically the same code
as before in the non-dynamic case. (It only requires some additional brackets – for the usual
“technical” reasons.)

Tab. 2 shows some abbreviations for methods that would otherwise be very clumsy to use. Also,
some important script-specific plain-text methods are listed.

42

http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-23844#Output
http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-23844#Output
http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-23830#Output
http://www.xwizard.de:8080/Wizz?lang=ger&hide=.i2&template=ID-23830#Output

Table 2: Method name abbreviations and script-specific plain-text method names.

Script type English method name Abbreviation Note

FSM

Simulate one step sim
Determinize det
Minimize min
Randomize rand
Randomize (seed) randD
Regular Expression regex
- states Retrieves the number of states.
- inputLength Retrieves the length of the input word.

PDA
Simulate one step sim
- states Retrieves the number of states.
- maxSteps Retrieves the number of steps till termination.

BDD

Simplify one step simp
Truth table (Latex) truthTableLatex
Truth table (JavaPDF) truthTableJava
- max Retrieves the steps required for simplification.

Some final technical notes regarding the methods id and idd. They are, functionally, similar and
very simple (both basically return the script of the object they are called upon), but one subtlety
has to be considered:

• If used on the top level of, e. g., a LATEX script, *object*.id will print the script text of
object. However, the compiler will cut off the declarations part as it will mistake it for
declarations belonging to the top-level LATEX script. The following method calls will therefore
expand to the text of a random FSM’s script, but without the declarations part:

latex:%varm%
\begin{verbatim}
@{fsm:}@.rand[4, false].id
\end{verbatim}

In general, the tags @"{ and }"@ can be used to mark verbatim parts that should not be
treated as pre-processors or declarations. These tags are put around the script if using
object.idd, therefore, hiding the declarations during the translation of the LATEX script,
and preserving them for the final output.

10.2 The XWizard Cache
To avoid long calculation times, for example when creating complex animations, the generated XWizard
object including the actual SVG image can be stored in the database and reloaded from there if desired.
Doing this can extremely speed up the generation of objects as the actual calculation is omitted. This
temporary storage of objects (temporary as the image might get obsolete with new developments in
XWizard) is called cache. Not every script’s output is stored in the cache for performance reasons,
though, using the cache has to be requested. The request is formulated by putting a capital “C” in front
of the respective script or script ID (like this: ID-C22384 – or this: Cbdd:10110001). This leads to
finally displaying the respective object as usual, but it has three additional consequences:

(1) If the script’s output is not yet in the cache, it will be compiled and the output will be stored in
the cache (showing the output afterward, as always).

(2) If the script is already in the cache, it will not be recalculated, but directly loaded from the cache.

(3) If a script which is already in the cache is retrieved without the leading “C”, it will be recalculated
and the object will be updated in the cache.

Several examples in this document use the leading “C” to quickly process the respective scripts.
Try using the “C” on some of the other IDs. It is also possible to use the “C” on a full script. In
this case it is put at the very beginning, for example in the case of an FSM script: Cfsm: ...

43

http://www.xwizard.de:8080/Wizz?template=ID-C22384

Don’t forget that the cached version of a specific script might get obsolete if the XWizard im-
plementation changes. On the other hand, the cache may also be used as a way of conservation
of objects that should not be changed by new implementations. (This works only as long as the
respective object is not recalculated; a method of preserving a script from being recalculated when
loaded without the “C” is planned on being implemented in future.)

When using the cache, the PDF documents of the script and its sub-scripts are not generated –
and they are not cached either. Therefore, to retrieve the PDF documents, a cached script has to
be recalculated first, using the Draw! button.

As the cache requires database access, it is available in VFP only via the button “Call Web Service”
which accesses the Web Service (cf. Sec. 10.3) rather than working locally where there is no
database.

10.3 The XWizard Web Service
The XWizard web service is called DeScriptor, and it consists of a single Java method:

public java.lang.String retrieveSVGFromScript(
java.lang.String script,
java.lang.Boolean withURL,
java.lang.Boolean withScripttext,
java.lang.Boolean languageEnglish) throws java.rmi.RemoteException;

The DeScriptor service is available via http://www.xwizard.de:8080/services/DeScriptor. Calling
the above method will translate the script (which may be a script ID) given by the first parameter into
an SVG object and the according SVG code will be returned. If one of the middle two parameters are
true, the plain SVG code will be embedded into a HTML DIV which will contain a link to the XWizard
website to load the given script and/or a field showing the script text below the actual graphic. The last
parameter determines the language (English or else German) to use in the returned text.

Note that so far the web service will always try to use the cache, so technically, there is no need
to use the leading C, cf. Sec. 10.2. This is, however, not a fixed decision yet and may be changed
in future. Therefore, it makes sense to specifically add the leading C when cache usage is desired,
particularly for scripts that are supposed to endure for a long time, such as embedded scripts, cf.
Sec. ??

The web service can be called in many different ways. An example of how to do it via Javascript is given
in the next section. The following code can be used to call the web service from Java.

import org.apache.axis.client.Call;
import org.apache.axis.client.Service;
public class TestClient {

public static void main(String[] args) {
try {

String endpoint = "http://www.xwizard.de:8080/services/DeScriptor";
Service service = new Service();
Call call = (Call) service.createCall();
call.setTargetEndpointAddress(new java.net.URL(endpoint));
call.setOperationName("retrieveSVGFromScript");
call.setTimeout(10000000);
String svgString = ((String) call.invoke(

new Object[] {"ID-10700", "false", "false", "false"}));
// Do something with retrieved svgString.

} catch (Exception e) {
throw new RuntimeException(e);

}
}

}

For more technical details please check out https://sourceforge.net/projects/xwiz.

44

http://www.xwizard.de:8080/services/DeScriptor
https://sourceforge.net/projects/xwiz

10.4 LATEX abbreviations
An abbreviation scheme has been introduced to make creating LATEX scripts more pleasant. Using
the scheme embeds the script text into pre-fabricated LATEX code such that only the part between
\begin{document} and \end{document} has to be explicitly written in the script. A LATEX script which
uses the scheme looks like this:

latex: %*docclass* | *packages1* | *packages2* | ... | *packagesn*%
LaTeX code in the document body

The resulting LATEX code will look something like this:

\documentclass[...]{...}
\usepackage{...}
...
\usepackage{...}
\begin{document}
LaTeX code in the document body
\end{document}

There, the documentclass and usepackage parameters are determined by the parameters in the abbre-
viation scheme. The following values are allowed so far:

Scope Abbreviation Effect

First parameter (docclass)

artlet \documentclass[letter]{article}

var \documentclass[varwidth, border=15pt]{standalone}
\usepackage{varwidth}

varm \documentclass[varwidth=\maxdimen, border=15pt]{standalone}
\usepackage{varwidth}

tight \documentclass[tightpage]{standalone}

Other parameters (packages)

gra \RequirePackage{graphicx}
\RequirePackage[space]{grffile}

ger
\usepackage[ngerman]{babel}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}

geo \usepackage[a3paper, margin=1in]{geometry}
relsize \usepackage{relsize}
hyperref \usepackage{hyperref}
qrcode \usepackage{qrcode}
loop \usepackage{forloop}

etoolbox \usepackage{etoolbox}
ulem \usepackage{ulem}
ams \usepackage{amsmath,amsfonts,amssymb}

otherwise *otherwise* is added to preamble (e. g., \usepackage{*mypack*}).

. . . and, sorry, no, these abbreviations cannot be adapted in any way so far. If you don’t like one of
them, you’ll have to avoid it. . . But, more often than not, these few commands can extremely shorten
the creation of a LATEX script.

Maybe there will be LuaLATEX support in future. . .

11 Known Bugs, Shortcomings and ’Pitfalls’
This section lists some known bugs, possibly unintuitive things and problematic issues we are aware of,
to look out for when using XWizard.

• Exam questions and critical scripts should not be made publicly available. When doing
so, everybody can load the script by typing its ID into XWizard’s script area (although somebody
guessing correctly the script belonging to his or her exam seems highly unlikely).

• The error messaging and debugging systems are still being improved. So far, the
plain java exception trace is displayed if something goes wrong during compilation. Using the
Format script or Plain generator code buttons can give some debugging clues if the script
compiles well. Furthermore, the pre-processors can be listed (method get[prep]) and a sub-script
tree can be displayed (method preptree). The most recent debugging feature shows the stepwise

45

expansion of the script it is called on (method stepwise[true/false]). When called with the pa-
rameter true, the currently available pre-processors are shown for each step. In general, debugging
is recommended to be done with VFP, not the web version.

• Code completion and similar features. The text editor used in the web version is quite
powerful and technically allows for such features. They are currently under construction. VFP has
some functionality in that area.

• The only strange bug: In the web version, an error may occur during script translation (very
rarely!) although the script is correct – particularly when many people are working simultaneously
with XWizard. The problem is being reviewed, but it has no obvious reason and may well remain
for some more time. (The property of “occurring rarely” is a good thing from a users’ perspective,
but it certainly does not make bug fixing easier.) A simple workaround is to just click Draw!
one more time; usually it will work then.

• A minor issue with the “back” button of the browser: After using it, downloading the PDF
will not work properly. Clicking the “Draw!” button will reestablish this functionality.

• A minor issue with short URLs: Scripts created by a conversion method cannot be made
web-free immediately, i. e., the Short URL to this script method will not work. Either click
the “Draw!” button or execute the Short URL to this script method again to reestablish this
functionality. (Yeah, it’s a little thing, could be fixed in a minute. . . but it hasn’t been so far.)

• A technical issue, affecting experts and hackers only: So far, all identifiers in XWizard are
global (except this). This is a little unsatisfactory, as it leads to scripts possibly having different
effects in different contexts, breaking the semi-object-oriented paradigm introduced. For the future
it might be desirable to create scopes for identifiers, “getters” (this.x, x.y etc.) returning references
to identifiers of a sub-object and – possibly – private vs. public identifiers.

• To be continued.

Have fun with XWizard!

July 17, 2017

46

	What is XWizard?
	Access and Short History
	Basic Workflow: Script Processing
	Conversion Methods
	Conversion methods which create a new script
	Conversion methods which create a plain text output
	In-Script Application of Conversion Methods (deprecated!)

	The Exercise Mode and Encrypted Scripts
	Creating an exercise

	Hyperlinks to XWizard Scripts
	Long URLs
	Short URLs, Script IDs and the XWizard Database

	PDF Processors and the Conversion Method 'Plain PDF generator code'
	More Complex Objects: Pre-Processors and Sub-Scripts
	Sub-Scripts in LaTeX
	Pre-Processors
	Pre-implemented Examples With Compound Objects

	Simple Animations
	Defining basic animations via script
	Conversion methods for creating animations

	Advanced Usage: Cool Stuff and Crazy Hacks for Neat Guys
	The XWizard Script Language 2.0 – Everything is an Object
	Informal Examples: the for Loop and the if Statement
	The XWizard 2.0 Syntax and Semantics
	Syntax
	Semantics

	A more advanced Example: Animate to Termination
	Important Methods (making XWizard Turing-complete)

	The XWizard Cache
	The XWizard Web Service
	LaTeX abbreviations

	Known Bugs, Shortcomings and 'Pitfalls'

