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Abstract. Knowledge Graphs (KGs) model statements as head-relation-tail triples.
Intrinsically, KGs are assumed incomplete especially when knowledge is repre-
sented under the Open World Assumption. The problem of KG completeness
aims at identifying missing values. While some approaches focus on predicting
relations between pairs of known nodes in a graph, other solutions have studied
the problem of predicting missing entity properties or relations even in the pres-
ence of unknown tails. In this work, we address the latter research problem: for
a given head entity in a KG, obtain the set of relations which are missing for the
entity. To tackle this problem, we present an approach that mines latent informa-
tion about head entities and their relations in KGs. Our solution combines in a
novel way, state-of-the-art techniques from association rule learning and commu-
nity detection to discover latent groups of relations in KGs. These latent groups
are used for predicting missing relations of head entities in a KG. Our results on
ten KGs show that our approach is complementary state-of-the-art solutions.

1 Introduction

Knowledge graphs (KGs) have become an important foundation to represent knowl-
edge exploited in, e.g, Question Answering, Entity Linking, and recommender systems.
While current real-world KGs, such as DBpedia [3] and Wikidata [20], contain millions
of facts, they still suffer from incompleteness which may hinder the effectiveness of the
applications where they are consumed.

Motivating Example. Consider the KG depicted on Figure 1 (left), representing facts
about persons. However, in the KG, the entity Paul_Sereno is not described with the
relation placeOfBirth. The question that arises is whether the relation placeOfBirth for
this head entity is missing. Furthermore, it could be that the actual value (i.e., the tail
entity) for placeOfBirth does not exist in the KG. This work aims at predicting missing
relations for a given head entity, regardless of the existence of the tail entity in the KG.

To address the problem of KG completeness, approaches typically assume that two of
the components in the triple are known a priori, e.g., when predicting relations, it is as-
sumed that the head and tail entities are represented in the KG. This is a typical assump-
tion in approaches that rely on subsymbolic representations, e.g., KG embeddings [5,
19]. However, predicting missing relations to estimate head entity completeness is not
directly possible under this assumption, as shown in the following example. Following
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Fig. 1: Motivating Example. Consider the given subgraph of DBpedia on the left. We
address the problem of predicting missing relations, based on a given head-entity. On
the right we converted the graph into a bipartite graph by only considering the heads
and the relations of the KG. The red dotted edge corresponds to the motivated scenario
of predicting the missing relation placeOfBirth for entity Paul_Sereno.

the motivating scenario from Figure 1, assume that the entity Paul_Sereno was actually
born in Aurora (Illinois, USA), leading to the fact that current approaches cannot detect
that the entity Paul_Sereno is incomplete with respect to the relation placeOfBirth, as
they cannot establish an association between a head entity and an unknown tail entity.
To overcome this limitation, we propose a solution to perform the prediction of missing
relations associated with an entity in a KG even in the presence of unknown tail entities.
Our solution comprises two main stages: the relation-centric stage and the prediction
stage. In the relation-centric stage, we use a technique from association rule learning
to reduce noise and mining groups of frequently occurring relations. Afterwards, the
information from that analysis is represented as a graph. This graph is used to identify
communities of relations, which represent clusters of latently related relations. In the
prediction stage, the information from the interactions of the entities in the KG and the
information about the latently related relations encoded in the communities are used to
predict missing relations of head entities. Experimental results show that the evaluated
approaches exhibit a complementary performance, and that our approach significantly
outperforms the state-of-the-art in four out of the ten studied KGs.

2 Related Work

Knowledge Graph Completion. TransE [5] represents relation, head and tail entities
as vectors. ComplEx [19] is based on the same concept as TransE, but uses complex-
valued vectors for predicting relations in knowledge graphs. Both methods are trans-
ductive learning algorithms, making it possible to predict missing parts of triples, given
that the individual entities and relations are known to the model in advance. In contrast
to these methods, EDMAR [18] and RDF Shape Induction [10] are inductive methods
that learn a general model from examples and are therefore applicable to all triples,
even if entities and relations were not known in advance while learning the model. In
the context of KG completion, there are approaches that rely on the symbolic represen-
tation of KGs. HARE [1] is an engine that detects missing values in a KG based on
the Local-Closed World Assumption. It crowdsources the missing values to complete
the KG and allows for answering SPARQL queries. Other work specifies the number
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of missing relations and thus measures the completeness of the KG [14]. The informa-
tion about missing relations can be used to learn rules [8] for KG completion. All these
methods predict relations between two given entity nodes in the KG.
Frequent Itemsets. High-utility Itemsets [7, 9] is an extension to Highly-correlated
itemset mining [2] in which the most frequent itemsets are to be found, which yield the
highest profit. The utility of the transactions is the most important criteria. However,
the problem of finding high-utility frequent itemsets is computational very expensive.
Faster High-Utility Itemset Mining (FHM) is a very fast High-Utility Itemset Mining
algorithm [7], which reduces the number of join operations and thus improves the run-
time. However, utilizing utility results in many itemsets which yield a high utility but
correlate only very weakly. Therefore, FHM was extended to guarantee that the itemsets
correlate strongly, besides yielding a high utility [7].
Community Detection. The identification of communities is particularly prominent in
the area of social network analysis [17]. Community detection, however, is not exclu-
sively applicable to social networks. Network analyses in the field of co-authorship are
also conceivable [12]. In general, a community is a dense subgraph. Detecting them is
computationally very expensive. For this reason, random walks [15] or grouping meth-
ods [16] have been used to simplify and speed up the computations. However, a trade-
off will arise here between the quality of the results and runtime for large networks.
Nevertheless, there are also approaches that have returned reliable results on very large
graphs while exhibiting a satisfying runtime [6].

3 Problem Definition

In this work, we define a knowledge graph G as G = (H ∪ T,R), where H denotes
the set of head entities, T the set of tail entities, and R the set of labelled relations. The
information in the knowledge graph G can be modeled as triples (h, r, t), with h ∈ H
denotes the head entity which has a relation r ∈ R to a tail entity, denoted as t ∈ T .
Furthermore, consider Rh(G) the set of relations where the entity h appears in the head
of a statement in G, i.e., Rh(G) = {r | ∃t ∈ T, (h, r, t) ∈ G, r ∈ R}.

Problem Statement. Given a knowledge graph G, consider G∗ the ideal graph, contain-
ing all statements known about entities that should be in G, i.e., G ⊆ G∗. For a given
head entity h ∈ H in G, the research problem is to identify the set of missing relations
of h, i.e., the set of relations defined as Rh(G

∗) \ Rh(G).

4 Our Approach

An overview of our proposed solution to predict missing relations is presented in Fig-
ure 2. In our proposed solution, we distinguish two main stages: the relation-centric
stage and the prediction stage. The relation-centric stage captures the latent features of
the relations encoded in the KG. The outcome of this stage is then used in the prediction
stage to predict missing relations of head entities.
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Fig. 2: Proposed approach for the predictions of missing relations for head entities,
based on a knowledge graph G. The relation-centric stage captures latent knowledge
between the relations. The prediction stage predicts missing relations based on the com-
munities detected in the previous stage and the KG G for a given head entity h.

4.1 Relation-Centric Stage: Mining Latent Interactions from Relations

This stage identifies groups of relations that are related based on the implicit knowl-
edge encoded in G. The input of this stage is a KG G. To get a better view on the
co-occurrence of relations we transform G into a bipartite graph. In this bipartite graph,
nodes represent head entities and relations, while edges encode the head-relation inter-
actions. We denote this graph the head-relation graph.

Definition 1 (Head-Relation Graph). Assume a KG G = (H∪T,R). A head-relation
graph is a bipartite graph I = (V,E), where V = H ∪R. An edge (h, r) ∈ E denotes
that the head entity h ∈ H interacts with the relation r ∈ R in G.

To illustrate the concept of a head-relation graph I , consider the running example
from Figure 1 (right) of the graph. The head-relation graph corresponds to persons and
their existing outgoing relations in the knowledge graph G. Based on I , we will identify
highly-correlated relations. To this end, we propose the application of frequent itemsets
mining. Frequent itemsets approaches rely on transactions to identify items that highly
co-occur. In our approach, the set of all relations of one head entity represents one trans-
action. Therefore, all transactions can be determined by the union over the transaction
of the individual head entities. A good side effect of using frequent itemsets, is the re-
moval of noise in the data and filter out relations that occur very rarely. One important
aspect to consider when applying frequent pattern mining is that many frequent patterns
are not interesting and items cannot appear more than once in a transaction. This is for
the usage of itemset mining in KGs not useful, since a head entity can have the same
relation multiple times to different tail entities, e.g. fields, and this might affect the com-
putation of itemsets. At the same time some relations which occur very infrequent but
are of high interest could be higher weighted than others that occur very frequently in
a KG but are at the same time only of limited interest. Using the Apriori algorithm [2]
would identify frequent itemsets, but could not overcome those limitations. To over-
come those two limitations, the Fast Correlated high-utility itemset Miner (FCHM) [7]
efficiently finds highly correlated itemsets, based on transaction data. FCHM prunes
all itemsets that does not fulfill a minimum number of utility (minutil) and correlation
(minbond). The bond measure indicates how items in a frequent itemset correlate and
thus expresses the relative importance of a relationset [7, 13]. This method allows for
identifying relations that correlate and, therefore, occur very frequently with each other.
In addition, we can identify and remove relations that occur only very rarely in the KG.
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These low occurring relations are noise in the KG and due to their low occurrence pro-
vide only very little information for the prediction of relations. The input for FCHM is
a set of transactions. One transaction is the list of existing relations for a head entity h,
i.e., Rh. Considering our motivating example in Figure 1, the transaction for head entity
Paul_Sereno is the following (residence, fields, nationality, almaMater). The computa-
tion of highly-correlated relationsets, using a head-relation graph is defined as follows:

Definition 2 (Highly-Correlated Relationsets). Let I = (H∪R,E) be a head-relation
graph, minbond ∈ {x ∈ R | 0 ≤ x ≤ 1} be a minimum bond threshold and
minutility ∈ R+ be a minimum utility threshold. The set of interactions is D =
{T1, T2, . . . , Tq} where each element is a tuple Tx :=

(
X = {r ∈ R | ∃hx ∈

H, (hx, r) ∈ E}, |X|
)

containing the relations of head entity hx ∈ H and the number
of the relations as utility. FCHM receives minbond, minutility and D as input param-
eters and returns the set S. The set S = {S0, S1, . . . , Sm} is a set of highly-correlated
relationsets where Sk ⊆ R and B(Sk) ≥ minbond, for each Sk ∈ S. B(Sk) denotes
the bond measure of the highly-correlated relationset Sk and is defined as follows:

B(Sk) =
support(Sk)

dissup(Sk)
,where

support(Sk) = |{h ∈ H | ∀r ∈ Sk : (h, r) ∈ E}|,

dissup(Sk) =
∑

r∈Sk

|{h ∈ H | (h, r) ∈ E}|.

The outcome of FCHM are sets of highly correlated relations, called relationsets. The
returned relationsets in S are different in size and strongly overlapping. Thus, a relation
r ∈ R can occur in different relationsets. Due to the overlap and the differences in the
sizes of these sets, the information from the relationsets will be grouped. To extract
information from the relationsets, we will model the corresponding relations as nodes
in an undirected, weighted graph, which we denote relation-bonding graph G′.

Definition 3 (Relation-Bonding Graph). Let S = {S0, S1, . . . , Sm} be a set of highly-
correlated relationsets. An Relation-Bonding Graph is an undirected weighted graph
G′ = (R′, E′, w), where R′ =

⋃
Sk∈S Sk, and for each Sk ∈ S , rx, ry ∈ Sk ⇒

(rx, ry) ∈ E′. The weights w are defined as a function w : R′×R′ → R and computed
as the sum of the corresponding bond measure, i.e.:

w(rx, ry) =
∑

rx,ry∈Sk

B(Sk).

The graph G′ contains the relations from the relationsets as nodes. It should be noted
that due to the computation of the highly-correlated relationsets, R′ ⊆ R applies, which
means that not every item r ∈ R of the original graph G must also be represented in
G′. The edges of G′ represent the common occurrence of relations in the same rela-
tionset. The weight of the edge between the relations is the sum of all bond values of
the relationsets in which both relations occur. The weight of the edge thus expresses
the strength of its tie across all relationsets. In the last step to determine the latent fea-
tures from the relations, we will use the information represented in the relation-bonding
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graph G′ to identify communities within. A community is a set of nodes in a graph such
that each node of the set is densely connected to each other node in the set. The identi-
fication of communities in G′ is used to group relations that are strongly related.

There are many community detection algorithms that use different methods, e.g.,
minimum cut method or modularity maximization. In particular, the modularity de-
scribes the strength of a network by dividing it into communities. We chose Fastgreedy
algorithm [6] for detecting communities, which optimizes the metric modularity when
discovering communities. A benefit of Fastgreedy is that there is no need to predefine
the number of communities since this algorithm detects the best number of communi-
ties by itself. Fastgreedy is a non-overlapping community detection algorithm, which
means that nodes in the graph are exactly assigned to one community. By using the
Fastgreedy algorithm, communities will be detected in the relation-bonding graph G′.
These communities represent a set of relations from G′ that have a high density, with
only a few connections to the other communities. The communities represent latent
features mined from the KG and, in our work, are called relation communities.

Definition 4 (Relation Community Set). Let G′ be a relation-bonding graph. A re-
lation community set is denoted C = {C1, C2, . . . , Cp}, where Cj ∈ C is a relation
community defined as a dense sub-graph of G′, and Ci ∩Cj = ∅, for each Ci, Cj ∈ C .

4.2 Prediction Stage: Predicting Missing Relations in Knowledge Graphs

We use the information from the KG G and the information we mined from it and
encoded in the relation community sets C, to predict missing relations of head enti-
ties. In general, the number of possible relation candidates for predicting is, depend-
ing on the number of relations in the KG, usually very high. Therefore, in the fol-
lowing, we reduce the number of possible candidate relations. For this, we use the
information from the community sets C. We compute for a head entity h the relative
number of its existing relations in the KG G to each community set. We sort the re-
sults in descending order. Exemplary sorted communities for a given head-entity is
e.g. C1 = 7

10 , C2 = 3
23 , C3 = 1

10 , C4 = 0. We select the first community set C1

with the highest relative frequency, unless the relative frequency is one. A relative
frequency of one for a community means that the head entity h is already complete
with respect to the relations from this community. Possible candidates for missing
relations of a head entity h are now all relations in this community set that the en-
tity h does not already have. In mathematical terms, this means that, starting from a
fixed h and Ci, we check the following relations as possible candidates for prediction:
Rcand = {r | r ∈ R : r ∈ Ci ∧ ¬∃t ∈ T : (h, r, t) ∈ G}. For each of these candi-
dates we compute a confidence of prediction. The confidence for predicting a relation
r ∈ Rcand for head entity h ∈ H is computed as follows:

conf(h, r) =
|{hj | hj∈E ∧ ∃t∈T :(hj ,r,t)∈G∧∃rk∈R,rk 6=r∃s,t∈T :(hj ,rk,s) ∧ (h,rk,t)}|

|{hj | hj∈H∧∃t∈T :(hj ,r,t)∈G}|

The confidence divides the number of head entities that have relation r and share at
least one relation with h by the number of entities that have relation r. We compute for
each relation in Rcand its confidence and use the top-k relations as predictions.
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Table 1: Overview of experimental configurations per knowledge graph. At the top of
the table, a summary of characteristics and at bottom of the table, parameters used for
the computation of communities for our approach.
Metric FB15k WN18 Pers(DBp) Pers(WD) Comp(DBp) Comp(WD) Mov(DBp) Mov(WD) Songs(DBp) Songs(WD)

#Entities 14,951 40,943 229,613 190,419 63,545 10,925 231,637 287,775 39,619 126,606
#Relations 1,345 18 2,239 1,509 1,189 304 959 382 332 321
#Train 483,142 141,442 313,296 229,059 142,887 12,103 396,834 390,295 95,833 184,542
#Valid 50,000 5,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000
#Test 59,071 5,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000

minbond 0.1 0 0.1 0.1 0.1 0.1 0.1 0.3 0.1 0.1
minutility 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

5 Experiments

Datasets. We used DBpedia (DBp) [3] and Wikidata (WD) [20] for the evaluation. We
used subgraphs related to the class Person (Pers), Company (Comp), Movie (Mov) and
Song. In addition, we used FB15k [4] and WN18 [11] for evaluating our approach. An
overview of the characteristics of the KGs used in this evaluation is given in Table 1.
Silver Standards. We constructed silver standards for each of the previously described
KGs. We split the KGs into three disjunctive sets: training, validation, and test set. We
call it silver standard, as the created test sets may suffer from incompleteness originated
in the KG, thus, creating spurious false positives. In other words, a prediction may be
correct but the relations might be missing in the KG and hence in the test set.
Configurations. We set the utility for computing frequent relationsets to a constant
value of 1 ,i.e, each relation is considered equally important. The minbond where
chosen such that the relations of the union of all highly-correlated relationsets cov-
ers 70%–90% of the relations in G. In this way, we make sure that the information loss
is minimized and at the same time enable a sufficient removal of noise in the data. This
resulted in minbond values from 0 to 0.3 for the different KGs. The used parameters
of the entire experimental setup are given in Table 1.
Metrics. Following related KG completion studies, we use Hits@k as evaluation met-
ric. Hits@k measures the proportion of correct relations in top-k ranked relations.
Preprocessing. For DBpedia and Wikidata, we removed regularly appearing relations
for all head entities, e.g., wikiPageID, wikiPageRevisionID, and P31.1 We removed
them for making predictions more challenging by deleting regularly occurring relations.

5.1 Comparison to Related Knowledge Graph Completion Approaches

We selected TransE [5] and ComplEx [19] for comparison, since they gained a lot of
momentum in the area of KG completion and achieve very good results on prominent
knowledge graph completion tasks. We used the default parameters for TransE and
ComplEx for all KGs. It is import to note that, unlike our method, both methods use

1 These are DBpedia- and Wikipedia-specific relations to denote information about the
Wikipedia page and the class of an entity, respectively.
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Table 2: Comparison of our approach with state-of-the-art algorithms. Our approach
(CPP) uses the head entity to predict missing relations. The compared methods uses
head and tail entity to predict missing relations.

Hits@1 Hits@3 Hits@10

KG CPP TransE ComplEx CPP TransE ComplEx CPP TransE ComplEx

FB15k .389 .667 .519 .473 .885 .800 .698 .974 .940
WN18 .561 .924 .945 .650 .974 .986 .900 .997 .995
Pers(DBp) .438 .085 .085 .490 .149 .233 .655 .246 .292
Pers(WD) .253 .328 .273 .254 .431 .468 .367 .517 .618
Comp(DBp) .275 .185 .319 .345 .326 .699 .580 .452 .780
Comp(WD) .635 .483 .008 .647 .603 .017 .674 .692 .058
Mov(DBp) .393 .453 .106 .615 .515 .222 .900 .582 .347
Mov(WD) .471 .383 .205 .567 .450 .424 .833 .527 .553
Songs(DBp) .398 .444 .409 .498 .898 .736 .811 .980 .887
Songs(WD) .488 .788 .203 .654 .941 .359 .825 .986 .452

head and tail information to predict relations. The additional information about the tail
entity for predicting the missing relation is not available to our approach. This must
be taken into account when analysing the results, which are presented in Table 2. The
results show that even without the information about the tail entity, our approach is
competitive with state-of-the-art methods. For some KGs, our approach achieved higher
values in the Hits@k metric than the compared methods. Our solution is superior to the
other methods in KGs with a high number of relations, as is the case of Pers(DBp). At
the same time, in Pers(DBp), the mean size of communities and the standard deviation
is very low. This ensures that there are fewer relations in the individual communities and
thus the predictions become more precise. Considering the Pers(WD) KG, the number
of relations is also very high, but the structure of the computed communities is not as
compact as the community structure of Pers(DBp) KG. The mean size of communities
in Pers(WD) is higher (cf. Table 3), as well as the standard deviation. As a result, the
Hits@k performance is lower, compared to the other methods. Another consideration
in this evaluation is that not all the relations in the silver standard are covered by the
communities computed by our approach. As can be observed in Table 3, except for
the WN18, not all the relations are present in the detected communities. This coverage
varies from 37.07% to 86.47%, which hinders the number of true positives achieved by
our approach. Therefore, in the following experiment, we analyze the performance of
our solution when the silver standard only contains relations from the communities.

5.2 Comparison with Relations in Community

To demonstrate the relevance of the latent structures of the relations in the communi-
ties, the following are examples of relation communities for FB15k detected with our
proposed approach: Community 18 = {nominated_for, honored_for, award_nominee},
and Community 25 = {symptom_of, diseases, causes, risk_factors}.
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Table 3: Overview of the structure of computed communities for the studied KGs.
Metric FB15k WN18 Pers(DBp) Pers(WD) Comp(DBp) Comp(WD) Mov(DBp) Mov(WD) Songs(DBp) Songs(WD)

Relations 86.47% 100% 72.53% 84.84% 78.47% 71.38% 51.02% 37.07% 77.27% 44.59%
Communities 110 3 244 76 77 28 104 31 29 31
mean Com. 10.57 6 6.52 16.58 12.12 7.75 4.55 4.48 8.21 4.52
std. Com. 15.49 4 16.9 44.83 39.53 10.30 4.32 8.60 10.28 4.68
max Com. 71 10 213 313 313 47 40 44 39 24
min Com. 2 2 2 2 2 2 2 2 2 2

In this evaluation, we study the results of our approach if we only consider rela-
tions in the test set which are present in the communities. To this end, we will filter out
triples that contain relations which are not present in the computed communities for the
respective KGs. We report again on the Hits@k metric (cf. Table 4), since it allows for
a better comparison with the results from the previous section. As expected, the overall
performance of our approach increases, since now only known relations are now consid-
ered. For Hits@1, our approach now significantly improves for FB15k. With increasing
k, however, the gain in Hits@k turns out not to be strong in the same proportion. The
result of WN18 does not change at all, since all relations are covered in the communi-
ties. For the KGs Pers(DBp) and Pers(WD), the performance of our approach does not
significantly increase. We hypothesize that the structure of the communities, more pre-
cisely the very large average size and standard deviation, is the reason for this. Similar
observations apply to Comp(DBp). The largest improvement in Hits@k can be observed
in Comp(WD), which has a moderate coverage of relations (71.38%, cf. Table 3). The
standard deviation of the communities is slightly increased, but the dataset has a low av-
erage community size. The results of this KG increase significantly due to the reduction
to known relations. The results for both Mov(DBp) and Mov(WD) do not increase sig-
nificantly, although the average size of the communities is very small, and the coverage
of the relations is moderate to low, respectively. However, our approach outperforms
the state-of-the-art in these KGs in the previous evaluation (Hits@3, Hits@10), which
indicates that the original silver standard already includes a high number of relations
that are covered by the communities. Likewise, there is no strong effect on the results
of Songs(DBp). However, Songs(WD) benefits from the adjustment of the test dataset.
Both, the amount of covered relations in the communities is low, as well as the average
number of relations per community. Restricting the data and the analysis to relations
known in the communities leads to an improvement of the results.

5.3 Discussion of Experimental Results

While TransE and ComplEx exploit head and tail entity information to predict the miss-
ing relation information, our approach uses only the head entity to perform the pre-
dictions. Therefore, a direct comparison is difficult. However, in order to position our
empirical results with respect to state-of-the-art solutions, we still compared against
KG embedding methods despite the differences in the underlying assumptions. The ex-
perimental results show that the evaluated approaches exhibit complementary Hits@k
performance, i.e., there is no single approach that outperforms the others in all the KGs.
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Table 4: Performance of the proposed approach over the filtered test dataset. The
datasets contain triples which have a relation that is present in a relation community.
KG FB15k WN18 Pers(DBp) Pers(WD) Comp(DBp) Comp(WD) Mov(DBp) Mov(WD) Songs(DBp) Songs(WD)

Hits@1 .394 .561 .462 .254 .277 .733 .404 .486 .400 .502
Hits@3 .483 .650 .520 .257 .350 .775 .634 .599 .503 .675
Hits@10 .714 .900 .695 .371 .589 .803 .927 .886 .821 .852

The advantage of our method is the usage of only head entity information. Therefore,
missing relations, even to unknown tail entities, can be predicted. In general, we observe
that the performance of our approach strongly depends on the structure of the computed
communities and the number of relations in the KG. A small number of average rela-
tions per community and a small deviation from the average allows for achieving better
results with our approach. This effect can be followed by looking at the average com-
munity size (cf. Table 3) and the results of the Hits@k (cf. Table 2).

Another important consideration is the original incompleteness of the KGs. Con-
sider the movie The_Naked_Gun in the Mov(DBp) dataset. We predicted among others
basedOn as missing relation for this head entity. According to our silver standard, this
prediction is considered to be a false positive because this head entity does not contain
a basedOn relation in the KG. However, assuming complete knowledge, the prediction
of our approach would be correct, because the film is based on the American televi-
sion comedy Police Squad!. Similar cases of spurious false positives are encountered
in other KGs, e.g. Pers(DBp). For example, the head entity Deven_Marrero describes
an American professional baseball player. Our approach predicted throws as missing
relation, which was wrongly considered a false positive. The above examples illustrate
the problems involved in evaluating KG completeness. Although in some cases the pre-
dictions are correct, the evaluation classifies them as wrong since the information is not
available in the KG. Due to the incompleteness of the KGs, the actual quality of the
predictions cannot be assessed with absolute certainty.

6 Conclusions and Future Work

In this paper, we presented an approach to predict missing relations for head entities
in Knowledge Graphs (KG). Our approach groups related relations by means of latent
relationships encoded by the interactions of the head entities with their correspond-
ing relations. These associations are exploited for detecting communities of frequent
co-occurring relations in the KG. The experimental results show that our approach is
competitive with existing KG embedding approaches (TransE and ComplEx), even if
they use information about the tail entity for the prediction. We observed that our ap-
proach can keep-up and compete (for the metric Hits@k) with existing KG embedding
methods that uses head and tail entities for predicting missing relations.

Future work could focus on further structures of communities, as these have a high
impact on the performance of our solution. Furthermore, our approach could be inte-
grated into a larger KG completion pipeline that is able to: (i) predict missing relations
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for head entities with our approach; (ii) identify tail candidates (for known entities), us-
ing for example TransE or ComplEx, based on the predictions from the previous step.
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