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Abstract. Distributed localization algorithms for nodes in ad hoc net-
works are essential for many applications. A major task when localizing
nodes is to accurately estimate distances. So far, distance estimation is
often based on counting the minimum number of nodes on the shortest
routing path (hop count) and presuming a fixed width for one hop. This
is prone to error as the length of one hop can vary significantly. In this
paper, a distance estimation method is proposed, which relies on the
number of shared communication neighbors and applies geometric prop-
erties to the network structure. It is shown that the geometric approach
provides reliable estimates for the distance between any two adjacent
nodes in a network. Experiments reveal that the estimation has less rel-
ative percentage error compared to a hop based algorithm in networks
with different node distributions.
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1 Introduction

Mobile ad hoc networks (MANETS), a network of devices with local communi-
cation ability and without a fixed topology have been more and more subject
to research. In such networks, adding a GPS-receiver to the devices might not
always be desirable, for example due to power consumption or cost issues. In
addition, GPS does not help in indoor or underwater scenarios. Nevertheless,
location-awareness plays an important role such as for the allocation of event
reporting in a monitoring sensor network [IH3], location dependent routing [4HS)]
assistance of group querying [9], pattern formation [10,11] and many more. For
that reason, alternative localization techniques were proposed to derive the lo-
cation of each device in the network (cf. [I2HI4]).

Many of these algorithms use a small number of so called anchor nodes which
are assumed to know their own coordinates either through a GPS-receiver or
due to a priori configuration. Examples for such algorithms are given in [I5H20].
Many of these algorithms rely on an estimate of the distance between each node
and the anchors to calculate the nodes’ coordinates. There are several methods
for estimating distances in ad hoc networks. The most commonly addressed ap-
proach uses the strength of the radio frequency signal [21H24] or the time-of-flight
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analyzes of the signal [2526]. Both technique require suitable hardware which
might not always be available. To avoid this problem, mathematical approaches
have been developed, mostly counting communication hops between the node
and an anchor and multiplying this value with an estimate for the width of one
hop [21L27H31]. Different from the existing approaches, the main idea of GeoDE
is based on estimating the distance between two adjacent nodes taking into ac-
count the individual local conditions.

The idea to derive a distance estimate from the number of shared commu-
nication partners was first presented in [32], and later on refined in [33][34].
In [33] the ratio of shared to total communication partners was used for the
first time and the mapping between this ratio and the distance of two adjacent
nodes was derived through empirical studies. In [34] a first order Taylor series
expansion is applied to approximate the mapping function. Here, an alternative
approach to the approximation in [34] is proposed. Furthermore, a technique
of averaging estimation results between neighbors is introduced and it is shown
that this improves the robustness in non-uniformly, distributed networks. Addi-
tionally, an algorithm is presented to derive long range distance estimation from
the estimates between adjacent nodes which can be used to estimate distances
to remote anchor nodes for subsequent localization, for example using multilat-
eration [I5]. Experiments are conducted to analyze the performance of GeoDE
and the influence of identified error sources. GeoDE is examined in two scenarios
(a) computing the distance between any two neighbors in the network and (b)
computing the distance between all nodes and one anchor node. The behavior
of GeoDE is tested in different network scenarios and for varying signal radius
of the devices. The results indicate that the estimation using GeoDE is more
accurate than estimates derived by a hop based algorithm.

The applied model of an ad hoc network assumes randomly distributed de-
vices on a two dimensional obstacle free plane. The devices do not have global
knowledge of the network topology or their locations. Each device can communi-
cate with adjacent devices, i.e. all devices in its neighborhood. The neighborhood
of a device is defined as a physical neighborhood on the plane within a fixed dis-
tance r from the device. The radius r is identical and known to all devices and
assumed to be much smaller than the dimensions of the plane. All devices are
assumed to have the same properties (homogeneous devices), except for anchor
devices which posses knowledge of their own positions. Even though mobility is
not regarded in this paper, the adjustment of the presented distance estimation
algorithm to a mobile network is straightforward.

This paper is structured as follows. In Section[2 the GeoDE algorithm is spec-
ified. Section [B] presents the experiments’ settings and displays and discusses the
results. Section Ml concludes the paper.

2 Distributed Geometric Distance Estimation (GeoDE)

The basic idea of GeoDE is to approximately determine the common surface of
two overlapping communication areas by the ratio of shared to total neighbors.
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Fig.1. Two examples for adjacent nodes i, j and their neighborhoods. Nodes with
dotted lines belong to N;, Grey filled nodes to N;. S;; are nodes in the shaded area.

Knowing the overlapping surface O, the distance between the two communicating
nodes can be derived. The distance can then be used as input for the localization
algorithms presented in Section [l to obtain coordinates for each device. In this
section, it is shown how to estimate the overlapping surface of the communication
area of two adjacent nodes and the necessary steps to derive an estimate for the
distance between the two nodes. The requirements for the GeoDE algorithm are
that each node knows all its neighbors and can communicate with them. For
node 7 to derive the distance to its neighbor j applying GeoDE, the neighbors
of node 7 have to be distinguished with respect to j as follows:

Definition 1 (Classification of Neighbors). Let i, j be two adjacent nodes
and N, N; the sets of nodes situated in the neighborhood of i and j respectively.
The neighbors of i can be categorized with respect to j as:

shared neighbors: S;j := (N; N N;)
individual neighbors: I;; = (N;\Sij)

Figure [Il shows two examples for adjacent nodes ¢ and j and the corresponding
classification of their neighbors.

The network structure of two adjacent nodes and their communication areas
can be mapped to the geometrical shape of two overlapping circles. The prob-
lem to determine the distance between the adjacent nodes is hence transfered
to computing the distance between the corresponding circles’ centers. The ratio
of shared S;; to total neighbors N; of a node ¢ might deliver a good estimate
for the ratio of overlapping to total circular surface area. Assuming this corre-
lation holds, the surface of the overlapping area O can be estimated from the
perspective of node i as O ~ 7r? - lli}"jll.

The circles’ cut surface O has the shape of a concave lens or a mirrored circular
segment with surface A (cf. Figure 2)), with:

Sij
Ax05-7r%- ||N?|| (1)

When two circles of the same surface overlap, the cut’s surface O should be
inverse proportional to the distance d between the circles’ centers. The segment
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surface A can be calculated from a known radius r and a segment height A using
the standard equation (2]):

A =r?arccos(1 — i) —\/2rh — h2(r — h) (2)

With known A and r one could try to derive the value of h from equation (2I).
The segment height h can be mapped to the distance d between the circles’
centers with known r. The distance between the center of the circle and the
chord is equal to r — h. Therefore, the distance between the two centers can be
obtained by:

d=2-(r—h) (3)

Resolving Equation (@) to h is not feasible. In [34] the first order Taylor series
expansion is used to approximate equation 21 but with the following considera-
tions an alternative solution is possible. As Equation (2) depends on h and r
there is no 2-dimensional representation that could be approximated by using
regression. Nevertheless, the following considerations help to solve this problem.
The height h of a segment can be described as a ratio 8 of the circle’s radius r
and the segment area A is a portion of half the circle’s surface:

h A
f r (4) 0.5 7r?2

()

In the following we show that A and 6 are independent of r with the result that
the relationship between A and 6 can be approximated using regression.

The standard equations (@) and (@) describe A and h depending on r and
angle a (cf. Figure [2)).
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A=")(a=sin(@) (6 h=r-(L-cos(})  (T)
Substitution A and h by rearranging Equations (@) and (), it becomes appar-
ent that A and 6 only depend on «, which has a fixed value range, but are
independent from r.

The relation of A and 6 can be approximated using regression. Figure[3 shows
data points (Grey line) and the approximated third-degree polynomial function
f: A — 0 (dotted line) derived through polynomial regression. Apparently, f is
an almost perfect approximation of the relationship between A and 6.

From the approximated function f, an estimate for the segment height A and,
thus, the distance d can be calculated with known A:

d=2r(1-2-f(4)) (®)

As stated before, A can be estimated from the relation between shared neighbors
Si; to total neighbors N; which can be computed locally using Equation ().
Putting it all together, Equation (@) calculates the distance estimate ciij for
node i to its adjacent neighbor j, given the number of shared neighbors |S;;,
total neighbors |N;| and r.
; |51

S
d”:’r(a(|N| | -7|

| Vi

1S4

P b N

)t () +e)) (9)

Using regression to determine the polynomial f and further computations, the
coeflicients of the above equation can be estimated as follows:

a=3.90 b=-4.16 c=3.04 e=0.04

2.1 Evaluation of GeoDE

The accuracy of the proposed GeoDE approach depends on two factors. Firstly,
the approximation of A using Equation (II) depends on the distribution of neigh-
bors in the communication area as well as the neighborhood size N;, secondly,
the approximation of function f using polynomial regression is a source of error.

The assumption underlying the GeoDE approach is that the number of nodes
within an area of the environment can be mapped to the size of this area. This
is a critical assumption when the distribution of nodes is imbalanced. As a re-
sult the ratio of shared to individual neighbors might not reflect the relation
of overlapping to total circular area anymore. Figure illustrates this effect.
Also, the neighborhood size N; determines the possible precision for estimating
A. There are |N;| + 1 possible estimates for the ratio of segment surface area
to total area A. The margin between these values is | J\lhl' The resulting possi-

ble absolute error for the estimation of A lies within the interval [0, | ]\1” ). From
Equation (§) and ([@) the maximum absolute distance estimation error induced
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Fig. 4. The approximation error of function f

by a small neighborhood size can be calculated as € € [0, (28a + 12b+ 4¢)r) with
|N;| =1 and A — 1. The impact of the nodes’ distribution is assessed in the
experiments shown in Section [3

The other source of error concerns the approximation of function f. Figure [d
shows the deviation between the approximation f(A) and the corresponding cal-
culated values of # for different values of 6. Also, the approximation error using
first order Taylor series expansion as suggested in [34] is printed for comparison.
As Figure @ indicates, the approximation error of function f is at most of 0.04,
which leads to a maximum absolute distance estimation error of 0.16r. The actual
error depends on the ratio of height h to radius r and, as the height is coupled with
the distance d. It follows that estimating the same distance with different radii r
can lead to different estimation errors. Nevertheless, at least for 6 < 0.9 the error
using the polynomial approximation is smaller than using the first order Taylor
series as suggested in [34].

2.2 Distributed GeoDE Algorithm for Ad Hoc Networks

In principle, the distance estimate cfij can range between 0 and r as the cen-
ters of two overlapping circles have a maximum distance of 2r. This ignores the
fact, that adjacent nodes can have a maximum distance of r to be able to com-
municate. Therefore, using this concept in a network, czij can be restricted to
a maximum value of r. This corresponds to a limited height h € [0.5r, 7] and,
therefore, the approximation error of function f is limited to the section high-
lighted in Grey in Figure [l

As neighborhoods of i and j, N; and N;, commonly differ in size (cf. Figure[ll
for an example), node ¢ and node j calculate different estimates for the distance
between them. An improved approximation can be obtained when node i and
node j exchange their estimates via communication and calculate the average of
ciij and dAji.
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This leads to the following algorithm computed by node i to estimate its
distance to the adjacent node j using the GeoDE approach:

Algorithm 1. CalcDistToNeighbor(i, j)

// Computing the distance between ¢ and a neighbor j
Input: node 7 and node j

Output: estimated distance ciij

1: N; = set of neighbors nodes

Ask neighbor j to send its set of neighbors N;
Compute the shared neighbors S;;

[Sij]
Let x := N

dij =7 (3.90 2 — 4.16 - 2 + 3.04 - x + 0.04)
Limitation: If (di; > r) Then dij = A .
Averaging: Ask j for d], and if available compute d; i = 0.5 (dij + dji)

To transfer the presented concept to a long range distance estimation between
a node 7 and an anchor node a, all distances along the shortest path between
both nodes are aggregated. The assumption is that all nodes in the network
estimate their distance to the anchor node a, which is the case for all eligible
localization algorithms (cf. Section [Il). The distance between a node ¢ and an
anchor a can be computed using Algorithm 2.

Algorithm 2. CalcDistToAnchor(i, a)

// Computing the distance between ¢ and an anchor a

Input: node ¢ and node a

Output: estimated distance dia

1: N; = set of neighbors of node ¢

2: If anchor (a € N;) Then d;, =CalcDistToNeighbor(i, a)

3: FElse search for neighbor k closest to a:
Ask all neighbors j € N; for their estimate dj, = CalcDistToAnchor(j, a), j)
Find neighbor k with minimal estimate: k = argmm(ci]a,j)

4: Compute distance to k: di =CalcDist ToNeighbor(i, k)

5: Aggregate distances: dia = dir + dia

End If

For comparison, in [I5], the distance d;a between a node i and the anchor a

is estimated as:
diy = (Za‘em hja + hia
hi, denotes the hop count of node 7 to the anchor a.

Note that in both algorithms each node’s calculation depends on other nodes’
results. Therefore, the algorithm has to be executed iteratively before a stable

—0.5) -7 (10)
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Fig. 5. Positioning according to a uniform random distribution (a), a Gaussian random
distribution (b), and evenly distributed nodes (c)

estimate is achieved. The necessary number of executions is subject to the neigh-
borhood size and the number of nodes that lie on the shortest path between 4
and a. In mobile networks the algorithm can be executed repeatedly to dynami-
cally compute the distance estimate considering changes in the locations of node
i or a respectively.

3 Experiments

GeoDE relies on the idea that the ratio of shared to total neighbors can be used
as an estimate for the ratio of overlapping to total surface of the communica-
tion area. In this section experiments are presented to evaluate whether this
assumption holds for a variety of network topologies. The second part of the
experiments concerns the usage of the GeoDE approach to estimate distances to
anchor nodes. The results are compared with the results of the hop count based
approach presented in [29].

For the experiments a 2-dimensional square environment of size 1.0 x 1.0
units containing 1000 nodes is considered. The neighborhood size and the dis-
tribution of nodes is expected to influence the quality of GeoDE. Therefore,
three different scenarios for the nodes’ distribution in the environment are con-
sidered. Two randomly distributed networks are investigated using a uniform
random distribution in Scenario I and a Gaussian random distribution in Sce-
nario 2. In Scenario 3, the nodes are evenly positioned in a grid-like shape (cf.
Figure []). These scenarios were selected to investigate the influence of imbal-
anced distribution of neighbors in the communication area. In addition, different
values for the communication radius r were tested to investigate the influence
of the neighborhood size which was identified to be a potential source of error

(cf. Section 2.T]).

3.1 Distance Estimation between Neighbors

In the first set of experiments, every node estimates its distance to all adjacent
nodes using the GeoDE approach. For comparison, the average distance between
adjacent nodes in the considered scenarios is taken as reference. To evaluate
the quality of the estimates, the mean absolute percentage error (MAPE) is
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MAPE Uniformly Random Distributed Nodes MAPE Gaussian Random Distributed Nodes
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Fig. 6. MAPE using the geometric approach (Geo) compared to the error when using
the average distance as an estimate (Simple)

calculated as M APE(JU) = |d“d:f“ |, where d;; denotes the euclidean distance

between a node i and its neighbor j and czij denotes the estimate of that distance.
The MAPE gives information about the relative deviation of the estimate with
respect to the real distance. As nodes near the border of the environment have
a cropped communication area, all experiments were repeated using only inner
nodes in order to illustrate the influence of border nodes on the network’s average
estimation error.

The results for Scenario 1 are shown in Figure The GeoDE delivers es-
timation results ranging between 40% up to approximately 15% (10% for inner
nodes) deviation from the real distance which is consistently less error-prone
than estimating the distance using the average of the network. The results indi-
cate that the GeoDE approach delivers reliable estimates for distances between
adjacent nodes. Furthermore, the quality of the estimation improves with in-
creasing communication radius r. This can be explained by the entailed growth
of the number of neighbors.

Figure shows the MAPE for distance estimation between any two adja-
cent nodes in a Gaussian random distributed network. In contrast to what one



Distributed Geometric Distance Estimation 37

might intuitively expect, the geometrical estimation performs even better as in
uniformly random distributed networks despite the imbalanced distribution of
nodes. The reason lies in averaging the estimates of both involved nodes. An
unbalanced distribution of nodes leads to an overestimation in one node and
an underestimation in the other node which may, under certain circumstances,
provide a good estimate on average. Another factor for the less error-prone es-
timates in the Gaussian distributed network is the larger average neighborhood
size due to the concentration of nodes in the center of the environment.

For scenario 2, it is further noticeable, that the percentage error does not
decrease continuously with rising radius r, which seemed to be the case for
uniformly random distributed networks. Instead, the curve has a convex shape.
This is due to the approximation error of f. As stated before, the estimation error
induced by approximating the function f depends on 6, i.e. the ratio of height
h to radius r. For all experiments 6 ranges between (0.61, 0.69), thus the closest
zero-error point Ox lies approximately at 0+ = 0.745 (cf. Figure]). Figure[flshows
the average percentage deviation for all considered node distributions and radii
from this zero-error-point. The experiments with Gaussian distributed nodes
diverge stronger with increasing radius than the experiments with uniformly
random distributed nodes, which explains the convex behavior of the MAPE
curve.

Distance to Zero Error Ratio of Sample Standard Deviation

Absolute Distance to Radius 700%
Deviation \’\rﬁ/“
30% 350%
0% Hlomlor e SR
- Senat 0.05 0.1 0.15 0.2
20% T mUniform Geo Gauss Geo mEven Geo T

0.05 0.1 0.15 02r

- Even —Gauss --Uniform

~Uniform Simple —Gauss Simple -~Even Simple

Fig. 7. Percentage deviation between 6 Fig. 8. Sample standard deviation for
and 0% GeoDE between neighbors

Figure shows the results for Scenario 3. Intuitively one would expect a
similar MAPE as in uniformly random distributed networks, as the distribution
of nodes is very balanced in both scenarios. Nevertheless, this does not appear
to be the case at first sight, but when looking at the trendline (black dotted
line) the behavior is quite similar. The oscillating error can be explained by the
step-like increase of the average distance d due to the symmetric arrangement
(cf. Figure[]) in combination with the afore mentioned distance dependent error
of the approximated function f.

FigureBillustrates the sample standard deviation for the previously presented
experiments. It shows that the standard deviation is relatively small compared
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Fig. 9. Average distances between adjacent nodes in networks with different distribu-
tions depending on the communication radius r
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Fig.10. MAPE for geometric versus traditional approach on long distance estimation
including standard sample deviation

to the estimates using the average distance. This further substantiates the ob-
servation that the geometric concept is successfully transferred to the network
topology delivering reliable estimates for each regarded distance estimation and
not only on average for the whole network.

3.2 Distance Estimation to Anchor Nodes

The second set of experiments has the objective to evaluate the GeoDE concept
for the estimation of distances to anchor nodes. Therefore, an anchor node is
randomly chosen in each experiment iteration and all other nodes estimate their
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distance to this anchor node according to Algorithm 2 (cf. Section[2Z2)). For com-
parison, the hop count based distance estimation described in [29] is used. This
method has been successfully used for localization in [I5] and does not require
more than one anchor node for distance estimation as opposed to the DV-hop
propagation model in [27].

Figure|l0(a)|shows the MAPE for Scenario 1, using the uniform random distri-
bution for node positioning. Figure[L0(b)|for Scenario 2, the Gaussian randomly
distributed network and Figure r Scenario 3, with evenly distributed
nodes. It can be observed that the GeoDE approach leads to less error-prone es-
timates than the hop count based estimation for all considered distributions and
radii. Furthermore, it should be noted that even the sample standard deviation
is much less or equal to the MAPE of hop count based estimates. This confirms
that the GeoDE approach is a consistent improvement in distance estimation for
all considered ad hoc network scenarios and radii.

4 Conclusion and Future Work

This paper presents a new approach for a distributed distance estimation in
an ad hoc network. The method relies on the ratio of shared to total neigh-
bors and applies geometric coherences to the network structure. Three sources
for error in the GeoDE approach were identified and, where possible, quanti-
fied. Experiments were conducted to investigate the absolute percentage error of
the distance estimates in three different network scenarios: uniformly random,
Gaussian random, and evenly distributed nodes. The results were compared to a
hop count based estimation approach, showing that the GeoDE reliably delivers
more precise estimates. This observation was consistent for all investigated com-
munication radii and node distribution scenarios. Furthermore, even the sample
standard deviation for GeoDE is close to the average percentage error of the hop
count based approach and lies below it for some considered experiment settings.
In future work, the GeoDE method is to be investigated for the usage in localiza-
tion algorithms. We expect to improve the accuracy of the established coordinate
system with the GeoDE as a great part of the error in finding coordinates is due
to inaccuracy in distance estimation. Besides, the robustness of the algorithm is
to be tested under mobile conditions.
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