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Abstract: An AI-supported monitoring concept is demonstrated allowing detection and classification of 

events on OTDR traces with high precision and recall for application on a PON optical distribution 

network. We can also associate events with ODN branches by using deployment data of the PON 

topology. ©2023 The Author(s) 

Network Monitoring and Fault Detection 

Event detection and classification are 

important features for the fiber plant of passive 

optical networks (PON) especially in converged 

architectures for residential, mobile, and 

business customers. Optical time domain 

reflectometry (OTDR) is a well-known diagnostic 

technique to obtain a spatially resolved 

attenuation profile of the fiber and to identify 

catastrophic fiber events, e.g., location of a fiber 

break. In PONs, however, the optical distribution 

network (ODN) can be realized as a point-to-

multipoint tree-like topology. The optical line 

terminal (OLT), located at the operator's central 

office, is connected to optical power splitters in 

the field (feeder section). Each optical network 

unit (ONU) is then connected over a separate 

fiber connection originating at this splitter (drop 

section). Thus, although OTDR works well in the 

feeder section where only one fiber is analyzed, 

the part of the OTDR trace corresponding to the 

drop section comprises superposed signals 

produced by back-scattered and back-reflected 

light from all drop-section fibers. This 

superposition creates ambiguity, which cannot be 

decomposed to isolate individual traces of each 

fiber drop section without additional means. In the 

literature, investigations for reflective event 

detection and overlaid reflective event resolution 

have been recently reported [1, 2], but without 

addressing event classification along the PON 

ODN and event assignment to ODN branches. 

Thus, in this paper we introduce a concept for 

OTDR trace analysis and demonstrate that we 

can use artificial intelligence (AI) algorithms to 

detect and classify events with a high precision of 

98 % and recall of 95 % and that we can 

associate ODN branches to those events by 

using deployment data of the PON topology. 

AI-based OTDR Event Diagnostics  

The combination of an AI-supported OTDR 

trace monitoring with PON-specific system or 

topology information enables the association of 

events and their nature with a certain probability 

to ODN branches, see Fig. 1. Firstly, we use AI 

methods to classify each OTDR data point of an 

OTDR trace into an event category and, this way, 

associate an ODN location with an event, e.g. 

reflection or attenuation. Secondly, system or 

network information are acquired, like: 

• deployment data of the ODN topology 
including the number of splitter stages and 
their split ratios and the fiber length in the 
drop sections, 

• ranging delay for ONUs corresponding 
directly to approximations of the distance of 
the ONU from the OLT location, 

• diagnostic data from all transmitters within 
the PON, such as transmitted and received 
optical power levels. 

These parameters can be stored in a 

knowledge base to generate a reference that can 

either be collected over the PON lifetime or based 

on an abstract mathematical model that is refined 

using accessible information.  

 
Fig. 1: Conceptual idea to combining an artificial intelligence 

supported OTDR trace monitoring and analysis with 

accessible PON-specific system data to enable associating 

probabilities for events and their nature to individual ODN 

branches of a PON. 
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A twofold operation of the system can be 

envisioned: 

Instantaneous analysis: a trace (or multiple 

traces) collected within a short observation 

window is analyzed with the goal of event 

assignment to specific splitter branches and/or 

ONUs; based on deployment data and other prior 

information, events can be, with a certain 

probability, assigned to specific branches. Based 

on the geographical location of connected ONUs 

as well as deployment maps, events may be then 

localized topographically. Depending on what 

kind of OTDR measurement is possible and how 

much prior information is available, splitter 

branches where no ONU is connected, or even 

unused splitter branches could be identified. 

Meta-analysis: tracking the evolution of 

instantaneous analysis / reinterpreting past 

observations over extended periods of time 

enables uncovering events that otherwise may 

be misinterpreted, wrongly classified, or 

considered improbable by a one-off 

instantaneous analysis due to insufficient prior 

knowledge. For example, a fiber break in a drop 

section where no ONU is connected may not be 

discovered by the instantaneous analysis if no 

deployment data was fed into the knowledge 

base. However, by comparing instantaneous 

analysis from before and after the break, a 

conclusion can be drawn that the observed 

change is an anomaly. 

The knowledge base should also contain 

reference information on how a fiber impairment 

or fault, like bending, cracks, connectors, typically 

looks like in an OTDR trace. This way, the 

knowledge base is used to enable an advanced 

OTDR trace analysis by applying expectations 

and attempting to find patterns in the OTDR 

traces using AI techniques. The goal is the 

separation of the superposed events for 

individual optical fiber lines and the identification 

of changes or faults in the fiber infrastructure in 

the longer term.  

We will demonstrate the benefits of AI here for 

two different reasons: in the first case (separation 

of traces), the AI algorithms will help to solve the 

mathematical problem of an underdetermined set 

of equations: with the OTDR measurement from 

OLT, one has only access to a single trace, but 

this signal comprises superpositions from N 

splitter branches. In the second case (identify 

anomalies in fiber plant), AI will help identify 

patterns or changes over time and the reasoning.  

The inference engine can be implemented 

using different approaches. It can utilize 

probabilistic approaches, backtracking, 

opportunistic reasoning (backward or forward 

chaining), and other AI-powered approaches. 

The system is trained over its lifetime, starting 

with a reference PON infrastructure architecture, 

including scenarios with different configurations 

like the number of splitter stages and splitting 

ratios. Prior knowledge and expectations on how 

optical fiber and PON splitters, but even more 

fiber breaks/cuts, reflection, open connectors, 

and aging/watering effects will translate into 

OTDR trace data, are the underlying basis for the 

AI training. Updates over time with detailed 

information about the transmission system like 

physical medium dependent (PMD), transmission 

container (TC), and media access control (MAC) 

can be passed to the system continuously from 

OLT, which acts as a master and knows all about 

the system. Periodic OTDR measurements over 

time and changes inside the PON-related data 

will show characteristic patterns and enable 

isolation of OTDR events inside the drop section 

of the ODN and correlate to a dedicated fiber. 

Proof-of-Concept for Instantaneous Analysis 

To demonstrate the viability of our AI-

supported OTDR traces analysis system, we 

studied OTDR traces of a reference ODN, shown 

in Fig. 2. This 1:8 reference ODN fiber setup is 

used to acquire a total of 180 OTDR 

measurements with varying parameters 

(wavelength, pulse duration, and measurement 

time). These are the basis for evaluating our 

methods—i.e., the OTDR traces are used as 

model input and the events as expected model 

output. We pre-process the trace data by first 

linearizing its values and then determining the 

value changes between subsequent time steps. 

The change values are used as model input in 

our evaluation. 

To investigate the feasibility of utilizing AI 

approaches, we model the task of OTDR event 

detection as a classification problem. A model is 

tasked to assign event classes (reflection, 

attenuation, or no event) to each point in time in 

an OTDR trace. This is followed by 
  
Fig. 2: Reference ODN (top) and OTDR trace (bottom). 



 

  

probabilistically assigning events to drop fibers 

based on deployment data. 

We evaluate the performance of: (a) a simple 

baseline model that assigns classes based on 

heuristically determined rules, and (b) two 

machine learning (ML) models, shown in Fig. 3. 

The first model is an ensemble classifier, a model 

that learns and aggregates over multiple 

classifiers to improve stability. Specifically, we 

use a random forest [3] with an ensemble of 50 

decision tree classifiers. Our second model is a 

neural network based on a Long Short Term 

Memory [4] (LSTM), an architecture that 

sequentially processes data while keeping a 

memory of previously seen inputs. To the LSTM 

we append a set of dense layers with decreasing 

dimensionality. 

Evaluating all three models on our 180 OTDR 

traces, we measure precision and recall scores 

[5] as shown in Table 1. We note that the 

ensemble classifier achieves the best 

performance, closely followed by the neural 

network. 

Table. 1: Performance of our models at detecting and 

classifying events in OTDR traces. Precision and recall values 

are reported as the macro average over all classes. 

 Precision Recall 

Baseline 52% 69% 

Ensemble 98% 95% 

Neural Net 96% 88% 

 

We combine the OTDR trace event 

classification results of our ensemble classifier 

with deployment data about the knowledge of 

fiber length. This allows us to obtain an OTDR 

trace as shown in Fig. 4 in which all OTDR data 

points are categorized into one of the three event 

classes (indicated with different colors) and 

events can be associated with splitter location or 

ends of branches to single out ODN fiber 

connections contributing to an event.  

For implementation in the field later, we 

envision training the AI model on large quantities 

of OTDR traces generated from realistic optical 

link simulations, while using our measurements 

from real PON architectures for validation and 

testing. 

Conclusions 

We have introduced and demonstrated an AI-

based OTDR event detection and classification 

concept that if combined with PON deployment 

data allows to associate these events with PON 

ODN branches. In our proof-of-concept, we show 

a high precision of 98% and high recall of 95% 

using an ensemble classifier on measured OTDR 

traces and a successful mapping to ODN 

branches or groups of branches.  
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Fig. 3: AI-based methods for event detection and classification: a) ensemble classifier, b) neural network. 

  
Fig. 4: OTDR traces with AI-based event classification for each OTDR data point (fiber attenuation, reflection, no event) 

and ODN branch probabilistic resolution using non-AI PON topology data. 
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