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Abstract. Proposing a certain notion of logical completeness as a novel quality
criterion for ontologies, we identify and characterise a class of logical propo-
sitions which naturally extend domain and range restrictions commonly known
from diverse ontology modelling approaches. We argue for the intuitivity of this
kind of axioms and show that they fit equally well into formalisms based on rules
as well as ones based on description logics. Extending the attribute exploration
technique from formal concept analysis (FCA), we present analgorithm for the
efficient interactive specification of all axioms of this form valid in a domain of
interest. We compile some results that apply when role hierarchies and symmetric
roles come into play and demonstrate the presented method ina small example.

1 Introduction

Semantic technologieshave gained significant interest in recent years as indicated by
prominent conferences and workshop as well as a plethora of research projects.On-
tologiesconstitute the central means within this area by providing logical descriptions
of a considered domain based on which knowledge about the domain can be deduced
automatically (this task usually being referred to asreasoning). Yet, the practical de-
ployment of semantic technologies in a wider range of applications clearly requires
new technical methods as well as methodologies assisting the knowledge engineer in
designing medium to large size ontologies containing formalized knowledge beyond
the usual subclass-superclass (i.e., taxonomic) relationships.

Though reasoning methods provide some assistance in this regard (e.g., allowing to
check for local and global consistency of the formalized knowledge as well as for an
ontology’s “capability” to logically entail wanted consequences), there are other qual-
ity criteria for ontologies that cannot be met by reasoning support alone. One of those
central criteria – well-nigh currently neglected in knowledge representation research –
is that ofcompleteness. More precisely, a knowledge base KB can be said to be com-
plete w.r.t. a certain logic(al fragment), if every statement expressible in that logic can
be entailed from KB or declined by KB (e.g. by showing the validity of its negation).
Remarkably, Formal Concept Analysis has provided powerfultools to achieve the men-
tioned kind of completeness for some logical fragments already more then twenty years
ago and subsequently successfully applied in numerous domains.
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project. We furthermore thank Pascal Hitzler and Johanna Völker for their valuable comments.



Clearly, completeness w.r.t. expressive formalisms (as, say, OWL1.1-completeness)
is a goal which cannot be reasonably fulfilled for non-trivial ontologies. Hence (in anal-
ogy to identifying tractable fragments of DLs that allow relatively expressive modelling
while still being of low reasoning complexity) we argue for identifying fragments being
satisfactorily expressive and intuitive to the user as wellas still computationally easy to
handle, such that the completeness of a KB w.r.t. those fragments is both desirable and
achievable.

Hence in our paper, we characterise a group of axioms which meet those require-
ments and canonically generalise both domain and range statements. Furthermore we
provide a method for their interactive acquisition that in the end yields a knowledge
base being complete w.r.t. the class of these axioms. In Section 2, after some initial
motivation, we introduce and define this type of domain axioms expressible equiva-
lently by DL (resp. OWL) statements or by rules. Section 3 presentsRole Exploration,
a method for – given a role (resp. binary predicate) and a set of “interesting” classes
(resp. unary predicates) – interactively acquiring all axioms of this type valid in the
described domain of interest.1 This method is based on the aforementioned attribute
exploration algorithm from formal concept analysis. Section 4 discusses how one could
take advantage of additional knowledge about roles, namelyrole hierarchies and role
symmetry, by modifications of the Role Exploration algorithm. In Section 5, we demon-
strate Role Exploration by further elaborating an example for the setting brought up in
Section 2. Finally, Section 6 concludes and gives an outlookto further research.

In the sequel, we assume the reader to be familiar basic notions from description
logics (see [1] for a comprehensive and detailed overview) and rule-based languages [2].

2 Generalised Domain-Range Restrictions: Characterisation and
Properties

Imagine the following situation: suppose, in a knowledge base describing persons and
personal relationships, we have a role denoted withmarried which is to express whether
a person is married to another person. So, clearly an ontology engineer would state
that both domain and range of that role would have to be subclasses ofPerson, being
expressed by the DL statements∃married.⊤ ⊑ Person and∀married.Person or by the
rulesmarried(X,Y) → Person(X) andmarried(X,Y) → Person(Y). In an OWL (Web
Ontology Language, W3C recommendation [3]) ontology this could be expressed using
the domain and range language constructs for object properties as follows:

<owl:ObjectProperty rdf:ID="Married">

<rdfs:domain rdf:resource="#Person"/>

<rdfs:range rdf:resource="#Person"/>

</owl:ObjectProperty>

1 In order not to confuse the two meanings of the term “domain”,we usedomain of interest
whenever referring to the meaning “universe of discourse” or “set of all entities”.



Yet, what one would certainly like to additionally state is that males can marry only
females and vice versa.2 Obviously, this is not possible via the usual OWL domain and
range constructs. However, the DL axiomsMale ⊑ ∀married.Female andFemale ⊑
∀married.Male (as well as their OWL DL counterparts) or the rulesmarried(X,Y) ∧
Male(X) → Female(Y) andmarried(X,Y) ∧ Female(X) → Male(Y) express exactly
this relationship.

Staying with this kind of examples, note that there are countries (such as India),
where the minimal age to get (and hence, to be) married is sex-dependant.3 The cor-
responding regulation is no domain or range restriction in the classical sense either,
yet can be stated by DL axioms likeMale ⊓ ∃married.⊤ ⊑ Age21plus andFemale ⊓
∃married.⊤ ⊑ Age18plus or – in a rule language – bymarried(X,Y) ∧ Male(X) →
Age21plus(X) andmarried(X,Y) ∧ Female(Z)→ Age18plus(Y).

Having demonstrated the utility and intuitivity of this kind of modelling axioms, we
introduce a type of statements capturing all of them while being still computationally
easy to handle.

Definition 1. Given a setC of named classes and a roleR, a -
 (short: GDRR) is a rule having the following form

R(X,Y) ∧
∧

A∈A

A(X) ∧
∧

B∈B

B(Y)→
∧

C∈C

C(X) ∧
∧

D∈D

D(Y)

whereA,B,C,D ⊆ C and R is a role name. Note, that forC ∪ D = ∅, the rule
will have an empty head (also denoted by�) and, hence, will be interpreted as integrity
constraint.

Put into words, the GDRR presented in the above definition would mean the fol-
lowing: “For any two elementsX andY of the domain of interest that are connected by
a roleR and whereX fulfills (all of) A as well asY fulfills (all of) B, we know thatX
additionally fulfillsC andY additionally fulfillsD.”

The next theorem guarantees that for every GDRR, there is a semantically equiv-
alent general concept inclusion axiom (GCI) in any sufficiently expressive DL (while
these expressiveness requirements are very low).

Theorem 1. The GDRR

R(X,Y) ∧
∧

A∈A

A(X) ∧
∧

B∈B

B(Y)→
∧

C∈C

C(X) ∧
∧

D∈D

D(Y)

is equivalent to both of the following GCIs:4

�

A∈A

A ⊓ ∃R.
(
�

B∈B

B
)

⊑
�

C∈C

C ⊓ ∀R.
(

(
⊔

B∈B

¬B
)

⊔
(
�

D∈D

D
)

)

,

2 For the sake of the example we refer to a situation without same-sex marriages. However, this
is not meant to reflect any personal attitude of the author towards this topic.

3 In the IndianChild Marriage Restraint Actof 1929, amended in 1978, child is defined as “[...]
a person, who, if a male, has not completed twenty-one years of age, and if a female, has not
completed eighteen years of age [...]” [4].

4 where we set
�

E∈E E to be⊤ wheneverE = ∅



�

B∈B

B ⊓ ∃R−.
(
�

A∈A

A
)

⊑
�

D∈D

D ⊓ ∀R−.
(

(
⊔

A∈A

¬A
)

⊔
(
�

C∈C

C
)

)

.

Although the GCI obtained by the uniform translation provided by Theorem 1 might
look cumbersome and counterintuitive, note that obviouslyany GDRR having a con-
junction of atoms in the head can be split into several GDRRs with single-atom heads.
Each of those will be equivalent to a more intuitive GCI, as stated by the following
corollary.

Corollary 1. 1. The GDRR of the shape

R(X,Y) ∧ A1(X), . . . ,An(X),B1(Y), . . . ,Bk(Y)→ �

is equivalent to each of the GCIs

A1 ⊓ . . . ⊓ An ⊓ ∃R.(B1 ⊓ . . . ⊓ Bk) ⊑ ⊥

B1 ⊓ . . . ⊓ Bk ⊓ ∃R−.(A1 ⊓ . . . ⊓ An) ⊑ ⊥

2. The GDRR of the shape

R(X,Y) ∧ A1(X), . . . ,An(X),B1(Y), . . . ,Bk(Y)→ C(X)

is equivalent to each of the GCIs

A1 ⊓ . . . ⊓ An ⊓ ∃R.(B1 ⊓ . . . ⊓ Bk) ⊑ C
B1 ⊓ . . . ⊓ Bk ⊑ ∀R−.(¬A1 ⊔ . . . ⊔ ¬An ⊔ C)

B1 ⊓ . . . ⊓ Bk ⊓ ∃R−.(A1 ⊓ . . . ⊓ An ⊓ ¬C) ⊑ ⊥

3. The GDRR of the shape

R(X,Y) ∧ A1(X), . . . ,An(X),B1(Y), . . . ,Bk(Y)→ C(Y)

is equivalent to each of the GCIs

A1 ⊓ . . . ⊓ An ⊑ ∀R.(¬B1 ⊔ . . . ⊔ ¬Bk ⊔ C)
A1 ⊓ . . . ⊓ An ⊓ ∃R.(B1 ⊓ . . . ⊓ Bk ⊓ ¬C) ⊑ ⊥

B1 ⊓ . . . ⊓ Bk ⊓ ∃R−.(A1 ⊓ . . . ⊓ An) ⊑ C

Note that therefore, each of the description logicsALE andELI is sufficient to
express GDRRs; for the first two types, evenEL will do.

Considering the rule representation, note that we refrain from using negated atoms.
Hence the proposed type of rules belongs to the fragment of Horn clauses. Follow-
ing the general framework for defining Horn DLs from [5], the DL representation of
GDRRs belongs to Horn-ALE (whereasELI is already Horn anyway). Likewise, they
also naturally fall in the DLP [6] fragment. Mark that, although no negated atoms are
allowed, we can nevertheless express certain kinds of negative statements by using rules
with empty heads (also calledintegrity constraints, as mentioned in Definition 1). For
example, the statement “a child is not allowed to marry”, normally modelled with a



DL axiom like Child ⊑ ¬∃married.⊤, can equivalently be expressed by the GDRR
married(X,Y),Child(X)→ �.

Hence, GDRRs identify a class of logical statements useful to characterise roles
beyond the common domain-range restrictions still being both intuitive and computa-
tionally friendly (witnessed by their containment in the abovementioned fragments).
Related to that, they also fulfill a certain computationallyadvantageous locality condi-
tion: given the set∆ of all entities of a domain of interest, checking whether a certain
GDRR is satisfied therein can be done by separately checking all entity pairs connected
by the roleR. Mark that this is not the case for any “simple looking” GCI, take for
example∃has.Sorrow ⊑ ∃has.Liqueur – a proposition well-known from German po-
etry.5

3 Acquisition of GDRRs via Role Exploration

In this section, we will propose a way to exhaustively determine all GDRRs of a certain
shape (i.e., referring to a roleR and a set of relevant atomic classesC) valid in a domain
of interest, i.e., assuring “GDRR-completeness” of the resulting knowledge in the sense
introduced in Section 1. This method is based on the attribute exploration algorithm well
known from formal concept analysis. The algorithm we present will consequently ask
an expert for the validity of GDRRs in the domain of interest and end up with a revised
knowledge base and a complete (as defined later) set of GDRRs.

The attribute exploration algorithm our work is based on wasintroduced in [8]. At-
tribute exploration with partial or incomplete information has been dealt with in several
variants e.g. in [9, 10]. In [11], FCA and DL were combined forthe first time by us-
ing complex concept descriptions to define new attributes informal contexts. In [12],
attribute exploration was used to determine the concept hierarchy of conjunctions on
atomic concepts. The idea to use attribute exploration as a way to interactively refine an
ontological knowledge base was brought up in [13] and thoroughly described in [14],
where also an extension to the case with partial informationwas proposed. A concise
algorithm for exploration with partly known objects has been provided in [15].

3.1 FCA and Attribute Exploration with Partial Information

We refrain from introducing the most basic FCA notions and instead refer the reader to
[16].

For our considerations, we work with a generalised notion ofthis data structure,
allowing for partial specification (i.e., it might be unknown, whether an object has an
attribute or not). This is an important extension for a knowledge representation setting,
since (due to the open world assumption), it is reasonable toassume that not all (even
not all relevant) facts about a described entity are known.

Definition 2. A    K? is a quadruple(G,M, I�, I^) where both
(G,M, I�) and(G,M, I^) are formal contexts and I� ⊆ I^.

A formal contextK = (G,M, I ) will be called ofK?, if I � ⊆ I ⊆ I^.

5 “Es ist ein Brauch von alters her:wer Sorgen hat, hat auch Likör!” (emphasis by the author)
to be found in Chapter 16 of [7].



The intuitive meaning of this definition is the following:gI�m means, it is certain
that objectg has the attributem, while gI^m means, it is possible that objectg has the
attributemor – in other words – it isnotcertain that objectg doesnothave the attribute
m. An intuitive visualization would be a table with rows corresponding to the objects
and columns corresponding to the attributes, having crosses wheregI�m, blanks where
not gI^m and question marks everywhere else.

Naturally, a completion of a partial formal context will be obtained by substituting
each question mark by either a cross or a blank.

In FCA, implicationsconstitute the central means of expressing knowledge. We
formally specify this rather straightforward notion together with some further useful
theory in the following definition.

Definition 3. Let M be an arbitrary set. An on M is a pair (A, B) with
A, B ⊆ M. To support intuition, we write A_B instead of(A, B).

A_B  in a formal contextK = (G,M, I ), if for all g ∈ G, we have that A⊆ gI

implies B⊆ gI . We then writeK |= A_B.
We say, a partial formal contextK = (G,M, I�, I^)  an implication A_ B,

if for all g ∈ G we have that A⊆ gI� implies B⊆ gI^ . For C ⊆ M and a setI of
implications on M, let CI denote the smallest set with C⊆ CI that additionally fulfills

A ⊆ CI implies B⊆ CI

for every implication A_ B in I.6 If C = CI, we call CI-. We sayI 
A _ B if B ⊆ AI.7 An implication setI will be called -, if for any
(A_B) ∈ I we have that B* AI\{A_B}. A setI implications holding in a contextK will
be called, if every implication A_ B holding inK is entailed byI. I will be
called an  of a formal contextK if it is non-redundant and complete.

Note that implication entailment is decidable in linear time w.r.t. the size ofI [17,
18]. Therefore, knowing the implication base in a logical setting allows fast handling
of the whole corresponding implicational theory. Moreover, for every formal context,
there exists a canonical implication base [19].

The method of attribute exploration allows to acquire the implication base of a do-
main of interest being just implicitly known by an expert in an interview-like process.
Due to space reasons, we omit to display its technical details and refer the reader to the
thorough presentation in [15].

Essentially, the following happens: the aspect of the domain of interest that shall
be explored is formalized as a formal contextK = (U,M, I ). Usually, it is not known
completely in advance. However, possibly, some entities ofthe domain of interestg ∈ U
are already known, as well as some attributes thatg has or has not, constituting an initial
partial formal context.

During runtime, the algorithm presents questions of the form

“Does the implicationA_B hold in the contextK = (U,M, I )?”

6 Note, that this is well-defined, since the mentioned properties are closed wrt. intersection.
7 Actually, this is a syntactic shortcut. Yet, it can be easilyseen that this coincides with the usual

entailment notion.



to the human expert. The expert might confirm this. In this case, A_ B is archived as
part ofK’s implicational baseIB. The other case would be thatA_ B does not hold
in (U,M, I ). But then, there must exist ag ∈ U with A ∈ gI andB < gI . The expert
is asked to input thisg and – roughly speaking – enough evidence for qualifyingg as
a counterexample by augmenting the partial context such that A ⊆ gI� andB * gI^ .
The procedure terminates when the implicational knowledgeof theK is completely
acquired, i.e., the implications admitted by the partial formal context built from the
entered counterexamples are the same as those entailed byIB.

In our approach, we will exploit the capability of attributeexploration to efficiently
determine a propositional implicational theory. Notwithstanding, we extend the under-
lying language8 from purely propositional to GDRRs.

3.2 Role Contexts

In this work, we employ attribute exploration in a way that isstructurally very similar
to the approach in [21], where this technique was used for specifying dynamic systems.
In this setting, roles would be interpreted as actions that can be taken, classes are used
to describe states and the models of a corresponding theory can be interpreted as state
transition systems. Yet this technique easily carries overto the more general setting of
knowledge specification as firstly sketched by the author in [14].

Definition 4. LetKB be a DL knowledge base and, as usual, an interpretationI of
KB be defined as(∆, ·I), where∆ is the individual set and·I a function mapping class
names to subsets of∆ and role names to subsets of∆ × ∆.

For a given interpretationI together with a setC of named classes and a roleR,
the  KR is defined as formal context(G,M, I ) with

– G := RI = {(δ1, δ2) | δ1, δ2 ∈ ∆, (δ1, δ2) ∈ RI}
the objects ofKR are those individual pairs connected by the roleR,

– M := {Cd,Cr | C ∈ C}
the attribute set ofKR contains two “copies” ofC: the   indexed
with d the  indexed with r, and

– I ⊆ G× M with (δ1, δ2)ICd⇐⇒ δ1 ∈ CI and(δ1, δ2)ICr ⇐⇒ δ2 ∈ CI.
the domain attributes indicate for anR-connected pair of entities, whether the cor-
responding class contains the first entity of that pair, while the range attributes
describe the second entity.

The following theorem shows how the validity of a GDRR in an interpretation can
be read from a corresponding role context.

Theorem 2. An interpretationI satisfies a GDRR

R(X,Y) ∧
∧

A∈A

A(X) ∧
∧

B∈B

B(Y)→
∧

C∈C

C(X) ∧
∧

D∈D

D(Y)

8 There exist already other language extensions, e.g. to Horn-logic with a bounded variable set,
see [20].



if and only if the corresponding role contextKR satisfies the implication

{Ad | A ∈ A} ∪ {Br | B ∈ B}_⊥ if C ∪D = ∅ and

{Ad | A ∈ A} ∪ {Br | B ∈ B}_ {Cd | C ∈ C} ∪ {Dr | D ∈ D} otherwise.

This theorem enables us to “translate” any implication in a role context into an
equivalent GDRR and via Theorem 1 further into a GCI. So, for agiven implicationi
fromKR, let DL+(i) denote an equivalent GCI with the pure role and DL−(i) an equiva-
lent GCI with the inverse role.

Now, the basic idea for the knowledge acquisition method we are going to pro-
pose is to carry out attribute exploration (with uncertain knowledge) on the contextKR.
Thereby, our basic assumption is that there exists a distinguished interpretationI′ en-
tirely (but implicitly) known by the human expert that we want to specify in terms of
GDRRs.

3.3 Reasoner-aided Exploration

The general work flow of exploration based knowledge base refinement was first de-
scribed by the author in [13] and has been subsequently applied in diverse approaches
[22, 14, 15, 23]. Basically, three entities are involved:

– the exploration algorithm consecutively asking questions,
– a reasoner trying to cope with those questions based on (terminological or grounded)

information being present a priori (thereby minimising theexpert’s “workload”),
and

– an (ideally omniscient) human expert dealing with those questions that cannot be
answered by the reasoner.

For the sake of clarity, we will describe a rather concrete instantiation of this frame-
work. Nevertheless, there are several degrees of freedom incertain parts of the algo-
rithm in that certain additional computation steps could becarried out, which do not
alter the outcome of the algorithm but might have significantinfluence on its perfor-
mance. We indicate such optional steps in the algorithm leaving questions related to
optimisation for future research.

So letKB be an OWL DL knowledge base andR be an OWL DL reasoner. Let
furthermoreC be a set of named classes andR a role9 occurring inKB.

Initialisation. We initialise a partial “working” contextK?
R = (G,M, I�, I^) by setting

G := ∅, M := {Cd,Cr | C ∈ C}. It will be successively enriched during the exploration.

Scan for a-priori Data (optional).Although any exploration process can be carried
out starting from scratch, i.e. without any objects known inadvance, such information
may be advantageous by making possible hypotheses obsolete. Besides the possibility
of manually providing such information, there are two possible ways of extracting this

9 the corresponding OWL DL term beingobject property



kind of information from a given knowledge base, which we call the lazyand thegreedy
way, depending on whether reasoning is employed or not.

So, the lazy way of data search would, for all role statementsR(a, b) ∈ KB, add
(a, b) to the object setG of K?

R and set

I� := I� ∪
{(

(a, b),Cd
)

| C(a) ∈ KB,C ∈ C
}

∪
{(

(a, b),Cr
)

| C(b) ∈ KB,C ∈ C
}

and

I^ := I^ ∪
{(

(a, b),Cd
)

| ¬C(a) < KB,C ∈ C
}

∪
{(

(a, b),Cr
)

| ¬C(b) < KB,C ∈ C
}

.

Clearly, this would just add the relevant information explicitly present inKB to the
working context.

Contrarily, the greedy way would employ reasoning to acquire more complete in-
formation to start with. In this case, for any role statementR(a, b) that can be inferred
fromKB byR, the pair (a, b) would be added toG. EmployingR further, we then set

I� := I� ∪
{(

(a, b),Cd
)

| KB |= C(a),C ∈ C
}

∪
{(

(a, b),Cr
)

| KB |= C(b),C ∈ C
}

and

I^ := I^ ∪
{(

(a, b),Cd
)

| KB 6|= ¬C(a),C ∈ C
}

∪
{(

(a, b),Cr
)

| KB 6|= ¬C(b),C ∈ C
}

.

Although the greedy way would deliver more starting information which might
shorten the subsequent exploration process, this advantage might be vitiated by the
large number of possibly time consuming reasoner calls.

Scan for a-priori GDRRs (optional).The exploration algorithms also allows for en-
tering already known implications before starting the actual exploration process. Like
in the case with a-priori data, this could accelerate the exploration process, since some
hypotheses can be taken for granted.

In order to acquire this kind of information, we check for every GCI occurring
in KB, whether it syntactically entails10 a GDRR (w.r.t.R andC) and if so, add the
respective implicationi to the set of implications known in advance. Note that also
GCIs that represent just class hierarchies are interestingin this regard, since e.g.C ⊑ D
would entail any GDRRR(X,Y),C(X)→ D(X) as well asR(X,Y),C(Y)→ D(Y).

Exploration. Now we start the exploration process on the partial working context. Ev-
ery hypothetical implicationi the algorithm comes up with is transformed into a sub-
sumption statement DL+(i). The following two steps can be carried out in arbitrary order
(or in parallel), whereas it is impossible that both succeed(which allows to refrain from
either one if the other is known to have succeeded).

– EmployR to check whetherKB |= DL+(i). If so, silently confirmi to the explo-
ration algorithm and continue the exploration.

– EmployR to check whetherKB ∪ {DL+(i)} is unsatisfiable. If this is the case, this
means thatKB forces any model to contain a pair of individuals (i1, i2) serving as
a counterexample fori.

10 Hereby we mean entailment that can be detected by easy (i.e. tractable) syntactic transforma-
tions. Due to lack of space, we postpone an elaboration of this part to future work.



If none of the above cases applies, the human expert has to decide whether the proposed
GDRR is valid in the described domain of interest, i.e., whetherI′ |= DL+(i). If the
expert agrees,i will be confirmed to the exploration algorithm and additionally – since
the expert has revealed genuinely new information – DL+(i) will be added toKB. After
that, the exploration continues with a new hypothesis.

In case the GDRR is denied (either byR or by the expert), a counterexample must
be provided. IfR was able to show the unsatisfiability ofKB ∪ {C ⊑ D}, it might even
be able to automatically provide a counterexample in the following way. LetA_ B be
the implication in question, and setG+ := {DL+(A_ {b}) | b ∈ B} andG− := {DL−(A_

{b}) | b ∈ B}. Now, for every GCIC ⊑ D contained inG+ ∪ G−, we useR to retrieve
instances ofC ⊓ ¬D. If one such instance, is found, we add a new pair (e1, e2) to G and
setI� := I� ∪ {(e1, e2)} × A as well asI^ := I^ ∪ {(e1, e2)} × (M \ {b,⊥}). In this case,
the exploration process can be continued without consulting the expert.

However, even if the unsatisfiability ofKB∪{C ⊑ D} can be shown, there might be
no named individual in theKB witnessing this in the sense just described. Then – as
well as in the case when the expert had to deny the hypothetical GDRR himself – he has
to manually add information to the knowledge base in a way that a counterexample can
be retrieved by the method described above. Obviously, thiscan be achieved in any case
by entering anR-connected individual pairi1 and i2 with appropriate class assertions,
but there are other ways (as adding instances for one conceptdescription fromG+ or
G−). Then a (partial) counterexample description can be generated automatically in the
above described way.

Termination.After the exploration finishes, we have obtained a twofold result:

– A refined version ofKB which is “GDRR-complete” w.r.tC andR meaning the
following: Every GDRR involving the roleR and concepts fromC is either en-
tailed byKB or adding it toKB leads to unsatisfiability. Hence,KB completely
characterisesI′ in terms of this class of GDRRs.

– An implication baseIB, accumulated by the exploration process.IB allows to
checkin linear timefor everyGDRR onR andC whether it is valid inI′ or not.

4 Interplay with other Role Properties

Considering OWL DL, there are lots of other features which can be used to characterise
roles. In the sequel we will briefly review how some of this information can be taken
advantage of during the role exploration process.

Symmetric Roles.Quite frequently, roles are known to be symmetric. This might be
expressed by the DL statementR ≡ R− or the ruleR(X,Y) → R(Y,X); OWL even
provides a dedicated language construct for this. In this case, the symmetry carries over
toKR in the following sense: for every implicationA_B holding inKR, the implication
ψ(A)_ψ(B) with

ψ :



















Cd 7→ Cr

Cr 7→ Cd

}

for all C ∈ C

⊥ 7→ ⊥



Person ⊑ Male ⊔ Female Person ⊑ Child ⊔ Adult Catholic ⊓ Priest ⊑ Male
Male ⊓ Female ⊑ ⊥ Child ⊓ Adult ⊑ ⊥ Catholic ⊓ Protestant ⊑ ⊥
married ≡ married− ∃married.⊤ ⊑ Person ⊤ ⊑ ∀married.Person

Fig. 1. Example knowledge baseKB about marriages

holds inKR as well. In [24], attribute exploration has been extended inorder to take this
kind of symmetries into account, allowing the acquisition of implicational knowledge
“modulo permutations” on the attribute set.

Role Hierarchies.A standard feature in expressive description logics (and aswell con-
tained in OWL DL) is the definition of role hierarchies. For two given rolesR1,R2, the
role R1 is subsumed by the roleR2, (DL notation:R1 ⊑ R2) if RI1 ⊆ RI2 . It takes just
little consideration that in this case, every implication valid inKR2 is also valid inKR1.
This can be exploited for the exploration in the following way: Assume for bothR1

andR2, all valid GDRRs w.r.t.C have to be determined. The most efficient way to do
so would then be to first carry out the procedure forR2 and use the acquired implica-
tion base as a-priori knowledge for the next procedure, thereby reducing the amount of
hypothetical GDRRs brought up by the algorithm.

5 An Example: So, Who Marries Whom?

For a small demonstration how the presented technique wouldbe applied in practice, let
us stay with the example from Section 2. LetKB be the knowledge base given in Fig. 1.
Now imagine, this knowledge base is to be refined with respectto the rolemarried. Let

C := {Person,Male,Female,Child,Adult,Catholic,Protestant,Priest}

be the set of interesting class names. So the set of attributes of the role context would
be

M := { Persond,Personr,Maled,Maler,Femaled,Femaler,Childd,Childr,Adultd,
Adultr,Catholicd,Catholicr,Protestantd,Protestantr,Priestd,Priestr,⊥}

Note that the rolemarried is defined to be symmetric; therefore, the respective addi-
tional considerations from the previous section apply. Assume the following married
couples already to be known: Andreas & Christiane, Anupriya& Kedar, as well as
Astrid & Thomas. So, after initialisation, the starting context would have a shape as
depicted in Fig. 2.

In the sequel, we review the hypothetical implications the exploration algorithm
comes up with and explain how they are handled by the reasonerand (resp. or) the
human expert.

1. Question:∅ → {Persond,Adultd,Personr,Adultr} (In words – mark that the empty
premise requires the conclusion to be universally true): “If two entities marry, are
they both persons and adults?”)



Passing the corresponding GCI (which would be∃married.⊤ ⊑ Person ⊓ Adult ⊓
∀married.(Person ⊓ Adult)) to the OWL DL reasoner does not yield an answer,
since it cannot be derived from the given knowledge base. Hence, the human ex-
pert has to be asked and would confirm this implication – sincewe assume a legal
system where child marriages are prohibited. So the GCI is added toKB as a new
axiom.

2. Question:{Maled} → {Femaler} (In words: “If a male is married, is he necessarily
married to a female?”)
This axiom which we already encountered in Section 2 is obviously true but cannot
be derived fromKB. Therefore, it is passed to the human expert, who again would
confirm it which leads to another update ofKB

3. Question:{Femaled} → {Maler} (In words: “If a female is married, is she necessar-
ily married to a male?”)
Mark that this axiom is not redundant, since all informationspecified so far does
not exclude the possibility of female-female marriages. Again, the human expert
would be asked, confirm the validity and updateKB anew.

4. Question:{Femaled,Maled} → {⊥} (In words: “Is it impossible that somebody
married is male and female at the same time?”)
Obviously, the validity of this statement follows from the axiomMale⊓Female ⊑ ⊥
contained in the original knowledge base and is therefore silently answered by the
reasoner without bothering the expert.

5. Question:{Childd} → {⊥} (In words: “Is it impossible for a child to be married?”)
It takes little consideration that this axiom can be derivedfrom the updated knowl-
edge base containingChild ⊓ Adult ⊑ ⊥ as well as the axiom that was added to the
KB as a result of the first question. Thus it is tacitly confirmed by the reasoner as
well.

6. Question:{Catholicd} → {⊥} (In words: “Is it impossible that a Catholic marries?”)
In fact, since none of the marrying individuals entered so far is Catholic, this is a
reasonable hypothesis. Of course it cannot be proved from the current KB, but it
cannot be rejected either. Again the expert would have to decide on this. This time,
he would decline the hypothesis and enter information witnessing this – possibly a
married couple of whom at least one is a Catholic.

In this fashion, the exploration proceeds until it terminates. Only one of the hypothe-
ses presented in the sequel has to be confirmed by the human expert (and consequently
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Andreas & Christiane× × × × × × × ×

Anupriya & Kedar × × × × × ×

Astrid & Thomas × × × × × × × × ×

Fig. 2. Starting context for the GDRR-exploration of the rolemarried



added to the knowledge base), namely{Catholicd,Priestd} → {⊥} – an axiom, the va-
lidity of which might become subject to change in the centuries to come.

6 Conclusion and Future Work

We have motivated and identified a class of OWL axioms that generalise the well-
known domain and range restrictions in an intuitive way and can be expressed both in
DL-based as well as rule-based formalisms. Moreover, we have proposed an interactive
method for refining a knowledge base with respect to a given role (binary predicate)
by acquiring all GDRRs valid in a certain domain of interest.As indicated by the given
example, we are sure that the proposed technique will be of great help to domain experts
and ontology engineers in specifying their domain since it ensures both consistency of
the result and completeness in the above described sense.

There are several directions into which we will proceed withour work. An interest-
ing question directly related to the logical fragment of GDRRs is to what extent role
involving OWL axioms present in current ontologies can be expressed in the rather re-
stricted form of GDRRs. This would yield an empirical justification for our claim that
the identified fragment is of practical interest.

As to the theoretical foundations, an integration of the presented exploration tech-
nique with Relational Exploration [14] seems to be promising. Together with the obser-
vation, that in recent years, there have been several similar approaches yet differing in
the explored logical fragments as well as the additionally used exploration features, the
quest for a unifying general theoretical framework would bebeneficial since it could
both grant theoretical insights as well as spawn versatile joint work towards an inte-
grated implementation which will proof very useful in the context of knowledge speci-
fication for the semantic web.

From the perspective of algorithm implementation and optimization, one question
longing for empirical clarification is that for the optimal choice of the optional parts
of the algorithm, especially, whether “greedy” or “lazy” scan for a-priori information
should be applied (this amounts to the question: reasoning whenever possible vs. rea-
soning only if necessary). Of course, the optimal choice depends on the performance
of the reasoner employed w.r.t. the several mentioned reasoning tasks. Since different
reasoners might perform differently well in subsumption checking opposed to instance
retrieval, it might even be advisable to use several different reasoners.

Finally, the method presented here fits perfectly into recently started work towards a
synergetic integration of exploration techniques with complementary approaches from
lexical ontology learning aiming at systems that can be beneficially applied in practical
situations, as sketched in [23].

In the end, we are very confident, that “completeness-eligible” fragments of com-
mon knowledge representation languages in combination with exploration-based tech-
niques will help to establish unprecedented quality standards for ontologies.
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