On the Influence of Phenotype Plasticity on
Genotype Diversity

Ingo Paenke
Institute AIFB
University of Karlsruhe
D-76128 Karlsruhe, Germany
Email: paenke @aifb.uni-karlsruhe.de

Abstract— A large body of research has investigated the
advantages of combining phenotype adaptation and genotype
adaptation. The hybridization of genetic search and local search
methods, often known as memetic algorithms, and the influence
of learning on evolution, i.e., the Baldwin effect and the
Hiding effect, have been widely studied. However, most work
assumes a stationary environment, and thus overlooks potentially
advantages or disadvantages that can arise from phenotype
plasticity only in changing environments. We show that a process
with two levels of adaptation allows the system to operate on two
different levels of diversity at the same time, which can be of great
advantage under certain environmental conditions.

I. INTRODUCTION

In nature, species need to cope with continual environmental
changes. Evolution has found a variety of adaptation
mechanisms that seem to be tailored for the particular
environmental challenges, among which the individual-level
and population-level adaptations are two main mechanisms [1].
While in individual-level adaptation, a single individual
directly reacts to environmental changes, e.g., through
phenotype plasticity, population-level adaptation requires a
collective adaptation of a population usually by means
of genotype adaptation, which is dependent on genotype
diversity. For convenience, we will use genotype adaptation
and phenotype plasticity in this paper to denote the population-
level and individual-level adaptations.

The two levels of adaptation may interact with each
other explicitly or implicitly. Two types of interactions, often
known as Baldwinian inheritance and Lamarckian inheritance,
have been discussed in artifical and biological evolutionary
systems. In the Baldwinian inheritance, phenotype changes of
a parent cannot be directly inherited by its offspring, while
in Lamarckian inheritance, the changes on the phenotype
are directly encoded back onto the genotype and can be
passed on to offspring. It is widely believed that the
Lamarckian inheritance is biologically less plausible, however,
the Lamarckian inheritance can be used in an artificial
evolutionary system if the mapping from the genotype to
phenotype is surjective and invertible. Interestingly, it has
been demonstrated within an artificial evolutionary systems
that the Lamarckian inheritance mechanism performs better in
stationary environments, whereas the Baldwinian inheritance
mechanism works better in changing environments [2]. In
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this paper, we will investigate the Baldwinian inheritance
mechanism, not only because of its biological plausibility and
the findings in [2], but also because it does not restrict our
discussions to evolutionary models in which the genotype to
phenotype mapping is surjective and invertible.

Given the fact that for almost all species in nature adaptation
takes place on both individual and population levels, one could
ask if this principle is in general inevitable for adaptation
to a changing environment. In the field of evolutionary
computation, methods based on genotype-only adaptation
have been used successfully both for solving stationary
optimization problems, and dynamic ones, refer to [3]. Note,
however, that a common feature of the evolutionary algorithms
(EAs) for solving dynamic optimization problems is that an
additional mechanism must be included to maintain a sufficient
population diversity in order to avoid premature convergence.

In this paper, we revisit the question of what advantages a
combined genotype-phenotype adaptation has compared to a
genotype-only adaptation. In the literature, the following two
aspects concerning the combination of genotype adaptation
and phenotype plasticity have been discussed.

First, a combined genotype-phenotype adaptation allows to
exploit distinct adaptation mechanisms at the genotype and the
phenotype levels. In nature, evolution (gradually and slowly)
changes the structural aspects of an organism while phenotype
plasticity plays the role of fine-tuning the parameters for
a given structure. Similarly in evolutionary optimization, a
global evolutionary search (genotype adaptation) is often
combined with a local learning algorithm (phenotype
adaptation), which is wusually intended to address the
exploration and exploitation dilemma [4]. Evolutionary
algorithms combined with a local search technique are often
known as memetic algorithms [5].

Second, phenotype adaptation may change the evolutionary
pathways, an effect that has first been formulated by
Baldwin [6] and later termed the Baldwin effect [7]. The first
computer simulation of the Baldwin effect demonstrated that
the Baldwin effect can indeed guide evolution towards a global
fitness optimum [8]. Recently, a mathematical framework,
called the gain function has been developed that allows to
predict whether phenotype plasticity accelerates or decelerates
evolution [9]. The main idea of the gain function approach



is to determine whether phenotype plasticity enlarges fitness
difference between fit and unfit individuals or reduces the
difference. The latter effect has first been mentioned in the
biology literature [10], and was later termed Hiding effect [11].
Actually, the Hiding effect is a special case of the Baldwin
effect, and it cannot be said per se that it decelerates evolution.
It is shown in the analysis in [9] that the hiding effect does
slow down the evolution on a unimodal fitness landscape.
Recently, it has been demonstrated empirically on a bi-
modal fitness landscape [12], and mathematically based on
random walk theory [13] that the Hiding effect may accelerate
evolution on a multi-modal fitness landscape, since phenotype
plasticity tends to smoothen fitness valleys.

The above advantages of the combined genotype-phenotype
adaptation have been observed in models where a stationary
environment is assumed. They hold in principle in dynamic
environments as well. One aspect that is particularly relevant
to changing environments has been demonstrated in [14]. In
that work, the well-known model of Hinton and Nowlan [8]
is extended to dynamic environments and a plasticity cost
component is also included. Based on simulation and
mathematical results, it is concluded that phenotype plasticity
evolves if the plasticity cost is low.

This paper demonstrates another effect of combining
phenotype plasticity with genotype adaptation. It is found
that phenotype plasticity enables the evolutionary system to
operate with two different levels of diversity simultaneously.
In Section II, we introduce a simulation model that takes
the cost of phenotype plasticity implicitly into account.
In particular, we assume a trade-off between generation
turnover, i.e., the average number of offsprings per time-
unit, and an individual’s lifetime. The model uses similar
adaptation mechanisms for genetic adaptation and phenotype
plasticity in order to avoid a serious bias toward a particular
adaptation mechanism. A detailed analysis on population
diversity is presented in Section III to investigate the influence
of phenotype plasticity on genotype diversity. Based on
the insights gained in the diversity analysis, we study the
adaptation behavior of the genotype-phenotype adaptation and
the genotype-only adaptation in changing environments in
Section IV. Conclusions are given in Section V.

II. SIMULATION MODEL AND EXAMPLES

In Fig.1 one time step (¢) of the discrete-time evolution
model used in this work is illustrated. A population P,
is composed of n individuals, each having the same pre-
specified constant lifetime L, a genotype value z, a (variable)
phenotype value z, and correspondingly an adaptive value a.
The adaptive value is the basis for phenotype and genotype
adaptation defined by a time-dependent environment function
f, i.e. a = f(z,t). In evolutionary computation, this is often
called fitness function. We do not use this term here to avoid
inconsistencies with the biological definition of fitness, where
fitness is considered to be proportional to the number of
offspring, which can thus only be measured posthumously.

1. Replace ind.
with age L

Population

3. Adapt. value

2. Phenotype

assignment adaptation

Fig. 1. The three main phases of the simulation model.

In each time-step, the following three phases can be
distinguished (cf. Fig. 1):

Phase 1 - Replace individuals of an age L

All (m) individuals which have achieved an age of L, i.e.,
the end of their life, are removed from the population. Then m
individuals are picked out as parents (probability proportional
to the current adaptive value) to produce m offsprings, i.e.,
the genotype of the parents are copied to the offsprings. The
genotype of the newly generated offsprings is then mutated by
adding a random number sampled from a normal distribution
with mean p = 0 and standard deviation 0 = o¢. The union
of the original population and new offsprings without the
perished individuals forms the new population.

Phase 2 - Phenotype adaptation

New-born individuals develop their phenotype first. This is
done simply by applying the identity function to the genotype
value, i.e., the innate phenotype equals the genotype value
z(x) = z. All other individuals (of an age larger than
or equal to 1) try to increase the adaptive value using a
simple learning algorithm based on a rudimentary lifetime
memory that stores the best phenotype found so far and
the corresponding adaptive value that has been achieved at
the time when the phenotype value was explored. When an
individual randomly explores the environment, its phenotype
is changed by adding a random number sampled from a normal
distribution with mean p = 0 and standard deviation o = op.
If the resulting new phenotype has a higher adaptive value than
the memorized one, the individual adopts the new phenotype.
Otherwise, the current phenotype is kept. The implementation
of this kind of phenotype plasticity can be seen as a (1 + 1)-
EA and is very similar to the genotype adaptation mechanism
since in all simulations we set og = op, which avoids a
strong methodological bias towards a particular adaptation
mechanism.

Phase 3 - Adaptive value assignment

Finally, the individuals are assigned an adaptive value which
depends on the environmental dynamics. Note that the adaptive
value an individual has memorized for a certain phenotype
value in Phase 2 may have changed due to environmental
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(cf. Section IV for a definition). There exists an infinite number of states in Env.4, where only the first 4 states are shown. The function continues to shift

right-wards, with a velocity depending on the change interval.

changes. In Phase 1, the selection thereafter is based on the
new adaptive value.

Model settings and main effects

This model naturally implements a trade-off between
genotype and phenotype adaptation efforts. By keeping the
overall adaptation effort constant and adjusting the lifetime
L, we can distribute the adaptation efforts between genotype
and phenotype levels. For example, with a constant population
size 100, a lifetime L = 10 implies the replacement of 10
individuals at each time-step, whereas a lifetime L = 1 implies
the replacement of 100 individuals at each time-step, which is
identical to a conventional generational EA. In all simulations
of this paper the population size is set to 100.

Within the model framework, the effects of including a
phenotype adaptation (at the expense of genotype adaptation)
are investigated by comparing the evolution of a population
with a lifetime L = 1 to another one with L = 20. For the
sake of readability, we simply denote the first case as GO
(genotype-only) and the second as GP (genotype-phenotype)
adaptation.

Changing the lifetime L (switching from GO to GP
adaptation) has two obvious effects: First, since in the
proposed model the population size is assumed constant, an
increase in the average lifetime reduces the generation turnover
rate. Secondly, a change in the average lifetime influences
the phenotype adaptation, which in turn influences which

individuals produce offsprings. In other words, phenotype
adaptation causes a change in the mapping from the genotype
to the adaptive value.

We now take a look at two simple stationary environments
(f does not depend on ¢ ) which we denote as Env.1 and Env.2.

Monotonically Increasing Environment (Env.1)

In Env.1 f is defined as a monotonically increasing linear
function of phenotype z, in particular f(z,t) = =z, cf.
Fig. 2. The evolutionary goal is to “climb up” the (infinitely)
monotonically increasing function as quickly as possible.
Fig. 3 shows how in a typical simulation run, the genotype
and the phenotype distribution change over time in cased of
GO (left column) and GP (center and right column). Initially,
the population is uniformly distributed on [0; 1] and adaptation
parameters are set to o = op = 0.005. The population with
GO adaptation performs much better in this task. After 500
time steps, the mean population genotype value is beyond
12 while in case of GP adaptation, this value is below 4.
This is caused by the reduction of generation turnover rate
as described earlier. Clearly, in Env.1 phenotype adaptation is
detrimental.

Stationary Gaussian Environment (Env.2)

In Env.2 fitness landscape f is defined as a Gaussian
function centered at 0. The evolutionary goal is the
convergence to the optimum (0), cf. Fig. 2. Adaptation
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Fig. 3. Typical simulation runs for the three environments Env.1, Env.2, Env.3; Env.3 for different settings of the change interval, i.e., 50,100 and 200 (one
row of panels for each setting, cf. Section IV for a definition of the change interval). The plots show the population distribution over time. All panels in
the left column show the population distribution in case of GO (genotype-only) adaption, genotype equals phenotype in this case. All panels in the middle
column show the genotype distribution in case of GP (genotype-phenotype) adaption and all panels in the right column show the phenotype distribution in
case of GP adaption. The gray line marks the optimum (in case of Env.2 and Env.3).



parameters are set to g = op = 0.005. The population
is initially distributed uniformly on [—3;3], thus several
individuals are located in the proximity of the optimum already
in the first generation. Fig. 3 shows typical simulation runs
for Env.2. In case of GO, the population converges to a
stable state after approximately 7 generations, while this takes
much longer in case of GP. In both cases of GO and GP,
full convergence is not achieved, although the population has
reached a stable state. This phenomenon has been described
as quasi-species [15]. This is the formation of a genotype or
phenotype cloud around a wild type under mutation-selection
balance. In this example, the wild type is © = 0 respectively
z=0.

It seems that the population in GO adaptation has a lower
diversity w.r.t. both genotype and phenotype compared to
GP adaptation case. Since diversity is a major requirement
for adaptation in changing environments, we continue with a
detailed diversity analysis of the simulation data of Env.2.

III. DIVERSITY ANALYSIS

Diversity is commonly defined as the variety and abundance
of organisms at a given place and time [16]. It is accepted
wisdom that a certain level of diversity is a condition for
adaptation to new environmental conditions, however, it is less
clear how to measure it [16], [17].

Measurements

Numerous diversity indices have been suggested in the
biology literature, but it was shown that no single index
is universally superior [18]. In computational intelligence,
diversity has been studied too, mainly in artificial life and
evolutionary computation [19], [20]. Although developed for
different purposes, all diversity indices reflect at least one of
the two aspects, namely, richness and evenness. By richness,
it is meant how many different elements exist in an element
set, e.g., how many species in the ecosystem or how many
different genotypes or phenotypes in a species or a local
population. Evenness refers to the distribution of a given
set of elements w.r.t. certain element properties. A uniform
distribution produces maximum evenness. Some diversity
indices focus on either of the two properties, e.g. the Hurlberts
Probability of Interspecific Encounter [21] quantifies evenness.
Most indices aggregate both aspects, such as the Shannon
entropy [22], [23] and the Simpson’s index [24]. Other indices
are developed in discrete domains and no counterpart in
continuous spaces exists. If a continuous space is involved,
as in our model, these indices can still be used by discretizing
the continuous space. However, the choice of the discretization
parameters can bias the measurement. In order to cope with
such biases, we will adopt two indices in this work. The
first index we use is the well-known Simpson index [24],
which is widely used in biology and has been recommended
in [18]. The Simpson index H; reflects the probability that two
randomly sampled individuals are not equal (do not belong to

the same partition class) and is defined as

m .
H=1-" (1)
izt "
where n is the population size, and n; the number of
individuals in partition class ¢ (out of m partition classes). H;
increases with both evenness and richness, which is a desired
property.
The second index (H3) that we adopt here is parameter-free
and is defined directly on a continuous space as follows:

1 n n
H2:m22|$i_$j|a )

i=1 j=1

where x; is the genotype (or phenotype) value of individual <.
H, measures the average Euclidean distance of individuals
within a population. Using average distance as diversity
measure is also typical in the field of evolutionary computation
with a binary representation, where the average Hamming
distance between the genotypes is often used for measuring
diversity. It should be pointed out that counter examples can
be constructed in which a higher evenness or a higher richness
does not increase the value Ho.

Fig. 4 shows diversity measurements (H; and
Hs) over simulation time for Env.2. Note that for
the Simpson index (H;) we have discretized the

genotype and phenotype spaces into partition classes
(—o0; =3], (—3; —2.75], (—2.75,2.5], .. ., (2.75; 3], (3; +0).

Convergence process diversity

In Env.2, the genotype diversity decreases more slowly with
GP than with GO. Several factors cause this behavior.

First, the reduced generation turnover of GP (compared
to GO) obviously slows down the diversity decrease. This
can be seen by comparing the slope of the thick grey line
(GO) with the slope of the thin dashed line, which represents
evolution with individuals of a lifetime L = 20, where the
phenotype adaptation during the 20 life time units is disabled,
hence avoiding the Hiding effect. Clearly, the thin dashed line
decreases more slowly.

However, there is a second aspect, which is related to the
selection-reproduction pattern of GP adaptation. In particular,
the algorithm that represents the GO case is known as
(conventional) generational EA whereas the algorithm that
generated the thin dashed line (L = 20, no phenotype
adaptation) is known as a steady-state EA (note, however, that
the oldest parents are replaced here). For these two algorithms
it has been shown that the generational EA produces a larger
degree of diversity than the steady state EA even if both EAs
use the same number of fitness evaluations, where entropy has
been used as the diversity measure [25]. Our simulation results
support these findings: In Fig. 4 (bottom-right panel) we plot
every 20 time steps of the dashed line of the top-right panel of
Fig. 4, thus showing the effect of 100 offspring replacements
(for 20 time steps, in each time step the 5 oldest individuals are
replaced, 20 - 5 = 100). We compare this with the thin black
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curve of top-right panel of Fig. 4 (where one z-axis unit also
shows the effect of 100 replacements). As expected, Fig. 4
(bottom-right panel) shows that the diversity of the steady-
state EA is lower than that of the generational EA before and
after convergence.

The third factor is related to the change in the mapping
from the genotype to the adaptive value introduced by the
phenotype plasticity. This effect can be seen by comparing
the thin dashed line with the thick black line (genotype in
case of GP) in the H; and H graphs (Fig. 4, top-left and top-
right panels). It can clearly be seen that enabling phenotype
adaptation slows down the genotype convergence. This must
be attributed to the Hiding effect that we discussed in Section
I, i.e., a decelerated evolutionary process caused by a reduction
of selection pressure resulting from the phenotype adaptation.
Note that in principle, phenotype adaptation can also increase
selection pressure. We refer to [9] for details, where exact
mathematical conditions for both cases have been derived. In
conclusion, the following observations can be made:

1) Phenotype adaptation slows down the loss of genotype
diversity due to reduced generation turnover rate.

2) Phenotype adaptation slows down the loss of genotype
diversity due to a steady-state-EA-like generation
overlap.

3) Phenotype adaptation slows down the loss of genotype
diversity in (the likely) case of the Hiding effect.

Post-convergence diversity

By simulation time 300 all curves remain more or less
constant, which allows us to identify the effect of a combined
genotype-phenotype adaptation on the post-convergence quasi-
species diversity.

We can see that the genotype diversity is higher in case of
GP than in case of GO, and at the same time the phenotype
diversity is lower in case of GP. The reduced generation
turnover is no longer an argument for this phenomenon. The
reason for the rather high genotype diversity in case of GP is
given by the occurrence of the Hiding effect. The influence
of the Hiding effect on genotype diversity after convergence
can exactly be seen by comparing the thin dashed line (for
explanation see above) and the thick black line in the H; and
H, graphs in Fig. 4. Clearly, the thick line remains at a higher
level after convergence.

However, the phenotype diversity in case of GP is much
lower. The explanation for this is straightforward, since the
phenotype is (naturally) better adapted than the genotype.
Additional evidence for this argument can be seen from the
right-most panel of Fig. 4. In this figure, the mean distance
to the optimum (0) is given, from which one can clearly see
that the phenotype is on average closer to the optimum than
the genotype.

In conclusion, the following observations can be made:

1) Phenotype adaptation increases the (post-convergence)



genotype diversity in (the likely) case of the Hiding
effect.

2) Phenotype adaptation helps the phenotype to settle
closer to the optimum.

However, no definite conclusion can be drawn on whether
the inclusion of phenotype plasticity is positive or negative
to evolution, as we will see in the following section.

IV. CHANGING ENVIRONMENTS

In the preceding section we have shown how phenotype
adaptation influences population diversity. Based on these
results, we now demonstrate under what environmental
conditions this influence is likely to have a positive and under
what conditions this is likely to have a negative effect on the
overall adaptation success.

Multi-modal dynamic environment (Env.3)

In Fig. 2 the environment dynamics of our first example of
changing environments (Env.3) is shown. In this environment
there are several local optima and one global optimum,
which changes over time among three locations {—1,0,1}.
Simulations have been conducted with different parameter
settings. It turned out that (besides the lifetime setting, which
is the same as in previous sections) two parameters, namely
the change interval and the adaptation step-size have a strong
impact on the overall adaptation process.

The change interval defines after how many time steps
an environmental change happens. With a very small change
interval, basically no adaptation takes place. In this case,
the adaptation behavior is similar to that in an environment
with many equally high optima. In particular, the population,
which is initially distributed on many local optima, gradually
disappears from the local optima due to genetic drift, and
converges to a single local optimum. A large change interval
causes a similar behavior to that in a stationary environment,
except that after a (later) environmental change the population
distribution is biased by the previous environmental state. We
therefore present some intermediate settings of the change
interval, namely, 50,100,200.

The adaptation step-size includes two parameters actually,
namely the mutation step-sizeé og and the phenotype
adaptation step-size op. However, as argued earlier, we set
oc = op. With a very small adaptation step-size, adaptation
is only possible through selection and is strongly dependent on
the initial population distribution. With a very large adaptation
step-size, adaptation is basically characterized by drift. After
evaluating a large parameter set, the setting o = op = 0.01
turned out to be an interesting case for further investigation.

Fig. 3 (panels in rows 3,4 and 5) shows typical results
for these settings. For all change interval settings of GO
adaptation (panels in the left column) the population converges
to a local optimum and is able to escape from it in only
two situations. However the population is not able to move
towards the global optimum. In case of a combined genotype-
phenotype adaptation, the population manages to follow the
optimum. In case of a quickly changing environment with a

change interval of 50 (Fig. 3, Env.3, change interval=50), the
steady state of the environment seems to be too short for the
population to fully adapt to the global optimum. In case of a
change interval of 100 (Fig. 3, Env.3, change interval=100),
the steady state seems to be long enough for the population
to adapt to the global optimum occasionally. Finally, with a
slowly changing environment with a change interval of 200
(Fig. 3, Env.3, change interval=200), the population always
follows the changing global optimum. Fig. 5 compares the
average adaptive value between the GO and GP evolution
for different change intervals, which provides further evidence
that in environments like Env.3, the combination of genotype
and phenotype adaptation brings about an advantage. While
in the GO adaptation the population only by chance matches
the global optimum (when it returns), the population always
adapts to a changing optimum in GP evolution.

Environment with monotonic dynamics (Env.4)

In contrast to Env.3, the next example (Env.4) aims
to demonstrate that combining genotype adaptation with
phenotype adaptation can be detrimental to the overall
adaptation process. The mapping from phenotype to adaptive
value of Env.4 is described by a Gaussian function, which
shifts periodically 0.1 units in positive direction as specified
by the change interval (cf. Fig. 2). Fig. 5 shows the average
adaptive value between GO and GP. In case of a quick
environmental change, with a change interval of 1, both GO
and GP fail to follow the optimum. At the other extreme,
where the environmental change is slow, a change interval
of 50, the population is able to follow the global optimum
in both cases of GO and GP. However, at an intermediate
level, with a change interval of 10, adaptation is successful
in the case of GO but fails in the case of GP. This result
can be attributed to the selection pressure reduction caused
by phenotype adaptation. We conclude that the inclusion
of phenotype adaption is detrimental if the environmental
dynamics are monotonic, thus demonstrating that there exist
environments in which GO adaptation is more appropriate.

V. CONCLUSION

We have shown that including phenotype plasticity in
the evolutionary adaptation process influences the genotype
diversity under the Baldwinian inheritance regime, when
the overall adaptation “effort” is constant and similar
adaptation mechanisms are used for genotype and phenotype
adaptation. This is caused by the reduction in generation
turnover and the change in the fitness landscape, which also
influences the convergence process and the post-convergence
behavior. We have identified two characteristics of dynamic
environments that favor one or the other (genotype-only or
combined genotype-phenotype adaptation). The advantage of
the combined genotype-phenotype adaptation not only lies
in its influence on the genotype diversity that opens an
opportunity for long-term adaptation, but also results in a
higher short-term adaptability, since the phenotype can be well
adapted without a loss of the genotype diversity.
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Our results may inspire new ideas in the field of artificial
evolutionary systems where both a high level of diversity and
a strong adaptation ability are important. In addition, we can
also gain some insights into the evolution of biological systems
in that our results shed some light on the question why a large
variety of adaptation mechanisms exists among species.

In the future, we hope to show that the level of phenotype
adaptability, i.e., the lifetime L in our model, can be evolved
in a second-order adaptation process to fit well with a given
dynamic environment.
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