
Relational Schemata for Distributed SPARQLQuery Processing
Victor Anthony Arrascue A.

University of Freiburg
arrascue@cs.uni-freiburg.de

Polina Koleva
University of Freiburg

polina.n.koleva@gmail.com

Anas Alzogbi
University of Freiburg

alzogbi@cs.uni-freiburg.de

Matteo Cossu∗
University of Freiburg
elcossu@gmail.com

Michael Färber
University of Freiburg

michael.faerber@cs.uni-freiburg.de

Patrick Philipp†
University of Freiburg

philipp@cs.uni-freiburg.de

Guilherme Schievelbein
University of Freiburg

schieveg@cs.uni-freiburg.de

Io Taxidou
University of Freiburg

taxidou@cs.uni-freiburg.de

Georg Lausen
University of Freiburg

lausen@cs.uni-freiburg.de

ABSTRACT
To benefit from mature database technology RDF stores are built
on top of relational databases and SPARQL queries are mapped
into SQL. Using a shared-nothing computer cluster is a way to
achieve scalability by carrying out query processing on top of large
RDF datasets in a distributed fashion. Aiming to this the current
paper elaborates on the impact of relational schema design when
queries are mapped into Apache Spark SQL. A single triple table,
a set of tables resulting from partitioning by predicate, a single
wide table covering all properties, and a set of tables based on the
application model specification called domain-dependent-schema,
are the considered designs. For each of the mentioned approaches,
the rows of the corresponding tables are stored in the distributed file
system HDFS using the columnar-store Parquet. Experiments using
standard benchmarks demonstrate that the single wide property
table approach, despite its simplicity, is superior to other approaches.
Further experiments demonstrate that this single table approach
continues to be attractive even when repartitioning by key (RDF
subject) is applied before executing queries.

CCS CONCEPTS
• Information systems→Relational parallel and distributed
DBMSs;ResourceDescription Framework (RDF); •Computer
systems organization → Cloud computing.

KEYWORDS
Relational Schema, RDF, SPARQL, Spark SQL, Parquet

∗current affiliation: Ultra Tendency GmbH, Niels-Bohr-Str. 10c, 39106 Magdeburg,
Germany. Email: matteo.cossu@ultratendency.com
†current affiliation: FZI Forschungszentrum Informatik am KIT, Haid-und-Neu-Str.
10-14, 76131 Karlsruhe, Germany. Email: philipp@fzi.de

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SBD’19, July 5, 2019, Amsterdam, Netherlands
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6766-0/19/07. . . $15.00
https://doi.org/10.1145/3323878.3325804

ACM Reference Format:
Victor Anthony Arrascue A., Polina Koleva, Anas Alzogbi, Matteo Cossu,
Michael Färber, Patrick Philipp, Guilherme Schievelbein, Io Taxidou, andGeorg
Lausen. 2019. Relational Schemata for Distributed SPARQL Query Pro-
cessing . In The International Workshop on Semantic Big Data (SBD’19),
July 5, 2019, Amsterdam, Netherlands. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3323878.3325804

1 INTRODUCTION
RDF data is a popular framework for publishing data [3] and build-
ing knowledge graphs [9]. Therefore, during the last years much
work has been done to achieve efficient processing of RDF stores
using SPARQL. Early efforts to build SPARQL endpoints, most no-
tably Jena [27], and Sesame [7] and later RDF-3X [16], YARS2 [12],
and DB2RDF [6], are using single-node machine environments em-
powered by sophisticated storage structures and index support. To
achieve better scalability when handling very large graphs, sys-
tems designed for distributed environments have been proposed
and investigated. In this context, partitioning the data among dif-
ferent nodes of a computer cluster is a major critical task. Some
distributed systems implement vertical partitioning, i.e. using a
predicate-based partitioning approach [10, 14, 15, 22, 25], while
others apply subject-based partitioning for handling a single triple
table [2]. Other designs use a single wide property table covering
all properties [24], or a combination of vertical partitioning and
wide property table [8]. Finally, some systems suggest partitioning
based on graph-covers [11, 21]. For a more comprehensive review
of the relevant literature, we refer the reader to [13, 28].

We are interested inmapping SPARQL queries into SQL to be able
to reuse mature robust relational database technology. The choice
of relational table design plays a crucial role for efficiency. Different
designs not only imply different kinds of physical data partitions,
but also different translations to SQL operations. Both aspects are
among the most crucial factors for distributed processing efficiency.
Investigations of various schema designs for RDF data have been
started by [1, 18]. Recently, for a single-node system, the analysis
provided in [19] gives arguments for using an emergent schema,
which corresponds to a domain-dependent-schema in our current
work. However, in that paper and in [5], when discussing Virtuoso
Cluster1, it is left unanswered, whether an emergent schema is also
beneficial for the distributed case.
1http://docs.openlinksw.com/virtuoso/clusteroperation/

1

https://doi.org/10.1145/3323878.3325804
https://doi.org/10.1145/3323878.3325804

Figure 1: (A) Tables storage in HDFS at the physical layer (B) Logical tables and their corresponding relational schemata. (C)
Algebra Tree for Query Q1 for the different schemata.

We are approaching the analysis of the relational schemata using
Apache Hadoop as the distributed processing platform andmapping
SPARQL queries into Spark SQL. Differently from our previous
research on distributed SPARQL query processing [8, 24, 25], in the
current paper we systematically analyze the different designs. Our
experiments take into account several aspects, such as the impact
of broadcast-joins and partitioning based on RDF subject. Not only
we conduct experiments on a synthetic benchmark, WatDiv, but
also on a real RDF-graph, Yago.

Themain contribution of the current paper is twofold.We demon-
strate experimentally, that using a single wide property table (WPT)
for relational table design provides a level of efficiency superior to
triple table (TT), vertical partitioning (VP) and domain-dependent-
schema (DDS). Further experiments demonstrate that the single
wide property table approach persists to be attractive even when
a repartitioning by key (RDF subject) is applied before executing
queries. While the gain in efficiency of WPT in these experiments
is moderate compared to other schemata, WPT, in contrast to DDS
or an emergent schema, does not require complex additional design
considerations and remains nearly stable during RDF-graph evolu-
tion. In addition, our evaluation exhibits, that reducing the number
of joins in the execution plan and having a balanced distribution of
the data among the cluster nodes are more important than the size
of the various tables accessed.

The paper is structured as follows. In Section 2 we elaborate
on the technical background of our experimental work. Section 3
presents our approach for SQL query construction. Section 4 dis-
cusses and summarizes the evaluation results, and finally, Section 5
concludes the paper.

2 BASICS
Spark Input. Given an RDF graph, the data is transformed in

a distributed relational-table form, so that we can apply queries
over these tables using Spark SQL. The tables are stored within a

Hive database so that they can be consistently accessed by different
applications. Figure 1 shows the kind of relational schemata we
consider in this work, how the tables appear at the logical level in
Hive (B), and how the data is placed into such database (A). Each
Hive table is stored in one HDFS folder and the data files in there
are distributed among the nodes. The data itself is compressed
and stored using the Parquet format, a columnar storage. These
technologies allow us to: (1) have an efficient representation of
sparse tables (Parquet ignores null values during the encoding), and
(2) being able to store multiple values in some columns if required.
In contrast to classic relational systems, this can be easily achieved
in Spark, Hive and Parquet thanks to their support for complex
data types, such as arrays or maps.

The distribution of data within a Hive table depends on how
the data was built, i.e. in our case it reflects the distribution of the
result of a Spark SQL query, which was persisted as the table. Con-
sequently, the HDFS-blocks containing the data are not necessarily
full. Therefore, when a Spark job is created to evaluate a query, by
default, the data of the involved tables is eventually reorganized
into partitions aiming to fill the HDFS-block size2.

Query Execution Workflow. The SQL operations involved in the
distributed execution of a Spark SQL query are of two kinds: trans-
formations and actions. The first ones are lazily evaluated, i.e. they
are computed only when an action requires them to be executed. For
instance, a join operation (Z) is a transformation, whereas count-
ing the number of rows (count()) is an action. Let (t1 Z t2).count()
be a Spark SQL expression. The execution of the join is triggered
only when the counting action is invoked. In the system an action
triggers the launch of a Spark job. This starts with the creation

2For instance some data files could be placed together in a single partition. The actual
procedure depends on the data format. Since we have Parquet files, the specific Parquet
reader is responsible for building these partitions.

2

of an execution plan for carrying out a job. For this, Spark exam-
ines the lineage of operations on which that action depends3. For
the above-mentioned example the operations are scan(...), join(...),
and count(). These operations have dependencies on each other.
Clearly, count() depends on the computation of join(...), and at the
same time this depends on reading the corresponding tables. The
simplicity of this action should not suggest that this is always the
case. As a matter of fact, an action can have a very complex graph
lineage which depends on many transformations.

Figure 2: Stage dependencies and their execution timeline.

The dependencies are hence used to assemble the job’s transfor-
mations into stages. Each stage consists of a sequence of transfor-
mations which do not require shuffling data, i.e. transferring data
from one node to another one. Shuffling occurs then in between
stages. Therefore, stages without dependencies might be executed
in parallel. Figure 2 illustrates the stages dependencies and an exe-
cution timeline for the above considered example, (t1 Z t2).count(),
obtained from a real cluster. As one can notice, the two scan() oper-
ations (one for each table) can be carried out as two parallel stages
(S0 and S1) because they do not depend on each other. This is fol-
lowed by a shuffle carried out for the next stage, the join, which
requires all partitions with the same key to be in the same data
node (S2). Finally, a count is executed as a separate stage (S3) to
aggregate the counters sent by each node.

Going deeper into the hierarchy, a stage corresponds to a collec-
tion of tasks, each of which executes the same code on a different
partition. To carry out a task, an executor, a sort of tasks monitor, is
initialized in each partition’s node4. An executor can run multiple
tasks over its lifetime and multiple tasks concurrently. The num-
ber of concurrent task-slots is numExecutors ∗ ExecutorCores. For
example, with 10 running executors and 6 cores in each machine,
60 concurrent tasks can run in parallel. Thus, a task represents the
fundamental unit of work on a partition of a distributed dataset.

This is why the number of partitions, together with the inter-
dependencies between stages, play such an important role in the
parallelization degree in the SQL query evaluation. Overall, the

3This is also known as the lineage graph, a graph of the transformations which have
to be executed after an action is been called.
4To determine which nodes are assigned to run the executors, there is a previous
resource negotiation with the resources manager, in our case Yarn, which finds the
available hosts. This allocation is not fixed: Spark’s dynamic allocation feature allows
it to dynamically scale the number of executors based on the workload.

ideal job distribution occurs when: (1) Data is evenly distributed
among all nodes. This is achieved by the HDFS block-based dis-
tribution and data balancing; (2) All cluster nodes are involved in
the computation, i.e. all cores are busy running tasks in parallel; (3)
The shuffling is minimal, i.e. each task is carried out locally5; (4)
Queries are able to reuse relevant in-memory or cached data.

3 SQL QUERY CONSTRUCTION
SPARQL to Spark SQL. The translation process starts with the

construction of a SPARQL algebra tree for each corresponding
schemata. We consider a single triple table (TT), a set of tables
resulting from partitioning by predicate (VP), a single wide prop-
erty table covering all properties (WPT) and a domain-dependent-
schema (DDS) based on the corresponding data specifications. Fur-
ther details about our DDS design are provided in the next Section.
Consider query Q1 whose purpose is to find a list of friends ?fr
of a user identified by her email address. The tokens in red, which
denote constants are important to eventually reduce the number of
intermediate results.

SELECT DISTINCT ?fr
WHERE {

?usr watdiv:friendOf ?fr .
?usr sorg:email "user@email.com"

}

Query Q1: Finding friends of user
Figure 1(C) illustrates the built algebra trees generated for each

of the considered schemata. The algebra trees are then translated
by our system to the corresponding Spark SQL queries, which are
equivalent to those shown in the following tables6:
TT:SELECT fr FROM

(SELECT s as usr FROM TT
WHERE p='<.../email >' AND o='user@email.com ') EM

JOIN
(SELECT s as usr , o as fr FROM TT

WHERE p='<.../ friendOf >') FO
ON EM.usr = FO.usr

VP:SELECT fr FROM
(SELECT s as usr FROM VP_email

WHERE o='user@email.com ') EM
JOIN

(SELECT s as usr , o as fr FROM VP_friendOf) FO
ON EM.usr = FO.usr

WPT:SELECT fr FROM
(SELECT s as usr , EXP_fo as fr, COL_email as em

FROM WPT
lateral view explode(COL_friendOf) FO as EXP_fo
WHERE COL_email IS NOT NULL AND COL_email='user@email.com ')

DDS:SELECT fr FROM
(SELECT s as usr , EXP_fo as fr FROM USR

lateral view explode(COL_friendOf) FO as EXP_fo) USR
JOIN

(SELECT s as usr , COL_email as em FROM INF
WHERE COL_email IS NOT NULL AND COL_email='user@email.com ') INF

ON USR.usr = INF.usr

Translations to Spark SQL
As one can notice, the queries are different. While TT accesses a
single distributed table, requires a self-join, and three filters, VP
requires a join between two distributed tables and applies a single
filter. In contrast, the algebra trees of WPT and DDS have the same
5This obviously depends on the task. For instance, searching for a specific value can be
done locally. However, some operations such as a join might require moving partitions
around the network, because it requires join partners to be in the same location.
Shuffles have overall the most negative impact on the time performance.
6In practice our application uses the Spark SQL Java API: https://spark.apache.org/
docs/2.2.0/sql-programming-guide.html.

3

https://spark.apache.org/docs/2.2.0/sql-programming-guide.html
https://spark.apache.org/docs/2.2.0/sql-programming-guide.html

operations, which are however applied either to a single table or to
multiple tables, respectively. In the example’s DDS, the table USR
contains the list of friends, while INF the email, an attribute which
applies not only to users but to other entities such as retailers. The
translation for DDS requires, therefore, an additional join.

Not only the queries play a role in efficiency but also the char-
acteristics of each schemata. For instance, VP tables are of smaller
size. While one might think this could be an advantage in terms of
query execution, the VP tables could, due to their size, result in a
low number of partitions thus limiting the parallelization potential.
In contrast, TT andWPT consist of a single large table. In particular,
WPT can process all triple patterns with the same variable on the
subject without employing joins. DDS tables are also large and for
queries accessing a single DDS table, the algebra-tree would be the
same as for WPT, being the size of the table the only difference.
Moreover, WPT and DDS can have columns with complex data
types such as lists, which are exploded with lateral view explode.
The advantage of this operator is that this can be applied to mul-
tiple complex columns. In this case, a cross-product between the
exploded columns is automatically executed.

Thus, the question arises to which extent the resulting Spark
SQL translation, its execution plan, the number and sizes of tables,
and complex operations such as lateral view explode or contains()
affect the performance of the query execution. Our experiments
are designed to provide insights into these aspects.

Query construction. To achieve a fair comparability of the differ-
ent schemata, we consistently generate the algebra tree according
to some basic rules. First, operations which access constants in the
triple patterns are pushed to the bottom of the tree to reduce inter-
mediate results. Next, a basic join ordering based on selectivity is
carried out. The selectivity values are obtained in the loading phase
of the RDF-graph by considering triples in isolation7. Finally, the
algebra tree is visited in a depth-first way to build the Spark SQL
expression which is submitted to Spark SQL’s optimizer, Catalyst.

Catalyst performs different logical and physical optimizations to
the query plans based on heuristics and statistics information, e.g. it
chooses a specific join strategy. Spark SQL supports shuffle-hash-
joins, sort-merge joins, and broadcast-joins. In a join, matching
tuples typically reside on different nodes. When one of the join
operands, i.e. a table, is small, this might be entirely sent to all
nodes (broadcast join). Otherwise, a hash-based partitioner can be
applied on the join columns of the respective tables, which shuffles
the tuples, thus placing potential join partners in the same nodes.
As we analyze relational schemata formed by tables of different
sizes, broadcast joins might be an option for VP and DDS, while
for TT and WPT this is rather unlikely. However, a broadcast join
implies an overhead for reading the table statistics (size), collecting
all tuples of a table and transmitting it to all nodes. This might
not pay when the other join operand is also small, because only a
small number of executors will be used thus resulting in a small
degree of parallelism. Therefore, joining larger tables using a hash
or sort-merge join after shuffling both tables might be beneficial as
well, because of a higher degree of parallelism.

7Better selectivity measures can be obtained based on characteristic sets [17]. However
as we are not interested in absolute execution times our approach is assumed to be
sufficient for a relative comparison of the different schemata.

4 EVALUATION RESULTS
We perform our tests on a small cluster of 10 machines connected
via Gigabit Ethernet connection. Each machine is equipped with
32GB of memory, 4TB of disk space and with a 6 Core Intel Xeon E5-
2420 processor. The cluster runs Cloudera CDH 5.10.0 with Spark
2.2 on Ubuntu 14 and consists of one master and nine workers. Yarn
is the scheduler, which in total uses 198GB and 108 virtual cores. A
Spark partition size is equal to the size of an HDFS-block (128MB).

For evaluation we use the datasetsWatDiv [4] and Yago [23]. The
dataset provided by the Waterloo SPARQL Diversity Test Suite 7
has approx. 109 Million triples and 86 predicates. Our set of 88
queries is derived from 20 templates given by the WatDiv basic
query set. The number of triple patterns in the queries ranges from
2 to 10. These queries are of varying shape and selectivity in order
to model different scenarios. They are grouped into the subsets C
(complex-shaped), F (snowflake-shaped), L (linear-shaped), and S
(star-shaped) queries. Our second dataset, Yago (version 2s 2.5.3), is
a semantic knowledge base derived from Wikipedia, WordNet and
GeoNames, i.e. a real-world dataset with approx. 220 Million triples
and 104 predicates. Our Yago query set of 15 queries is the same
used in S2RDF [25], where the number of triple patterns ranges
from 3 to 13. Our schema designs for each dataset are TT, VP, WPT,
and DDS. For each of the different designs the memory required by
their corresponding tables in HDFS is as follows:

TT VP WPT DDS

WatDiv 2.04GB 38.8KB-679MB 1.04GB 4.12MB-637MB
Yago 7.12GB 20.9KB-1.3GB 3.61GB 48.5KB-1.8GB

It is important to notice that TT andWPT consist of a single large
table, which means that they cannot take advantage of broadcast-
joins when Spark’s default threshold of 10 MB is used. However,
this threshold can be adjusted. While for TT, VP and WPT the
design of the tables is independent from the meaning of the RDF
data, our design of the DDS is inspired by [20] and based on the
corresponding data model specifications8. Thus, for WatDiv we
derived 9 tables with numbers of columns ranging from 2 to 37 and
for Yago 11 tables with numbers of columns ranging from 2 to 25.
The following table shows the sparsity of WPT compared to that
of our DDS schema. Let sparsity (S) be the ratio between the null
values and the table size (|Rows | × |Cols |).

WPT #Tabl S
Watdiv 1 0.937
Yago 1 0.975

DDS #Tabl AVG(S) STD(S)
9 0.427 0.222
11 0.554 0.267

As expected the WPT which has all properties as columns has a
very high sparsity (the maximum is 1). Our DDS design achieves
a more compact representation. However, we shall not forget that
Parquet is used as data format, thus it efficiently encodes null values.
In our experiments we conduct the evaluation on our relational
schemata taking into account the following aspects.

(1) First, we consider the performance of the benchmark queries
when one query at a time is submitted and executed in a single
8Watdiv: https://dsg.uwaterloo.ca/watdiv/#dataset.
Yago: https://github.com/yago-naga/yago3/blob/master/schema/relations.ttl.

4

 https://dsg.uwaterloo.ca/watdiv/#dataset
https://github.com/yago-naga/yago3/blob/master/schema/relations.ttl

Spark application, thus representing a cold-start scenario in which
memory is free. We refer to this as to the cold-one-by-one mode.
However, executing a set of queries in the same Spark application
is a more realistic usage of the platform and closer to real SPARQL
endpoints. In this case one query can then take advantage of in-
memory data left by a previously executed query. For this reason
we consider also a warm-random case. The numbers reported for
each query group and relational schema are for the cold-one-by-one
case the average of 5 execution times. For the warm-random mode,
each query set is evaluated 50 times in random orders. We prune
execution times outliers using the interquartile range (IQR) to set
an upper fence (3rd quartile + IQR * 1.5).

(2) Secondly, as another dimension for our analysis, we distin-
guish between experiments with broadcast-join disabled and en-
abled. As some VP and DDS potentially contain small relations in
contrast to for example TP and WPT, broadcast-joins might consid-
erably change their execution times. This aspect will allow us to
better understand the influence of the table sizes.

(3) As a third aspect, we also investigate the impact of different
physical partitioning strategies offered by Spark. By default Spark
builds partitions by organizing the tables’ data in HDFS without
knowing its actual content. Partitioning based on a key is supported
by Spark. Using the RDF subject as that key could intuitively be a
means to avoid shuffling of partitions for certain queries.

Broadcast-Join disabled. In our first group of experiments we
disable broadcast-join and run the benchmark queries for the cold-
one-by-one and warm-random modes. The results are presented
in Figure 39. The first observation is that the performance of WPT
compared to that of other schemata is better for the majority of
query types. In the cold-one-by-one case, WPT shows the best per-
formance except for the Watdiv L and S query types, although it
is not significantly worse. For warm-random, which is the realis-
tic case, it shows the best performance for all query types. The
same trend is showed for Yago queries. There is a reason for this.
WPT has the advantage of having all properties for each subject
in a single row and each row is entirely located in one partition.
This is particularly beneficial for joins on the subject. Hence for
WPT, finding all information related to a subject is as simple as
projecting the corresponding columns. This is exploited even more
in our experiments because the benchmarks are biased towards
star-shaped queries. As a matter of fact, 88% of the triple patterns in
Watdiv are involved in star-shaped joins. On average there are 1.58
on-subject joins per query. In the Yago query set this is a bit less
extreme: 77% involved triple patterns and an average of 1.8 subject-
based joins per query. Therefore, in both cases this kind of join
dominates. Interestingly, TT which is also a single-distributed table,
performs the worst for all cases. In TT, rows with the same subject
might instead be distributed in several nodes. Therefore, shuffling
is required to bring them together. Looking at the other side of the
spectrum in terms of table size we have the VP schemata. This ap-
proach has the downside of having to read as many tables as there
are predicates in a SPARQL query. Therefore, a query translated
for VP most probably requires a larger number of Spark SQL joins
than a WPT which can subsume all triple patterns with the same
subject variable. A larger number of joins leads to a larger number
9The vertical axes of all plots are showed on a semi-logarithmic scale.

of stages, which at the same time introduces more dependencies
between them and reduces the parallelization potential. Figure 3
shows that performance of VP comes closer to that of WPT when
a group of queries contains fewer predicate constants. Queries of
the group C have 8 triple patterns on average, the F queries 6.6, L
2.33 and S 3.33. This explains why for L and S queries VP achieves
a better performance than WPT in the cold-one-by-one case. Since
WPT can be kept longer in-memory (all queries access the same
table), this is no longer the case for the warm-random case.

Wat-C Wat-F Wat-L Wat-S Yago

103

104

105

#
tim

e
pe
rf
or
m
an
ce

(m
s) TT VP WPT DDS

(A) cold-one-by-one

Wat-C Wat-F Wat-L Wat-S Yago

103

104

105

#
tim

e
pe
rf
or
m
an
ce

(m
s) TT VP WPT DDS

(B) warm-random

Figure 3: Performance evaluation for Watdiv and Yago
when broadcast-join is disabled. (A) cold-one-by-one mode.
(B) warm-random mode.

The performance of the DDS schemata lies somewhere in be-
tween. However, we can notice that for Watdiv-L queries DDS
shows a competitive performance. These queries have three triple
patterns two of which can be found in the same table (USER). In
DDS this can be achieved with a single join between the USER and
PRODUCTS tables. This results in fewer stages and faster execution
than VP, which requires accessing three tables and two joins.

Broadcast-Join enabled. WPT shows a surprisingly good per-
formance when broadcast-joins are disabled, but schemata with
smaller tables could not benefit from broadcast-joins. Therefore,
we carried out experiments with this feature enabled and using
two threshold values, 10MB (default) and 1MB, to assess whether
this brings a benefit for VP and DDS. The results can be found in
Figure 4. As the results show broadcast-joins are not bringing sig-
nificant benefits to VP, nor DDS. Not only is the default threshold
worsening the performance in nearly all cases, but also the thresh-
old set at 1MB is only closely behind VPno10. Looking at our results
more closely, we realized that even queries which didn’t trigger
broadcast-joins required longer execution times when the feature

10For DDS no results are showed for the 1MB, because its smallest table has 4.12MB.

5

was enabled than when it was disabled. This is due to the overhead
required by the query engine to obtain the table size information
from the Hive statistics.

Wat-C Wat-F Wat-L Wat-S

103

104

#
tim

e
pe
rf
or
m
an
ce

(m
s) VPno VP10 VP1 DDSno DDS10

warm-random

Figure 4: Performance evaluation for Watdiv when
broadcast-join is enabled with default threshold of 10MB
and 1MB. VPno , DDSno represent times with this feature
disabled. Warm-random mode.

Hence, if broadcast-joins are not bringing a benefit, the single
wide property table continues to show the best performance.

Impact of Spark’s partition by subject. Since our queries show a
bias towards star-shaped queries (joins on subjects), an interesting
aspect to investigate is whether a partitioning scheme based on
the (RDF) subject speeds up the execution. This is typically done
in Spark to reduce the overhead of shuffling. Thus, in this experi-
ment, we first force repartition(subject) to create the partitions and
use the resulting DataFrame(s) as the input for the query engine.
Since repartition also requires shuffling, the number of partitions
generated is equal to spark.sql.shuffle.partitions which is set at a
default value of 200. The following table shows the impact with
respect to the default partitioning scheme (showed in Figure 3(B)).
The repartitioning time is excluded. In this table negative values
(in red) denote a negative impact in the performance. The results
show that partitioning by subject brings a significant benefit only
for DDS, whose performance is only slightly worse than WPT with
the default partitioning scheme. While having a partition for each
subject helps to speed up joins on the subject column, other kinds
of joins are strongly penalized and forced to deal with a much larger
number of partitions of much smaller size (200).

TT VP WPT DDS
Wat-C -9.1% +0.8% -1.8% +35.2%
Wat-F -8.2% -7.6% -9.3% +32.6%
Wat-L +2.8% -18.1% -7.4% +62%
Wat-S -1.6% -15.2% +4.6% +18.1%
Yago -0.2% -5.9% -6.7% +1.1%

Figure 5: Impact of partition by subject and default broad-
cast threshold

5 CONCLUSION
In this paper, we evaluate relational schemata for SPARQL query
evaluation. While this has already been extensively discussed for
single machines [1, 26], a general discussion for computer clusters
was still missing. We provide such an analysis for distributed in-
memory approaches using Spark SQL. The overall benchmark eval-
uation in the current paper suggests that using a simple standard

one table approach, i.e. WPT, seems to be competitive to more elab-
orate designs as, for example, the domain-dependent-schema DDS.
This might become an interesting important issue when highly un-
structured RDF graphs must be processed for which deriving a DDS
or emergent schema becomes difficult and costly. Moreover, at the
schema design level, WPT is nearly independent from the evolution
of the respective underlying RDF graph; for example, only adding
a new column is required to accommodate new RDF triples with
previously unseen properties. Based on the analysis in the current
paper we can attribute the surprisingly good performance of WPT
to the following. First, as WPT collects all the data in one table, we
have a guarantee to execute a number of joins which is as small
as possible. This reduces number of stages and their dependencies.
In addition, the relative huge size of WPT implies a large enough
number of partitions to provide work for as many nodes of the
cluster as possible. Both features are among the prerequisites for
high parallelism during distributed query evaluation.

REFERENCES
[1] D. J. Abadi et al. Scalable semantic web data management using vertical parti-

tioning. In Proc. VLDB, 2007.
[2] I. Abdelaziz et al. Combining vertex-centric graph processing with sparql for

large-scale rdf data analytics. IEEE TPDS, 2017.
[3] A. Abele et al. Linking open data cloud diagram 2017. http://lod-cloud.net/, 2017.
[4] G. Aluç et al. Diversified stress testing of rdf data management systems. In Proc.

ISWC, 2014.
[5] P. A. Boncz et al. Advances in large-scale RDF data management. In Proc. Linked

Open Data - Creating Knowledge Out of Interlinked Data - Results of the LOD2
Project. 2014.

[6] M. A. Bornea et al. Building an efficient RDF store over a relational database. In
Proc. SIGMOD, 2013.

[7] J. Broekstra et al. Sesame: A generic architecture for storing and querying rdf
and rdf schema. In Proc. ISWC, 2002.

[8] M. Cossu et al. Prost: Distributed execution of sparql queries using mixed
partitioning strategies. In Proc. EDBT, 2018.

[9] M. Färber et al. Linked Data Quality of DBpedia, Freebase, OpenCyc, Wikidata,
and YAGO. Semantic Web Journal, 2018.

[10] D. Graux et al. Sparqlgx: Efficient distributed evaluation of sparql with apache
spark. In Proc. ISWC, 2016.

[11] S. Gurajada et al. Triad: a distributed shared-nothing rdf engine based on asyn-
chronous message passing. In Proc. SIGMOD, 2014.

[12] A. Harth et al. Yars2: A federated repository for querying graph structured data
from the web. In The Semantic Web. 2007.

[13] Z. Kaoudi and I. Manolescu. RDF in the clouds: a survey. VLDB J., 24(1), 2015.
[14] A. Madkour et al. Sparti: Scalable rdf data management using query-centric

semantic partitioning. In Proc. SBD, 2018.
[15] A. Madkour et al. WORQ: workload-driven RDF query processing. In Proc. ISWC,

2018.
[16] T. Neumann et al. Rdf-3x: a risc-style engine for rdf. Proc. VLDB, 2008.
[17] T. Neumann and G. Moerkotte. Characteristic sets: Accurate cardinality estima-

tion for rdf queries with multiple joins. In Proc. ICDE, 2011.
[18] Z. Pan and J. Heflin. DLDB: Extending relational databases to support semantic

web queries. In Proc. PSSS1 - Practical and Scalable Semantic Systems, 2003.
[19] M. Pham and P. A. Boncz. Exploiting emergent schemas to make RDF systems

more efficient. In Proc. ISWC, 2016.
[20] M.-D. Pham et al. Deriving an emergent relational schema from rdf data. In Proc.

WWW, 2015.
[21] A. Potter et al. Distributed RDF query answering with dynamic data exchange.

In Proc. of ISWC, 2016.
[22] R. Punnoose et al. Rya: a scalable rdf triple store for the clouds. In Proc. IWCI,

2012.
[23] T. Rebele et al. YAGO: A multilingual knowledge base from wikipedia, wordnet,

and geonames.
[24] A. Schätzle et al. Sempala: interactive sparql query processing on hadoop. In

Proc. ISWC, 2014.
[25] A. Schätzle et al. S2rdf: Rdf querying with sparql on spark. Proc. VLDB, 2016.
[26] L. Sidirourgos et al. Column-store support for rdf data management: Not all

swans are white. Proc. VLDB Endow., 2008.
[27] K. Wilkinson. Jena property table implementation. In Proc. SSWKBS, 2006.
[28] M. Wylot et al. RDF data storage and query processing schemes: A survey. ACM

Comput. Surv., 51(4), 2018.

6

	Abstract
	1 Introduction
	2 Basics
	3 SQL query construction
	4 Evaluation results
	5 Conclusion
	References

