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Abstract—The number of residential devices that are capable of 

using more than one kind of energy carrier is increasing. 

Managing and efficiently utilizing such multi-commodity devices 

is a complex task. However, such approaches allow for more 

energy-efficient future residential environments. Therefore, 

suitable energy management systems are needed that support 

more than one energy carrier. In this paper, we apply a data life 

cycle analysis in combination with an economic role model to a 

prototype hybrid energy use case. The interconnections between 

the involved stakeholders as well as the properties of the data 

are analyzed. The results show that the combination of a 

systematic analysis and an economic role model is suitable for 

gaining a better understanding of complex multi-commodity 

processes. Facilitating the comprehension of hybrid energy use 

cases is a first step towards efficient and effective multi-

commodity energy management systems. 

Index Terms—Data life cycle analysis, multi-commodity energy 

management, smart grid, energy market communication. 

I. INTRODUCTION 

Hybrid or multi-commodity energy use cases are 
applications where more than one type of energy is used. 
When it comes to single-commodity energy management, 
most often, electricity only is considered. However, there are 
other energy carriers that are relatively wide spread: natural 
gas as well as thermal energy comprising both cooling and 
heating. Combining all or a combination of those in a 
residential energy management system (EMS) poses a great 
challenge. Control as well as optimization tasks are more 
complex than for single-commodity applications. Nonetheless, 
the utilization of micro-combined heat and power plants 
(µCHP) for example is on the rise. Many other use cases in 
which the customer has to decide which energy carrier to use 
are conceivable. Those applications show the need for an EMS 
that is capable of handling multiple energy carriers in one 
system.  

In order to be able to create such systems, the underlying 
processes and data flows must be well understood. In this 
paper, we combine an economic role model and a data flow 
analysis method to gain better insights on multi-commodity 
processes. Results can support ICT companies, service 

providers, and researchers by explaining interdependencies 
between market parties. The strong interest in energy data has 
been underlined recently by the $ 3.2 billion acquisition of 
Nest Labs, a start-up for innovative energy sensors and actors 
[3]. Meanwhile, the term Big Data is often mentioned by ICT 
companies if they talk about utilities industry, but often 
connected to the collection of (smart) metering data. However, 
the need to manage large amounts of data and messages is not 
only connected to smart metering. It is a direct result of 
liberalization in energy markets and more complex business-
to-business and business-to-consumer processes. First 
applications of demand side management respectively demand 
response have started. Holistic approaches for multi-
commodity energy management lead to more elaborate 
processes. 

II. RELATED WORK 

The idea of scientific data life cycles is introduced in [1]. It 
addresses the need for a well-defined data management 
process for scientific data, especially if large data volumes are 
created, stored and analyzed continuously. The main concerns, 
identity and access management, meta data handling, 
monitoring, modeling and optimization in data intense 
scenarios, are connected to the technical implementation of 
data life cycles. As mentioned in the introduction, the energy 
data life cycles presented in this paper focus on the 
interconnections of data flows within a typical unbundled and 
liberalized energy market and not on scientific life cycles. 
Such data flows are dominated by energy market 
communication defined by regulators and federal associations 
representing acting industries. In [2], a market communication 
scenario of energy supplier change processes in Germany is 
investigated. Roles investigates are final consumer, retailer 
and metering operator. A simulation is presented for data 
exchange processes associated with the change of an 
electricity supplier today (monthly change possible) and in the 
future (idea of hourly change). The authors state that even the 
possibility for an hourly change with a very high willingness 
to change will lead to small sets of data compared to scientific 
cases investigated in [1]. Ireland’s electricity market and data 
flows of power meter data are described in [4]. In [5] the 
electricity market of Flanders is introduced, a balance 
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responsible party, retailers and DSO is included. The paper 
also shows another implementation of market partner 
communication based on an EDI subset for utilities. The 
relevance of future markets with a stronger role of the balance 
responsible party is clearly stated in several research projects, 
e.g. in MeRegio [6] or RegModHarz [7]. Concerning the 
handling of large data in energy, one can find several white 
papers from IT industry but only minor scientific discussion. 
Studies from Deutsche Telekom [9] and IBM [9] testify only 
several Terabytes of metering data per year and region. That is 
the case for resolutions of 15 minutes and central storage. 
More challenging applications of large scale energy data to be 
handled can be found on the trading level [cf. 12] and when 
looking at communication aspects [cf. 11]. Finally, we need to 
distinguish the data life cycle [1] approach from the 
information life cycle approach introduced by [13]. In contrast 
to information life cycles, which focus on the value of 
information retrieved by data, a data life cycle is focusing on 
the technical basis of the life span of data. 

III. DATA LIFE CYCLE AND DATA FLOW ANALYSIS 

Research in the project Large Scale Data Management 
and Analysis (LSDMA) focusses on the scientific Data Life 
Cycle (DLC) of different projects [1]. In the initial concept, 
the analysis covers the whole scientific DLC. In this paper, we 
use the idea of DLCs [1] and apply it to processes in hybrid 
energy scenarios, covering also economic aspects. In the 
following section we shall present the concept of a data life 
cycle analysis (DLCA) as well as the involved stakeholders. 
Besides, we show the results of such an analysis in a prototype 
multi-commodity use case. 

A. Data Life Cycle and Data Life Cycle Analysis 

The DLC model consists of six phases (see Fig. 1). In the 
first phase, acquisition, data are gathered, created, or measured 
to be used later on in the DLC. The newly created primary 
data are transmitted from their origin to a storage system in the 
second phase. The previously transmitted data are then stored, 
which is the third phase. Usually, most time is spent in the 
fourth phase, the data analysis. Primary or derived data are 
distributed to other systems in the fifth phase. Finally, in the 
sixth and last phase of one iteration, data are deleted.  

A DLCA uses the aforementioned model of the DLC as an 
underlying scheme to gain a better understanding of the data 
and their flow in the system as well as the involved parties. 
For the DLCA, a process is divided into its separate phases 
and each phase is investigated individually. In the data 
acquisition phase the creation of the data is in the focus. 
Possible sources are simulations, experiments, sensors, other 
processes, and more. Furthermore, data formats, amount of 
data, and quality of data are investigated. Questions to be 
answered in the second phase, the transmission, comprise data 
origin and destiny, transmission protocols, bandwidth, 
formats, compression etc. The transmitted data need to be 
stored. Thus, it must be determined whether using databases 
or a file based system is appropriate. Data formats as well as 
location of storage also play a crucial role. Usually, the fourth 
phase, analysis, is the most important part of a DLC. Here, 
different methods and algorithms are used to derive 
information from the previously gathered data. A profound 

understanding of the involved processes is necessary to 
evaluate effectiveness and efficiency of the data analysis. Both 
primary and derived data might be of interest to other systems 
and stakeholders. Thus, in the fifth phase, data are distributed. 
To understand this step, information about involved 
stakeholders and quality as well as amount of data is 
necessary. The DLC is concluded with the deletion of primary 
and derived data. Triggers for deletion, the kind of data to be 
deleted, and the point of time when to delete are examined in 
this phase. 

Figure 1. The six phases of a data life cycle and examples for the 

corresponding aspects to be analyzed. 

In this paper, the basic idea of a DLCA serves as an 
inspiration for a different perspective. We combine an 
economic role model with the analysis. This allows for a more 
detailed view on the interconnections between different 
entities and data flows. Hence, during the distribution phase, 
data from one entity’s DLC can be transferred to another 
entity’s DLC, and thus, one DLC can be the source of data for 
another DLC. This leads not only to new connections between 
the different phases but also to connections between different 
DLCs. It is common that several DLCs form a closed-control-
loop-like system in which data are finally fed back into the 
original DLC.  

B. Stakeholders  

Our simplified role model addresses four kinds of 
stakeholders and several specializations (see Fig. 2). The basic 
description is based on the ENTSO-E model [cf. 8]. We 
include fundamental roles of a typical liberalized and 
unbundled energy market, also applicable in divisions of fully 
integrated classic utility companies. Considered roles have 
particular interests in data (see Tab. 1). 



 

Figure 2. Role model utilized in data life cycle analysis. 

 Customer DSO Retailer BRP 

Metering data x x x x 

Billing data x x x  

Operational data x x   

Contractual data x  x x 

 

TABLE I. DATA INTEREST OF DIFFERENT STAKEHOLDERS. 

1) Customer (or consumer): A (private or commercial) 

party that consumes electricity. Prosumers, consumers with 

small scale generation facilities, are included in this role, too. 

They are interested in metering data, billing data, and 

operational data of micro CHPs. Different kinds of energy, 

namely electricity, gas, and thermal energy, will result in 

different data.  

2) Distribution System Operator (DSO): A party that 

operates one or more energy grids and is responsible for 

metering at customers’ sites. In case of electricity-DSOs the 

low and medium voltage grid is addressed. In case of gas-

DSOs the regional downstream infrastructure is addressed.  

3) Retailer: A role responsible for gas and electricity 

retail. It has contracts with its consumers about delivering 

energy or buying energy produced at the prosumer level. The 

retailer is also responsible for invoicing a concerned party 

(billing agent function). Furthermore, retailers buy energy at 

the wholesale level. We think that it’s reasonable to exclude 

existing regulations and incentives by the states to promote 

renewable energy and dispersed generation. As a consequence 

the retailer party is responsible to buy energy at the prosumer 

level in our model. 

4) Balance Responsible Party (BRP): A party that has a 

contract providing financial security and identifying balance 

responsibility in the market. It is equivalent to “Program 

responsible party” in the Netherlands, equivalent to “Balance 

group manager” in Germany, and equivalent to “market 

agent” in Spain.  
 

C. The Data Life Cycle Analysis  

In the project LSDMA the data life cycle analyses focus on 
the technical level of different projects in many research areas. 
This effort results in solutions, work flows, and tools 
applicable to a variety of other related projects. It is our 
intention to adapt the method of DLCs to a multi-commodity 
smart grid scenario. Therefore, we expand the model of data 
life cycles. Different roles, for example the stakeholders 
mentioned above, are introduced. For each stakeholder, an 
individual DLC is defined and the interconnections between 
them are demonstrated. The combination of the DLCA and the 
role model results in a detailed view on the complex structure 
of a well-defined use case.  

A very common hybrid or multi-commodity application in 
smart grid scenarios is the use of a micro combined heat and 
power plant (µCHP) with additional electrical heating. Such a 
device provides both heat and electrical energy. It does so by 
combusting fuel in an engine while driving a generator. A 
relatively widespread µCHP, the Dachs by the company 
Senertec [14], produces about 12 kW of thermal power and 5 
kW of electrical power. It can thus be used in single 
households as well as in multi-family homes. Even though the 
Dachs and other µCHPs can be fueled with a variety of fuels 
such as gasoline, fuel oil, and natural gas, we restrict this use 
case to natural gas. 

Using the µCHP efficiently requires a decision support 
system or a residential energy management system (EMS) 
which is capable of handling multi-commodity optimization 
problems. Multi-commodity use cases are of a much greater 
complexity than applications that make use of electricity or 
heat only. We aim to make multi-commodity use cases 
manageable by performing a DLCA combined with the role 
model. In the following, we describe the results of the analysis 
of a µCHP use case. Four different stakeholder roles are 
involved: a customer (C) with a µCHP, one distribution 
system operator (DSO) each for electricity and gas, one 
retailer (R) each for both electricity and gas, and a balance 
responsible party (BRP) for electricity only. They do not act 
independently but their processes are interconnected. Refer to 
Fig. 3 for an overview. An iteration of the standard data life 
cycle is shown on the left. The adjacent columns present a 
brief description of the respective DLC’s phases itemized by 
the different stakeholders that are involved. 



Figure 3. Interconnected data life cycles in a multi-commodity setup. 

 

 

The customer’s DLC could be considered the central DLC 
as it affects all other parties’ DLCs. The µCHP is equipped 
with several sensors that provide information on its system 
state. Those data as well as metering data of both electricity 
and gas meters are primary data. Furthermore, user 
preferences are collected and control signals or incentives are 
received. All data are transferred from their respective origins 
to the customer’s EMS. Usually, a local database is used as 
storage. Primary data are aggregated and derived values are 
calculated. The entirety of data is then used to analyze the 
current system state and optimize the use of the µCHP 
depending on different parameters and the input data. Some of 
the data are distributed to other stakeholders: The gas and 
electricity retailers as well as the gas and electricity DSOs 
receive aggregated metering data. Additionally, the electricity 
retailer receives flexibility profiles which contain information 
on load shifting and production flexibilities of the customer. 
The customer’s EMS usually deletes primary data which are 
no longer necessary and keeps only derived data in its 
database.  

Within the restricted view of this use case, the DSOs 
receive data from customers only. While electricity and gas 
DSOs might be different entities, their processes are of the 
same kind and thus, they are aggregated in our analysis. The 
aggregated metering data are transferred from the customers’ 
systems to the DSOs’ meter data management system. They 
are stored in a local database. As the data might be corrupt or 

incorrect, a data validation step is necessary. Consequently, 
the verified data are used for billing purposes. Obviously, a 
connection between customer information and metering data 
is necessary in order to associate both. The DSO can 
furthermore use data for forecasting. In the scope of this 
particular use case, data are sent to one other role only: the 
retailer. Both electricity and gas retailers receive aggregated 
metering data which originally come from the customers. 
Besides, they receive grid usage invoices. Data which is no 
longer necessary is deleted. The amount of data which can be 
deleted is rather small as aggregated metering data are not 
only required as proof for the billing processes but also as a 
basis for reliable forecasting. Therefore, they will be stored for 
several years. 

The retailers’ situation is comparable to the DSOs’. Within 
the focus of this use case, there are gas and electricity DSOs. 
Even though they might not be the same entity, they belong to 
the same role. Therefore, they can be aggregated. The retailers 
receive aggregated metering data, both from electricity and 
gas consumption. Flexibility profiles are received for 
electricity only. Additionally, grid usage invoices and contract 
data are acquired. The aggregated metering data are not 
received from the customers directly. Instead, they come from 
the DSOs. The customers send their electricity flexibility 
profiles. For gas, there are no flexibility profiles as the gas 
distribution grid itself offers a large buffer capacity and thus, 
short-term variation in demand does not have a great impact. 



The DSO sends grid usage invoices to the retailer. Lastly, 
contract data from the back office are received. All data are 
transmitted to the retailers’ enterprise resource planning 
systems (ERP). The ERP is also used as storage for the 
aforementioned data. Like the DSOs, the retailers are 
responsible for data validation, billing, and forecasting. 
Received data can be corrupt and thus must be checked. The 
billing process is for the customers, in contrast to the DSO’s 
billing process which is for the retailer. Forecasting is done by 
taking all stored data into account and thus providing reliable 
prognoses of energy consumption. Data is distributed to two 
roles: the balance responsible party and the customer. An 
invoice is sent to the customer by the retailer, not by the DSO. 
Aggregated metering data, flexibility profiles, and contract 
information are sent to the balance responsible party. Deletion 
of data is comparable to the DSOs. Any data that is no longer 
necessary can be deleted. However, a great part of the stored 
data is needed as proof for billing and forecasting. 

In our model, the balance responsible party (BRP) does not 
exist for gas as the gas grid has a rather large buffer capacity 
and balancing it is less difficult than balancing a power grid 
with strict frequency constraints. The BRP receives 
aggregated metering data from electricity consumption as well 
as electrical flexibility profiles. Even though both kinds of 
data are originally created by the customers, they are not 
received from them directly. Instead, they are transmitted to 
the retailers and from there to the BRP’s control system where 
they are stored. In order to balance the grid, forecasting and 
calculation of price signals or incentives are done. As 
explained before, the frequency constraints in an electrical 
power grid are rather strict and thus, proper control is 
necessary. Even though many data are no longer directly 
necessary for the calculation of control signals, they can be 
used as a basis for better forecasting and thus improve the 
overall balancing process.  

The described data life cycles and their interconnections 
are the result of the analysis of a limited use case. 
Furthermore, they are a limited view within a model. 
However, the µCHP use case is a prototypical application of 
multi-commodity energy use. Even though it might appear 
rather simple at first glance, it is quite complex and involves 
many different parties. Analyzing this use case facilitates 
understanding the complexity of multi-commodity 
applications.  

IV. CONCLUSION 

Worldwide, the on-going liberalization and unbundling of 
energy markets result in more complex market communication 
processes. In the future, changes in energy policy making will 
focus on increasing renewable energy usage. Most likely, 
dispersed generation will grow. The integration of such 
generation facilities requires more flexibility at the customer’s 
site. First approaches of demand side management 
respectively demand response have already been 
implemented. New incentive systems will build on dependable 
and regular messaging between market parties, especially at 
customer’s site. Higher energy efficiency can be reached if we 
consider multi-commodity energy management also in 
residential scenarios. Multi-commodity, also known as hybrid 

energy, optimization approaches based on residential energy 
management systems can provide more flexibility than 
traditional I-shaped solutions. However, in such a setup the 
communication and processing effort will continue to 
increase. The data life cycle analysis as well as the economic 
role model presented in this paper contributes to a better 
understanding of roles and processes involved in multi-
commodity scenarios. 

Based on the fundamentals of data life cycles, introduced 
in scientific data handling, we investigated a first real world 
scenario and presented a valuable contribution to further 
development in energy data handling. Besides, our 
investigation can help to identify other research topics. 
Especially, the distribution of data to several other market 
parties is of interest for privacy and data usage control 
approaches. Market-ready optimization solutions for 
residential energy management systems are not yet available 
and companies dealing with market communication support 
systems do not focus on data handling at customer’s site so 
far. We believe that well known data life cycles based on 
national market implementation will be necessary if processes 
and data handling need to be efficient. 
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