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Executive Summary

Solving the problem of scalability in ontologies is a musice we are dealing with many
novel applications that produce even larger ontologiesiata sets. This deliverable con-
tinues the work of deliverable 2.1.2, in which we deal onlyhwnethods for approximate
reasoning. This version not only focuses on practical appbns for deploying such al-
gorithms, but also handles the problem of distributed ne&sgpin ontologies and their
further progresses.

In the beginning of this deliverable we concentrate upomouar approximate rea-
soning methods proposed by our partners, as approximammigues in instance re-
trieval, which make A-Box reasoning in Description Logicsmngcalable. We present
SCREECH, a system which implements the same type of techniguéomOWL DL
ontologies and a system applied in e-learning for makingisolquery processing over
RDF heterogeneous data in order to provide personalizedhaftion access.

In the end we change the focus upon distributed reasoningstance retrieval, as in
large distributed environments, the process of introdgicinremoving new resources is
always a problem, and therefore the scalability issue igwitnus. We introduce DRAGO
and its applications in the Semantic Web, and an informagtmeval system spread over
a federated structure, able to give very good, easily stwatabults.
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Chapter 1

Introduction

by STEFANIA GHITA-COSTACHE & HOLGER WACHE

The main goal in the KnowledgeWeb work package 2.1 is to delnable solutions
for the scalability problem in the Semantic Web, that is hownieet the growth require-
ments for computing solutions, without affecting theirfpemance, emphasizing the fact
that scalability needs robust and high-performance reago®ne of the identified, more
general solutions for this, rely on modularization, appmation and distribution of rea-
soning methods. In this deliverable we will focus on the tagt solutions, concentrating
more on practical implementations of them.

As already introduced in deliverable D2.1.2, approximatechniques can be distin-
guished in approaches which

» weaken the language,
» compile the knowledge,
» approximate the deduction, or

* combination of them.

In this deliverable we consider approximation approachieshvcompile the knowl-
edge and/or approximate the deduction. Furthermore thesstigated approximation
approaches are restricted to the use cases of instanavagtiie. A-Box reasoning in
terms of DL reasoning, as it doesn’t scale up well when theberrof instances increases
significantly. It is obvious that this use case we dominagepitactical use of the Semantic
Web in future.

The first contribution is in comparing the performance of @mgproximate reason-
ing methods, using Instance Store [56], developed to sgalestance retrieval for such
ontologies with a large number of instances, and Gene Qutas benchmark data set.
It continues the approximation effort already reported &@1D2. The second approach

1
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also covers approximate A-Box reasoning for OWL DL ontologlas using a differ-
ent technique. The approximation method is based on theéHatteasoning with Horn
logic is more efficient than reasoning with non-Horn knowgedases. The idea is thus
to use language compilation for transforming OWL DL onto&sginto Disjunctive Horn
clauses, or more precisely, into approximated Datalogsrulde compilation is mainly
done by powerful KAON2 transformation algorithm; the adhtl part is performed by
the SCREECH system which implements the approximation approB€REECH can
report impressing performance results.

Instead of improving the performance we also focus on rat@astoning. In particular
our approach investigates RDF query formulating, as basiguderies used on a large
scale and as a necessity in order to provide high systembdltglaBy combining the
two basic methods for cooperative query processing, quefizement and query relax-
ation, an implementation of a framework is proposed forrimfation access, in order to
provide robust, personalized access to heterogeneous RBFm#he context of widely
used querying over RDF data, but without the ability of userfotmulate meaningful
gueries. The implementation mainly deals with conditiamaVriting of rules for RDF
guery patterns and its application is discussed in the gbaofean e-learning system. The
rewriting of queries is based on Event-Condition-Action][B@es, in order to solve the
problem of over-constraint queries.

This deliverable also concentrates upon providing sahgtio the scalability problem
in distributed environments, i.e. distributed ontologigistributed resources of informa-
tion. The first approach tries to reason about distributadlogies: DRAGO is a dis-
tributed reasoning platform for distributed ontologiesietthare interrelated by semantic
links. The theory is described behind performing distgliteasoning and simple dis-
tributed instance retrieval in Distributed Descriptiondias, the architecture and imple-
mentation of DRAGO and also some applications of the propossdEl for the semantic
web. DRAGO proves itself to perform well for the instanceiesal problem, making use
of different semantic mappings and reasoning on top of them.

The second approach broaden the view on distributed reagofti continues along
the distributed resources paradigm, especially into a-feepeer network, by combining
ontology-based querying and classic information retfievathods in such an environ-
ment. The main idea is creating a local indexing scheme tttatifly indexes resources,
diminishes the message overhead in the network and makesf tise collection-wide
information efficiently. Additionally, this method alloveasy dissemination of newly in-
troduced information resources among the participatiregeAlso, the introduction of
the idea of a separate category index allows the reductitargd portions of the network
without affecting quality, and therefore enhancing evemerszalability.

2 Jan 30, 2006 KWEB/2005/D2.1.2.2.v1/1.0



Chapter 2

Scalable Instance Retrieval by
Approximation

by HOLGER WACHE, PERRY GROOT & HEINER STUCKENSCHMIDT

2.1 Motivation

A central issue in the Semantic Web research community isstpeessivity of its under-
lying language and the complexity of the reasoning senitcagoports. There is a direct
correspondence between the current Semantic Web ont@agyage OWL and Descrip-
tion Logic (DL).! Research in DL has lead to sophisticated DL reasoners [4&3}1that
can be used to reason with OWL ontologies on the Semantic Websi@xing T-Box
reasoning, current state of the art techniques seem capiatddaling with real world on-
tologies [49, 42]. However, besides T-Box reasoning, an mamb application domain of
ontologies is A-Box reasoning, i.e., reasoning and retngvhe individuals in an ontol-
ogy. Experiments have shown that state of the art DL reasdireiak down for A-Box
reasoning when the number of instances becomes large [E8eiit work focuses at ap-
proximation techniques to make A-Box reasoning in DLs moedaddle when retrieving
instances from an ontology with a large number of instan&pproximation is a general
technique that has been proven useful in many areas. ThenBeeb is no different,
it is a typical application domain that can benefit from anragpnate form of reasoning,
which can deal with time pressure as well as other limitedueses and is scalable to the
vast amount of available information. These conditionsioelparticular when instances
need to be retrieved from an ontology.

Here we investigate optimization techniques that are basedpproximate logical
reasoning. The underlying idea of these techniques is tacegertain inference prob-
lems by simpler problems such that either the soundnesseocdmpleteness, but not

IMore precisely two of the three species of OWL.

3
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both, of the solutions is preserved. The solutions to th@kknproblems are approximate
solutions to the original problem.

The contribution of this work is in comparing the performaraf two approximate
reasoning methods proposed in the literature applied toethlewvorld task of answering
conjunctive queries over DL Knowledge Bases. For this, we tise Instance Store [56],
a state of the art system developed to scale-up instangevedtfor ontologies with a
large number of instances, and extended it with two appration techniques. The Gene
Ontology is used as benchmark data set to evaluate the penfice of the approximation
techniques.

The chapter is organized as follows. Section 2.2 definesnbigigm of instance re-
trieval in the context of Description Logics, which is reésted to conjunctive queries.
Section 2.3 gives a brief overview of two approximation neeithand describes how they
can be applied to the problem of instance retrieval. Se&idmgives the results of exper-
iments with the two approximation methods applied to instaretrieval using the Gene
Ontology. Section 2.6 concludes our work.

2.2 Instance Retrieval Queries

In this article we focus on the following instance retriegebblem:

Definition 1 (Instance retrieval w.r.t. some query) Given an A-Box4 and a queryQ,
i.e., a concept expression, find all individuaissuch thata is an instance of), i.e.,
{a|Va e A a: Q}.

Often, an analogy is made between databases (DBs) and DL KRBssckiema of a
DB corresponds to the T-Box and the DB instances correspotitetd-Box. However,
A-Boxes have a very different semantics. This makes querywensg in a DL setting
often much more complex than query answering in a DB. Giverexpeessivity of DLs,
retrieving instances to a query cannot simply be reducediehthecking as in the data-
base framework because there is no single minimal modeldoeay. Knowledge Bases
may contain nondeterminism and/or incompleteness. Toexetleductive reasoning is
needed when answering a query in a DL setting.

2.2.1 Conjunctive Queries

A-Box query languages have been quite weak for earlier DLesyst Usually they sup-
ported very simple A-Box queries like instantiation (is midual: an instance of concept
C, i.e.,i : C), realisation (what are the most specific concéptsan instance of), and

retrieval (which individuals are instances of concépt

4 Jan 30, 2006 KWEB/2005/D2.1.2.2.v1/1.0



2. SCALABLE INSTANCE RETRIEVAL BY APPROXIMATION

In [55] an approach for answering conjunctive queries ovieitrary DL KBs is given
based on the translation of the query into an equivalenteqgrexpression, i.e., bylling
upthe query.

Definition 2 (Boolean Conjunctive Query) A Boolean conjunctive query) is of the
formq; A -+ A g,, Wheregq,...,q, are query terms of the form: C or (x,y) : R,
whereC'is a conceptR is a role, andr, y are either individual names or variables.

The approach makes use of the fact that binary relations onpauactive query can
be translated into an existential restriction such thaicligconsequence is preserved.
Standard DL inference methods can then be used to classifgdhcept expression the
guery is translated into as well as retrieve the instancatstilong to it. The method of
[55] enables us to use an expressive query language foragbéxpressive DL KBs.

Because binary relations in a conjunctive query can be @m#alinto an existential
restriction such that logical consequence is preserveasdard DL inference methods
can then be used to classify the concept expression the ueganslated into as well as
retrieve the instances that belong to it. [55] enables uséan expressive query language
for arbitrary expressive DL KBs.

2.2.2 Instance Store

DL reasoning is hard, especially in the case of instancéeweir when the number of
instances grows very large. To speed up the overall coststémige retrieval, one can
address the number and cost of checking whether a singintesbelongs to a query.

Instance Store [56] is developed to speed up instance vaitiy replacing costly
instantiation checks : @ with database retrieval. However, Instance Store can Rot re
place all DL reasoning steps using database retrieval.rressituations DL instantiation
checks must still be performed. An analysis of the InstartoeeSevealed a drastic break-
down in performance in these situations, which hampersoié @ scale-up reasoning to
ontologies with a large number of instances. At the momestalrce Store only supports
role-free A-Boxes, i.e., relationships between instaneeise A-Box are not allowed, but
this was sufficient for our purpose.

Checking each individual in an A-Box if it instantiate a corgtive query@ is in-
efficient especially for large A-Boxes. A technique that hasrbdeveloped to scale DL
reasoners for role-free A-Boxes with a large number of irstaris the Instance Store (IS)
[56]. The IS combines DL reasoning with Database retrievapgeedup the process of
instance retrieval.

To describe the IS algorithm we use the following notatioor. & T-Box7 , an A-Box
A, a concept’, and a query):

KWEB/2005/D2.1.2.2.v1/1.0 Jan 30, 2006 5
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- C |7 stands for the set of atomic conceptsZirsubsumed by’ (i.e., equivalents
and descendants 6f ). The set of individuals in4 that realisesomeconcept in
Q@ |7 is denoted byf;. Any individual in I; is an answer t@).

- [C']1 stands for the set of most specific conceptgisubsumingC. The set of
individuals in.A that realiseeveryconcept inf Q| 7 is denoted by,. The individuals
in I, must be checked for instanciation@fconstituting/s.

Please note, that [56] showed that theand /3 contains all answers Q. Using this
notation, IS can be described as a 7 step process:

1. use the DL reasoner to compupe| r;

use the database to find the set of individuajs

3. use the reasoner to check whethers equivalent to any atomic concept™n if
that is the case then simply retufpand terminate;

4. otherwise, use the reasoner to comgaier;

use the database to compuite

6. use the reasoner and the database to conmiputiee set of individuals: € I, such

thatz : C'is an axiom ind andC' is subsumed by;

return/; U I3 and terminate.

N

o

~

Step 1 an 2 computg. Step 3 and 4 are optimisations which avoid unnecessary @omp
tation of I, resp./5. Step 5 and 6 computds and/s.

2.3 Approximation Techniques for Instance Retrieval

There are three components of the instance retrieval probleere approximation meth-
ods can be applied:

The Query. The query can be made weaker, i.e., more general, by omdtingplacing
parts of the query. The underlying assumption is that simgpleries are easier to
check.

The Ontology. We assume that the query is formulated relative to a giveology. Con-
cept expressions in the ontology (representing for examplestantiation check)
can be approximated by weaker or stronger concept exprsssio

The Instance Descriptions.In order to check whether instances belong to the query,
first the descriptions of instances are translated intovatgnt concept expres-
sions. Consequently, those concept expressions can bexappted by weaker
or stronger concept expressions.

6 Jan 30, 2006 KWEB/2005/D2.1.2.2.v1/1.0



2. SCALABLE INSTANCE RETRIEVAL BY APPROXIMATION

Conjunctive Query Concept
G A Agn Expression @

@ Roll up @
\@ rco

ol

Concept
Expression I’

®

Instance

Figure 2.1: Various components

This section reviews the techniques of [84] and [93] thatlbamsed to approximate
instance retrieval in DL. Figure 2.1 gives an overview of Wagious components used
in instance retrieval. The method of [84] was proposed ta@pmate satisfiability of
concept expressions (usable in step 5 of Figure2The method of [93] can be used to
approximate conjunctive queries, or its concept expressianterpart (usable in steps 1
and 2 of Figure 2.1).

Both methods propose to approximate an instantiation t@sg @ssequence of tests
C4,...,C,. Assuming that less complex tests can be answered in legs tstance
checking can then be speeded up. However, both methods whifteeir strategy for
selecting the sequence of expressiéhgo be checked successively. In general, [93]
argues that the order should balance two factors:

1. Thesmoothnessf the approximation. In particular, the next tést ; should lead
to the next best approximation.

2. The potential contribution of the extension@f,; to thetime complexityof the
tests to be done by the system.

2.3.1 Approximating Description Logic Satisfiability

In DLs, satisfiability checking can be seen as the most baslkcas many reasoning ser-
vices can be restated into satisfiability checks [4]. In [84échnique has been developed
to approximate satisfiability checks. Concept expressioaspproximated by two se-
guences’y, ..., C, of simpler concept expressions, obtained by syntactic pudations,
which can be used to determine the satisfiability of the nabtoncept expression.

For every subconcep?, [84] defines thalepthof D to be ‘the number of universal
quantifiers occurring irC' and havingD in its scope’. The scope ofR.¢ is ¢ which
can be any concept term containin A sequence of weaker (stronger) approximated
concepts can be defined, denotedty (C*), by replacing evergxistentially quantified

2[84] should also be usable in steps 2 and 4, although not peaporiginally.

KWEB/2005/D2.1.2.2.v1/1.0 Jan 30, 2006 7
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subconcept, i.ejR.¢ where¢ is any concept term, of depth greater or equal thhg
T (L). Concept expressions are assumed to be in negated normal(fF) before
approximating them.

Theorem 1 ([84]) For eachi, if ;' is unsatisfiable thef]" is unsatisfiable for alj > i,
henceC is unsatisfiable. For each if C;- is satisfiable therC; is satisfiable for all
j > 1, henceC is satisfiable.

The sequence§’’ andC* can be used to gradually approximate the satisfiability
of a concept expression. [84] only replaces subconcBpts JR.C as the worst case
complexity depends on the nesting of existential and usalegquantifiers. Theorem 1
leads to the following for”+-approximation:

(I C Q)+ isnotsatisfiable & (/M —Q); is satisfiable =
(IM—=Q) is satisfiable & (ICQ) is not satisfiable

Therefore, we are only able to reduce complexity when apprated subsumption tests
are not satisfiable. When an approximated subsumption(fest Q) is satisfiable,
nothing can be concluded and the approximation continuésvédi + 1 until no more
approximation is applicable, i.e., the original concepttas obtained. Analogously,
from Theorem 1 one obtains that whéh C Q). is satisfiable this implies thdtl C

Q) is satisfiable. Wheri/ C @)/ is not satisfiable nothing can be deduced and the
approximation continues to leveh- 1.

Research on this kind of DL approximation is quite limited4][& the only method
that deals with approximation of satisfiability in DLs. Fessults have only been obtained
recently [38].

2.3.2 Approximating Conjunctive Queries

In [93] a method is introduced for approximating conjunetgqueries. The method com-
putes a sequendg', ..., Q" of queries such that: (I)< j = Q' 3 Q7 and (2)Q™ = Q.

The first property ensures that the quality of the resulthefqueries doesn’t decrease.
The second property ensures that the last query computedsdhe desired exact result.

The proposed method can easily be adapted for instantiatiecks. The computed
sequence)!, ..., Q" is used to generate the sequelte, ..., C> with C2 = a : Q'.
Assuming that less complex queries can be answered in hass imstantiation checks
can then be speeded up using the following implication:

TZQINQCEQ)=1EQ

In [93] the sequence of subsuming quer@s ..., Q" is constructed by stepwise
adding a conjunct (of the original query) starting with threversal query.

8 Jan 30, 2006 KWEB/2005/D2.1.2.2.v1/1.0
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A problem that remains to be solved in this approach is aegjyator selecting the
sequence of queries to be checked successively. This prdidds down to ordering
the conjuncts of the query which should balance the two factmoothness’ and ‘time
complexity’.

As described in [93] the smoothness of the approximationbeaguaranteed by ana-
lyzing the dependencies between variables in the quergr Afinslating the conjunctive
guery to a DL expression, these dependencies are reflectbd mesting of subexpres-
sions. As the removal of conjuncts from a concept expressiequivalent to substitution
by T, this nesting provides us with a selection strategy to datex a sequence of approx-
imationsS; where all subexpressions at depth greater or equalitaas replaced by .
Hence, this method is somewhat similart6-approximation except that it is restricted to
the conjunctive query, i.e., the instance description tsapproximated, and it can replace
any conjunct in the query with', not only existentially quantified conjucts.

Typically, however, queries often have a very flat structlrer example, all queries
used in our experiments with the Gene Ontology are of dep#h dhis means tha is
the queryT whereasS; is already the original query. To avoid this bad approxiomati
scheme, next we propose an improved strategy.

An Improved Approximation Strategy

To overcome the flatness of queries typically found in org@s, we propose a strategy
that also provides an order for subexpressions at the sammkdédepth. A possible
ordering is the expected time contribution of a conjuncti® ¢osts of the subsumption
test. As measuring the actual time is practically infeasiblheuristic is proposed.

For this purpose, we unfold the conjuncts using the defimstiof the concepts from the
ontology occurring in the conjunct. In order to determineigable measure of complex-
ity for expressions, we consider the standard proof proeefiw DLs. Most existing DL
reasoners are based on tableau methods, which determisatisiability of a concept
expression by constructing a constraint system based ostrilneture of the expression.
As the costs of checking the satisfiability of an expressiepethds on the size of the
constraint system, we can use this size as a measure of cotpples determining the
exact size of the constraint system requires to run thedabigethod, heuristics are used
for estimating the size. Based on this estimated size, werdete the order in which
conjuncts at the same level of depths are considered.

In the following, we propose a method for estimating the sikthe tableau for ex-
pressions in4LC that will be used in the experiments. The tableau rules [dYiple us
with quite a good idea about an estimation of the maximalizke tableau in the worst
case. For this purpose, we define a functiothat assigns a natural number representing
the estimated size of the corresponding constraint sysiem arbitrary4LC expression

KWEB/2005/D2.1.2.2.v1/1.0 Jan 30, 2006 9
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in the following way:

d(A) = 1
) = 0
( ) = 2+ ®(C)+ ®(D)
d(CUD) = ¢+2+P(C)+ ®(D) whereg is the current value ob(E)
( ) = 2+9(0)
) n + n - ®(C) wheren is the number of existential quantifiers in

Aand —A: Atomic concepts are added as a single constraint. Negated concepts adeled as
they are merely used to check the existence of a contradiction.

C 1 D: Two new constraints are added. The expressions in these constraiatioHze evalu-
ated recursively, therefore, we also have to estimate the number ofaiatsthat will be
generated by’ andD.

C U D: Two new constraints are added and each of the constraints has to tetedakcursively,
however, we have to deal with two separate constraint systems from thisquo The
number of constraints in the system at this point has to be doubled. Fofiatsn we
add the current estimation value.

(3 R.C'): Two new constraints are added, one for the relation and one restrictiogjdt in the
relation toC' Objecty has to be evaluated recursively.

(V R.C'): A new constraint has to be added for every existing constraftif in the constraint
systemS and each one has to be evaluated recursively. As we do not know howaha
these statements are or will be$h we use the overall number of existential quantifiers in
the expression that can lead to the addition of these constraints as arbappdr

The valued can now be computed for each conjunct in the query and be gsebasis
for determining the order in which conjuncts at the samellef/aesting are processed.

2.4 Experimental Evaluation

In this section experimental results are shown of the aphremdescribed in the previous
section. The main question focused on in the experimerits and if yes, inwhat way
does approximation reduce the complexity of the retrieaskt We focus on the number
of operations needed and the overall computation time uHee goal of our approxima-
tion approach is to replace costly reasoning operations (gynall) number of cheaper
approximate reasoning operations. The approximation edsthsed are sound and com-
plete. Therefore, the suitability of the approximation huets depend solely on the time
gained (or lost) when classical operations are replacedriunaber of approximate ones.

Our experiments were made with the Gene ontology and Inst&tare [56]. The fo-
cus of our experiments are those queries where Instance &anot replace all DL rea-
soning with database retrieval, but must still check théamgations of some instances.

10 Jan 30, 2006 KWEB/2005/D2.1.2.2.v1/1.0
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These instantiation checks were found to be a bottleneckéanstalability of this ap-
proach. We originally started with 17 queries (wigh to Q6 user formulated queries and
queries@Q7 to Q17 artificial), but discarded the queries that didn’t requimstantiation
checks from further experiments.

Table 2.1: Performed Subsumption tests

normal cT ct cA
\ true\ false \ true\ false \ true \ false \ true \ false
Lo | 20 0
Q2 L1 20 0
Lo| O 19 Lo 19 0 L2 9 11
no| 9 11 no| 9 11 no 9 11 no 9 0
L0 | 607 0
Q8 Lo| O 606 || LO | 606 0 L1 10 597
no| 10 | 597 no| 10 | 597 no| 10 597 no| 10 0
012 Lo| O | 7871 LO | 7871| O Lo 15 | 7856
no| 15 | 7856 | no| 15 | 7856|| no| 15 | 7856|| no| 15 0
L0 | 408 0
L1 5 403
Q14 Io| O 407 || LO | 407 0 L2 5 0
no| 5 403 no| 5 403 no 5 403 no 5 0
015 LO| O | 6693 LO | 6693| O L0 | 6693| O
no| 46 | 6647| no| 46 | 6647| no| 46 | 6647| no| 46 | 6647
017 LO| O | 7873 LO | 7873| O Lo 1 7872
no 1 78721 no 1 7872 1| no 1 78721 no 1 0

The results of the first experiments are shown in Table 2.i¢iwis divided into four
columns with each column reporting the number of subsumpgsts performed. The
first column reports results for the experiment without appraximation, the second
column withC'"-approximation, the third column with---approximation, and the fourth
column with C2-approximation. Each column is further divided into smat@vs and
columns. The rows represent the level of the approximateeduwhereno denotes
without approximation, and.: denotes the level of the approximation approach. The
subcolumns show the number of subsumption tests that eésuittrue or falsé. This
distinction is important, because Section 2.3 tells us dindt when aC " -approximated
subsumption succeeds, ofd - or C*-approximated subsumption test fails we obtain a
reduction in complexity.

3We will use the shorthand ‘true subsumption test’ and ‘falgbsumption test’ to indicate these two
distinct results.

KWEB/2005/D2.1.2.2.v1/1.0 Jan 30, 2006 11
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2.5 Discussion

Let us first focus on the questidginthe approximation methods can lead to any reduction
in complexity. Table 2.1 shows that"- andC*-approximation cannot reduce the num-
ber of normal subsumption tests. Ordy* is able to reduce, except f@p15, all false
subsumption tests to 0.

The first column in Table 2.1 shows that much more false suptiomtests are needed
than true subsumption tests. This indicates tHatapproximation is wrong in this ap-
proach as it can only be used to lower the complexity of truessmption tests, which
is negligible when compared to false subsumption testss May explain its bad ap-
proximating behaviour, howevet;* also performs badly, which does approximate false
subsumption tests. Closer analysis shows tiwah collapsing38], i.e., the substitution
of terms by T or L results in the query becoming equivalenfliar L, is the reason for
this. An analysis of’* shows that this occurs il cases

Apart from looking aif an approximation method can successfully reduce the number
of normal subsumption tests, we must also consider the oosftaining the reduction,
i.e., inwhat wayare the normal subsumption tests reduced. For examplepxpyat-
ing @8 change$07 = 10 + 597 normal subsumption tests inl® normal subsumption
tests,607 C2 subsumption tests, a7 C4 subsumption tests. Thus, the number of
subsumption tests may increase, but the complexity of nesss$ will be lower than nor-
mal. Note however, that some computations seem unnecessaothing can be deduced

from them, e.g., th€07 C4 tests. Obviously, in this approach unnecessary subsumptio
Figure 2.2: Time needed for Subsumption tests (in millisels)

| | normal| ¢7 ct ca
Q2 175 348 299 547
Q8 5373 8383 7753 9912
Q12| 61410 | 93100 | 85764 | 56478
Q14| 4372 6837 6017 7391
Q15| 61560 | 90847 | 83714 | 114162
Q17| 113289| 158218| 144689| 93074

tests should be minimized. Several cases can be observhd axperiments with{'>-
approximation. Either no subsumption test is unnecessary,(17), some subsumption
tests are unnecessay?, )8, 14), or all subsumption tests are unnecess@risl.

This distinction seems to influence the overall time needbdnnvapproximating a
query. Table 2.2 reports the overall time in millisecondsdesl for each query. For
comparisorC'" andC+ are also reported. For queries having unnecessary subisummpt
tests, approximation always leads to more computation.timehose cases, reducing the
complexity of subsumption tests do not weigh up to the casaéslditional (unnecessary)
subsumption tests. For queries having no unnecessaryraphisua tests, approximation
KWEB/2005/D2.1.2.2.v1/1.0
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does save time when compared to the normal case.

Another observation of Table 2.1 is that false subsumptststforC2 only occur at
one level It seems that the conjunct that is added to the approxin@teinctive query
on which the false subsumption tests occur is crucial inrdeteng the outcome.The role
of conjunct in a subsumption test is still unclear. More egshk is needed if this conjunct
(or a group of conjuncts) can be identified in advance to sppeapproximation.

2.6 Conclusions

Instance retrieval is one of the most important inferencd¢lse Semantic Web. In order to
make methods more scalable for ontologies with a large sestdnces we investigated
two approximation methods and evaluated them on a benchsearBoth methods use a
similar idea, i.e., removing parts of an expression to makeripler to speed up retrieval.
However, the method of [84] shows bad approximating belmdwazause the selection
and substitution of subconcepts is too restrictive. Thehoeof [93] was extended with

a heuristic for subconcept selection and shows some paltdatispeeding up instance
retrieval. However, more research is needed to improve e¢oeistic and to determine if

the approximation method can be used to speed up instameyaét
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Chapter 3

SCREECH - Faster OWL using split
programs

by PASCAL HITZLER & DENNY VRANDECIC

We propose a new technique for approximate ABox reasoning @i/L DL on-
tologies. Essentially, we obtain substantially improvedsoning performance by disre-
garding non-Horn features of OWL DL. Our approach comes adexmioduct of recent
research results concerning a new transformation of OWL Diblogies into negation-
free disjunctive datalog [57, 58, 60, 72], and rests on tlea idf performing standard
resolution over disjunctive rules by treating them as ifytinere non-disjunctive ones.
We analyze our reasoning approach by means of non-monateasoning techniques,
and present an implementation, calledR&EECH

This chapter is essentially a substantial update of ChapteDéliverable D2.1.2.

3.1 Introduction

Knowledge representation and reasoning on the Semantid3\édme by means of on-
tologies. While the quest for suitable ontology languagesilisongoing, OWL [104] has
been established as a core standard. It comes in three flago@WL Full, OWL DL
and OWL Lite, where OWL Full contains OWL DL, which in turn comaiOWL Lite.
The latter two coincide semantically with certain desaoiptiogics [4] and can thus be
considered fragments of first-order predicate logic.

OWL ontologies can be understood to consist of two parts, m@emsional, the other
extensional. In description logics terminology, the irsienal part consists of a TBox
and an RBox, and contains knowledge about concepts (celbsdey and the complex
relations between them (calleales). The extensional part consists of an ABox, and con-
tains knowledge about entities and how they relate to thesekaand roles from the inten-
sional part. For the Semantic Web, TBox and RBox shall provid&dr@aund vocabulary,
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while (annotated) webpages etc. constitute ABoxes whichgedinked with intensional
knowledge. The Semantic Web thus envisions a distributedviedge source, built from
OWL ontologies and intertwining the knowledge like the Woide Web interconnects
websites.

With an estimated 25 million active websites today and apoadingly more web-
pages, it is apparent that reasoning on the Semantic Wehawd to deal with very large
ABoxes. Complexity of ABox reasoning — also callédta complexity— thus measures
complexity in terms of ABox size only, while considering tmtansional part of the on-
tology to be of constant size. For the different OWL variadeta complexity is at least
NP-hard, which indicates that it will not scale well in gesddb9]. Methods are therefore
being sought to cope with large ABoxes in an approximate nranne

The approach which we propose is based on the fact that datplexity is polyno-
mial for non-disjunctive datalog. We utilize recent resbaresults [57, 58, 60, 72] which
allow the transformation of OWL DL ontologies into disjunetidatalog. Rather than
doing (expensive) exact reasoning over the resulting nisjve datalog knowledge base,
we do approximate reasoning by treating disjunctive rusei§ they were non-disjunctive
ones. The resulting reasoning procedure is complete, bytbmainsound in cases. Its
data complexity is polynomial. We are also able to give aatt@rization of the resulting
approximate inference by means of standard methods frompoggramming semantics.

This chapter is structured as follows. In Section 3.2, we fitrscuss the general
rationale behind approximate reasoning, and how it retatether reasoning frameworks.
We then recall formal terminology and notation for OWL DL, asfubrtly review datalog
and SLD-resolution. Then, in Section 3.4, we explain how OWLdhtologies can be
transformed into disjunctive datalog. In Section 3.5 weaddtice the new approximate
SLD-resolution procedure which we propose. The presemtaif our implementation
SCREECHIn Section 3.6 is followed by an Example in Section 3.7, ané@rerimental
evaluation in Section 3.8. We conclude and discuss futuré& woSection 3.9.

3.2 Non-Classical Reasoning — Common Grounds

Classical logic — a term which encompasses mainly propositiand first-order predicate
logic — is the foundation for many knowledge representaiod reasoning paradigms in
artificial intelligence and related areas, such as semawdlz However, reasoning in
these paradigms is often non-classical, i.e. it is obtaimednodifying classical logic.
Some of these modifications are syntactical. Conceptuallyekier, semantic differences
are more important. From a bird’s eye perspective, thesasgerdifferences can often
be perceived as a modification of the notion of model, whicthe@usual way has impact
on the inference relation considered. We will elaborate atbthis.

A semantic perspective on approximate reasoning is depiot€igure 3.1. When a
theory is being considered, classical reasoning may begbftcomputational complexity

16 Jan 30, 2006 KWEB/2005/D2.1.2.2.v1/1.0
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well-understood
relationship

All models / high reasoning
° complexity

low reasoning
complexity

Models taken into account

Figure 3.1: Semantic view on approximate reasoning

and thus be unsuitable for time-critical tasks. By takindedd@nt models into account
than the classical ones, the complexity of reasoning caretheced. The resulting ap-
proximate inference may be incomplete or unsound with i&sjeeclassical inference,
but in a controlled and well-understood manner, which makesnferences suitable for
further use.

Similar situations occur in the context of other sophiggdaeasoning techniques. For
non-monotonic reasoning, for example, a subset of theickgwodels is usually con-
sidered, which is selected by means of e.g. additional gyaastructs or by redefining
the semantics of existing ones. Non-monotonic reasoning #lows to arrive at con-
clusions which cannot be derived using classical reasoning complete, but unsound,
and can be described spraclassical70]. The rationale in this case is to model aspects
of human commonsense reasoning jikeping to conclusionsagain in a controlled and
well-understood manner. Complexity considerations amndfeated as secondary in this
context.

Paraconsistent reasoning — or reasoning with inconsigtencan be approached
from a similar perspective. While inconsistent knowledgedsehave no classical models,
paraconsistent reasoning strives to identify suitableetsotb be assigned to the knowl-
edge base nevertheless, in order to allow the inference ahimgful consequences. As
such, paraconsistent reasoning is sound, but incompléterespect to classical logic,
and can thus be termeaibclassical

reasoning approachfocus \ models taken into account \ typical complexity
classical all classical models high
non-monotonic commonsense some classical models very high
paraconsistent inconsistency| more than the classical modelshigh

approximate performance | variable low

Table 3.1: Comparision of non-classical reasoning appresch

Table 3.1 summarizes our discussion. While the table caaingrte extended fur-
ther taking other forms of reasoning into account, we reistirselves to the mentioned
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examples, as the main goal of this chapter is to present amépgate reasoning method
for OWL DL, and not a comparative theory of reasoning appreachVe have included

this discussion because it explains the general ratiordilmtl our approximate reasoning
method, and will help us in analyzing it. Indeed, in all re@iag paradigms mentioned, it
is important to obtain a clear understanding of the infeeeretation computed. This can
be done by semantic analyses, i.e. by characterizatioteaohbdels taken into account.
From the general perspective described in this sectionillifater come as no surprise

to the reader that we will analyze our approximate reasomathods by means of stan-
dard techniques from non-monotonic reasoning. Indeedjiiparticular case the models
taken into account for approximate reasoning will turn aubé a subset of the classical
models, as in non-monotonic reasoning.

3.3 Preliminaries

3.3.1 OWL DL Syntax and Semantics

OWL DL is a syntactic variant of th&€ HOZN (D) description logic [52]. Hence, al-
though several XML and RDF syntaxes for OWL DL exist, it will bengenient to use
the traditional description logic notation since it is momnpact, and we recall the nota-
tion below. For the correspondence between this notatidrvanious OWL DL syntaxes,
see [52].

We indeed assume that the reader is familiar with OWL and thtis S+ OZN (D),
as space restrictions forbid to reintroduce them, but tébat SHOZN (D) supports
reasoning with concrete datatypes, such as strings orargdg§8]. Recall also that the
description logic syntax for concepts 8#{OZN (D) is defined as follows, wherd is
an atomic conceptl is an abstract role$ is an abstract simple roldy; are concrete
roles,d is a concrete domain predicate,andc; are abstract and concrete individuals,
respectively, and is a non-negative integer:

C — A|-C|CiNCy|CLUCy|IR.C|VRC|>nS|<nS|{al,...,an} |
| >nT|<nT|3N,....T,.D|VTy,...,Ty.D
D — d|{c,...,cn}

TheSHZ Q(D) description logic is obtained fro®HOZN (D) by disallowing nom-
inal concepts of the forfflay, . . ., a, } and{c,, . .., ¢, }, and by allowing qualified number
restrictions of the form> n S.C'and< n S.C', for C aSHZ Q(D) concept and a simple
role.

As description logicsSHOZN (D), i.e. OWL DL, andSHZ Q(D) inherit their se-
mantics from first-order logic by the standard translatibnewn e.g. from [54], which
we do not repeat here.
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3.3.2 Datalog and SLD-Resolution

A (definiteor negation-fregdisjunctive logic progran consists of a finite set alauses
or rulesof the form

Yoy . Vo (Hi V-V Hy — Ay A A Ay,

commonly written as
Hl\/"'\/Hm(—Al,...,Ak,

wherezx, ..., x, are exactly all variables occuring i, vV --- VvV H,, «— A1 A --- N\ Ay,
and all H; and A; are atoms over some given first-order languageThe disjunction
HyV---V H,, is called theule head and the conjunctiod; A - - - A A, is called therule
body The set of all ground instances of atoms defined avisrcalled theHerbrand base
of P and is denoted by3p. The set of all ground instances of rulesfnis denoted by
ground(P). A rule is said to baon-disjunctivef m = 1. Itis called afactif £ = 0. We
abstract from the order of the atoms in the heads respectiglies; it is not important
for our results. A disjunctive logic program is calleddisjunctive) datalogrogram if it
does not contain function symbols.

Note that we do not consider logic programs to come with orezifip semantics.
Some people for example associate datalog with the mininoaletrsemantics only. For
our treatment, datalog and logic programs are defined viegymly. We do not specify
a specific semantics because in the following we will disdifsrentsemantics for logic
programs in their relation to proof procedures. One of thmasdics we will consider is
the semantics coming from interpreting logic programs astab&first order formulas,
and in this case we use to denote entailment in classical first-order predicatéclog

SLD-resolution(see e.g. [66]) is an efficient top-down query-answeringnegue for
programs consisting of non-disjunctive rules, and has eptemented and successfully
applied in standard Prolog systemsn this framework, a ground atom can be derived
from a program if and only if it is true in the least (and thusal) Herbrand models of
the program.

In the following, we mean by eonjunctive quergimply a conjunctiom3; A --- A B,
of atoms. The query is callegroundif it does not contain any variables.

Given a conjunctive querng; A - - - A B,,, anSLD-resolution stepn the atomB; with
a non-disjunctive ruldf — A,, ..., A, produces a conjunctive query

BiON---NBi1O0NAON--- NAOANDB 10NN B0

whered is the most general unifier a8, and H. An SLD-refutationof a conjunctive
queryB; A --- A B, in a non-disjunctive progran® is a finite sequence of conjunctive
queriesQo, . . ., Q,, where () Qo = B1 A --- A By, (ii) eachQ); with ¢ > 0 is obtained
from ();_, by an SLD-resolution step with some rule frafhon some literalB;, and (i)

1Like SWI or XSB Prolog, http://iwww.swi-prolog.org, httpesb.sourceforge.net.
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@, = 0O, i.e. the conjunctive querg,, does not contain any literals. If an SLD-refutation
of By A--- A B, in P exists, we writeP -+ B; A --- A B,,.

One of the fundamental results in logic programming stdtes 4 € Bp can be
proven by SLD-resolution if and only ifl is a logical consequence &f, i.e. if and only
if Ais true in the least Herbrand model Bf

Theorem 2 ([66]) 2 For a ground conjunctive queri; A - - - A B,, and a non-disjunctive
programP, P+ By A---ABy ifandonly if P = By A---AB,,. In other words, entailment
of ground conjunctive queries under SLD-resolution is ém@nt in predicate logic.

SLD-resolution also allows deriving answers to non-groguaeries: For a conjunctive
(and not necessarily ground) quegythere exist an SLD-refutation if and only # =
dxq...3dz,.QQ, wherez, ..., x, are the variables occuring @. By keeping track of the
most general unifiers used in the process, it is also podsildbtain bindings for (some
of) the z; in the form of (answer) substitutiors such thatP = Jy; ... Jyx(Q0), where
they; are exactly those variables occurringd. In order to keep our exhibition focused,
we will only deal with ground queries.

3.4 Reducing OWL DL Knowledge Bases to Disjunctive
Datalog Programs

We utilise recent research results about the transformaticd©OWL DL ontologies into
disjunctive datalog, and perform approximate reasoningrdrysforming the disjunctive
database into a non-disjunctive one. The transformatibased on the fact that OWL DL
is a subset of first-order logic. OWL axioms can thus be traedldirectly into logical
formulas and transformed into clausal form using any of taadard algorithms. The
resulting clauses can be represented as disjunctive datales which do not contain
negation.

Note, however, that due to possible skolemization stepkerctausal form transla-
tion, the resulting datalog rules may contain function sgtabin general, datalog with
function symbols is undecidable, but since we obtain thaldgtprogram by a translation
from OWL DL, which is decidable, inferencing over the resutiprogram must be de-
cidable. Standard datalog engines, however, do in genetaérminate in the presence
of function symbols. To cope with this problem, a sophigedamethod has been pre-
sented in [58, 60] which allows to get rid of the function systgwithout loosing ABox
consequences. As a result, we obtain a function- and negiige disjunctive datalog
program, which can be dealt with using standard techniques.

There is one other catch: The approach presented in [58, & dot yet allow to
deal with nominals, i.e. it supports on§HZ Q(D) instead ofSHOZN (D) (the latter is

2please note that this definition is identical to DefinitiomBSiection 2.2.1
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SHIQ(D Elimination of . Saturation Elimination of Conversion to Disjunctive
(D) L Translation . : L
kg P Transitivity > into Clauses —» byBasic —» Function r—» Disjunctive —» Program
Axioms Superposition Symbols Datalog DD(KB)

Figure 3.2: Algorithm for Reducing’HZ Q(D) to Datalog Programs

the description logic coinciding with OWL DL). We remark thatdate — and to the best
of our knowledge — no reasoning algorithms 8HOZN (D) have been implemented.
We will return to a possible treatment of nominals in our ayeh later.

The translation algorithm is schematically depicted inurgy3.2. It transforms a
SHZQ(D) knowledge basé& B into a disjunctive datalog prograBD(K B). The steps
of the algorithm are as follows. (1) Transitivity axioms aegnoved by adding axioms
of a form similar tovVS.C' C VS.(VS.C) for transitive rolesS. (2) The knowledge base
is translated into clausal form by standard transformatimssed on first-order predicate
logic. This introduces function symbols due to necessaojeskization steps. (3) The
TBox of the knowledge base is partially saturated by addiggchd consequences. This
is the crucial step of the algorithm. (4) The saturation fisiap (3) now allows to remove
all function symbols which were introduced in step (2). Saoamdelitional axioms are
added to ensure that the algorithm remains sound and cam@@tThe knowledge base
is translated into disjunctive datalog clauses; this stepiv straightforward.

It shall be noted that the details of the crucial step (3) @y wophisticated. They
guarantee that the removal of function symbols in step (4} &ll possible. Step (3) is
of exponential complexity, however for the ABox reasoningktavhich we focus on in
this chapter, Step (3) can in principle be performed offli® this step is independent
of the ABox — but note that this offline computation may stilldi#ficult if the TBox is
large, which is a separate issue and deserves further th-dggdies which are outside
the scope of this chapter. A full presentation of the trarmbawith correctness proofs is
technically involved and lengthy, and space restricti@mbitl to go into further detail; we
refer the interested reader to [58, 60]. In [57] full proofe given which show amongst
other things thak B is unsatisfiable if and only DD ( K B) is unsatisfiable. This suffices
for reasoning oveK B as reasoning tasks can be transformed into unsatisfiatiilégks.

3.5 Approximate Resolution

While approximate reasoning methods for propositional arst-dirder logic have been
proposed (see e.g. [86, 84, 20, 17, 100, 37]), they haveyhbedin applied in the context
of Semantic Web technologies. The few exceptions are rep@1y. in [93, 56, 38] —
to the best of our knowledge, this list is exhaustive. Thecess of the approaches is
mixed. [38] reports on an analysis indicating that strdmintard adaptations of methods
proposed by [84] do not suffice. [56] reports good resultsisutot an approximate
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reasoning method in the more narrow sense as the reasonfogped is exact, and thus
does not address the complexity problems underlying OWL Cdseaing. [93] deals
with approximating queries, while we focus on ABox reasonivg will now present a
novel approach based on the translation of OWL DL to disjuedtiatalog, as presented
earlier.

3.5.1 Approximate SLD-Resolution

Having obtained the translated knowledge base in the forend$junctive datalog pro-
gram, ABox reasoning remains NP-hard, and thus untract#itlee datalog program is
non-disjunctive, though, reasoning is polynomial in theesof the ABox. We therefore
propose the following approximate reasoning techniquederoto facilitate this insight.
Given a conjunctive queri; A- - - A B,,, anapproximate SLD-resolution stgm the atom
B; with a disjunctive rulef{; vV --- vV H,, — A;, ..., A IS a conjunctive query

BiOAN---ANBi 10 NAON--- NAWYWNB 10N N B0

such that is the most general unifier d@; and some7;. Approximate SLD-refutatiois
defined analogously to SLD-refutation, where approximafe-gesolution steps are used
instead of (usual) SLD-resolution steps.

It is necessary to pursue the question what notion of enéaitranderlies the approx-
imate reasoning technique we propose. Following the spirthe observations from
Section 3.2, we want to identify the set of models which ulydiére inference relation
provided by approximate SLD-resolution. For this purpegeneed the following notion,
which is derived from standard notions in non-monotonicoggng over logic programs.

Definition 3 (cf. [3, 26, 47]) A modelM of a disjunctive progran® is calledwell-sup-
portedif there exists a functioh: Bp — N such that for eacld € M there exists a rule
AV H{V---VH, «— Ay, ..., A inground(P) with M = A; andl(A) > [(A;) for all ¢
andk.

Definition 3 is a straightforward adaptation of the notionvwell-supported model
for non-disjunctive programs, as given in [26]. For nonidistive (and negation-free)
programs, the well-supported models are exactly the minonas, but this is not in
general the case for disjunctive programs: Just consigeptbgram consisting of the
single rulep vV ¢ <. Then{p, ¢} is a well-supported model, but is not minimal.

Lifted appropriately to (non-disjunctive) programs witegation, the well-supported
models coincide with the well-known stable models. This slaswn in [26] and stud-
ied in-depth in [47, 45]. Stable models [32] provide the bfsdhe most popular non-
monotonic reasoning paradigm calladswer Set Programmin@f which the two most
prominent implementations areLld and S10DELS[25, 90]. Our results thus stand within
this well-established tradition.
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It is apparent thatl € Bp is entailed by a (disjunctive) program by approximate
SLD-resolution if and only if it is true in at least one wellgported model ofP. This
is calledbrave reasoning with well-supported models formal proof of the following
proposition is omitted for space restrictions.

Proposition 1 Entailment of ground conjunctive queries under approxerit D-resolu-
tion is brave reasoning with well-supported models.

As an example, consider the (propositional) program ctingi®f the two rulep Vv
q «— andr < p A ¢. Its minimal models ardq} and{p}, sor is not bravely entailed
by reasoning with minimal models. However all §f}, {p}, {p,¢} and{p,q,r} are
well-supported models, sais bravely entailed by reasoning with well-supported medel

There is an alternative way of formalizing approximate Sid3elution using a mod-
ified notion ofsplit program[83]. Given a rule

H1\/---\/Hm<—A1,...,Ak7
thederived split rulesare defined as:
H1<—A1,...,Ak Hm<—A1,...,Ak.

For a given disjunctive prograr® its split program P’ is defined as the collection of
all split rules derived from rules . Approximate SLD-resolution o’ is obviously
identical to SLD-resolution ovef”’.

Minimal models are well-supported, as can be seen from thanimg result which
was obtained along the lines of research laid out in [47, 45].

Theorem 3 ([46]) Let P be a disjunctive program. Then a modgl of P is a minimal
model of P if and only if there exists a functidn: Bp — N such that for eactd which
is true in M there exists aruleA v H; V ---V H,, < Aj,..., A in ground(P) with
M = A;, M = Hiandl(A) > [(A;) for all : and k.

We hence have the following result, noting that= @ for any ground conjunctive
query@ and progran® if and only if ) is true in all minimal models of.

Proposition 2 Let P be a (possibly disjunctive) program afglbe a ground conjunctive
query withP |= Q. Then there exists an approximate SLD-refutation(jor

We remark that for negation-free disjunctive programs malimodels again coincide
with answer set$32], as in the currently evolvingnswer Set Programming Systeras
already mentioned.
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3.5.2 Approximate Resolution for OWL DL

Our proposal is based on the idea of converting a given OWL Diwkadge base into a
function-free definite disjunctive logic program, and thempply approximate resolution
for ABox reasoning.

In order to be able to deal with all of OWL DL, we need to add a prepssing step
to get rid of nominals, i.e. we need to comp#&{OZN (D) ontologies taSHZQ(D).
We can do this byanguage Weakeniras follows: For every occurrence ff;, ..., 0,},
wheren € N and thep; are abstract or concrete individuals, repléeg . . ., 0,} by some
new concept nam®, and add ABox assertion3(o, ), ..., D(o,) to the knowledge base.
Note that the transformation just given does in general m&tya logically equivalent
knowledge base, so some information is lost in the processting all the pieces to-
gether, we propose the following subsequent steps for appate ABox reasoning for
OWL DL.

1. Apply Language Weakening as just mentioned in order tainkd SHZQ(D)
knowledge base.

2. Apply transformations as in Section 3.4 in order to obtamegation-free disjunc-
tive datalog program.

3. Apply approximate SLD-resolution for query-answering.

The first two steps can be considered to be preprocessing &iegetting up the
intensional part of the database. ABox reasoning is then dotie last step. From our
discussions, we can conclude the following properties gpi@gamate ABox reasoning
for SHZQ(D).

* Itis complete with respect to first-order predicate logimantics.
* Itis sound and complete wrt. brave reasoning with wellpsued models.

» Data complexity of our approach is polynomial.

3.6 SCREECH OWL

A preliminary implementation of our approach is availalddlee S REECHOWL approx-
imatereasonéit is part of the KAON2 OWLtools. KAON2® is the KArlsruhe ONtol-
ogyframework, which includes a fast OWL reasoner based orirémsformationalgo-
rithms mentioned in Section 3.4, and also includes manyrigaeires helpful to work

3http://logic.aifb.uni-karlsruhe.de/screech
*http://lwww.aifb.uni-karlsruhe.de/WBS/dvr/owltools
Shttp://kaon2.semanticweb.org
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serbiar croatianC european
eucitizenC european
germarL frenchl beneluxianC eucitizen
beneluxian= luxembourgian dutchu belgian
serbian(ljiljana) serbian(nenad) german(pascal) frgakén)
croatian(boris) german(markus) german(stephan) crgatksny)
indian(sudhir) belgian(saartje) german(rudi) germarkyo

Figure 3.3: Example ontology

with ontologies. Among the KAON2 OWL toolsjeo performs the language weak-
ening step described in Section3.5.2 in order to obta#HZ Q(D) knowledge base.
As KAON2implements the sophisticated translation aldgpong described in Section3.4,
we can convert an OWL ontology into adisjunctive datalog prog e.g. by using the
dipconvert  KAON2 OWLtool with the-x switch.SSREECHthen accesses the results
of the translation through theKAON2 API, creates the cqoesling split programs and
serializes them asHorn logic programs in Edinburgh Projojes<. The result canbe fed
to any Prolog interpreter — or other logic programming eegis,which in turn can be
used to perform ABox reasoning and inferencing over thekadg# base.For complete-
ness, we need to mention that in general support for cortwetains and other features
like integrity constraints is not necessarilyimplemenieaff-the-shelf logic program-
ming systems. In these cases,concrete domains etc. camnsed. The KAON2 OWL
toolded ,2 for example, performs a language weakening step by remaliogncrete do-
mains, and may come in handy in such situations.

3.7 An Example

We demonstrate our approach by means of a simple OWL DL ontolbgontains only a
class hierarchy and an ABox, and no roles, but this will sufiicéisplay the main issues.

The ontology is shown in Figure 3.3, and its intended mearsrgelf-explanatory.
Note that the fourth line,

beneluxian= luxembourgianJ dutchu belgian

translates into the four clauses
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luxembourgializ) v dutch(z) Vv belgiar{x) < beneluxiafz), (3.2)
beneluxiarz) < luxembourgialz),
beneluxiatiz) < dutch

and beneluxiafx) < belgiar(z).

Thus, our approach changes the ontology by treating therdigpns in line (3.1) as
conjunctions. This change affects the soundness of themewsprocedure. However,
most of the ABox consequences which can be derived by appatei®LD-resolution
are still correct. Indeed, there are only two derivabledadhich do not follow from the
knowledge base by classical reasoning, namely

dutch(saartje and luxemburgiafsaartje.

All other derivable facts are correct.

SCREECHt translates the ontology from Figure 3.3 into the Prolog paoglisted in
Figure 3.4. As standard implementations of SLD-resolutionnot use fair selection
functions and also use depth-first search for higher effigigthey may sometimes fail to
produce answers because they run into infinite branchesdfgarch tree. This occurs,
for example, when using SWI-Proltig A reordering of the clauses may improve the
results, but does not solve the problem entirely. More featisry performance can be
obtained by using SLD-resolution with tabling, as impleteene.g. in the XSB Prolog
system. In this case, all desired consequences can be derived.

3.8 Experiments and Evaluation

An approximate reasoning procedure needs to be evaluategabadata from practical
applications. Handcrafted examples are of only limitedassthe applicability of approx-
imate methods depends on the structure inherent in theiexgretal data.

For our evaluation we have performed experiments with the @W.Lversion of the
GALEN Upper Ontology as it appears to be sufficiently natural and realistic. As it i
a TBox ontology only, we populated GALEN’s 175 classes rangiamith 500 individu-
als? GALEN does not contain nominals or concrete domains. GALEBN 673 axioms
(the population added another 500). The TBox translationigumctive datalog took
about 2300 ms, after which we obtained 2687 disjunctiveldgteules containing 267
disjunctions within 133 rules. Among these were 152 intggronstraints (i.e. rules with

Shttp://www.swi-prolog.org/

"http://xsb.sourceforge.net
8http://www.cs.man.ac.uk/rector/ontologies/simple-top-bio/
9Using thepop KAON2 OWL tool.
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serbian(ljiljana). serbian(nenad). german(pascal).
french(julien). croatian(boris). german(markus).
german(stephan). croatian(denny). indian(sudhir).
belgian(saartje). german(rudi). german(york).
european(X) - serbian(X).

european(X) .- croatian(X).

european(X) .- eucitizen(X).

eucitizen(X) - german(X).

eucitizen(X) .- french(X).

eucitizen(X) .- beneluxian(X).

beneluxian(X) .- luxembourgian(X).
beneluxian(X) ;- dutch(X).

beneluxian(X) .- belgian(X).

dutch(X) .- beneluxian(X).
luxembourgian(X) .- beneluxian(X).

belgian(X) .- beneluxian(X).

Figure 3.4: Example SREECHoutput

empty head), which we removed for our experiment as theyddaddonsistency of the
databasé? After splitting disjunctive rules, we arrived at 2802 Hornas.

We then randomly selected classes and queried for theinggte using the KAON2
datalog engine, both for processing the disjunctive dgtplogram and for the split pro-
gram. Some of the typical results are listed in Table 3.2 ctindicates a significant
speed-up of about 40% on average, while the vast majorityeofdtrieved answers is cor-
rect. In a complete run we queried for the extensions of &lGALEN classes, resulting
in a total number of 5809 classifications performed REECH of which 5353 (i.e.
92.2%) were correct. For 138 out of 175 classes the extersioputed by SREECH
was correct. The average time saved when computing thesatewas 38.0% over all
175 classes. Note that we obtain significant speed-up athtine KAON2 datalog engine
is not optimized for Horn programs, but rather tuned to effitiperformance on definite
disjunctive datalog.

The times were obtained with initial Java VM memory set to 26Byte. Under
memory restrictions, the speed-up is more significant, wigcprobably caused by the
necessity to allocate additional memory for the DD reasptask. Corresponding figures
are given in Table 3.3. Our experiments also indicate tltaE:CcHmay be useful when
hardware is limited, for example in portable devices.

10This is an expected effect. Removal of the integrity comstsadoes not destroy completeness of the
approximate reasoning procedure.
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Time (DD) Time (SPLIT) Instances Class Name

11036 ms 6489 ms 154/154 Biologiocabject

11026 ms 5959 ms 9/9 Specifisdt

11006 ms 6219 ms 9/13 Multiple

11015 ms 5898 ms 16/16  Prab&ucturalpartof_heart
11036 ms 7711 ms 4/4 Humaed blood cell_mature
11055 ms 5949 ms 24/58  Biologicabjectthat. ..

Table 3.2: Performance comparison for instance retriesiagudisjunctive datalog (DD)
vs. the corresponding split program (SPLIT), on the KAONEattay engine.lnstances
indicates the number of instances retrieved using DD veB&dT, e.g. clasdultiple
contained 9 individuals, while the split program allowedétrieve 13 (i.e. the 9 correct
individuals plus 4 incorrect ones). The full name of the slasthe last row is Biologi-
cal.objectthat hasleft_right symmetry.

3.9 Conclusions and Further Work

In a nutshell, our proposed procedure approximates reagdy disregarding non-Horn
features of OWL DL ontologies. We argue that this is a reasienaproach to approx-
imate reasoning with OWL DL in particular because many of theently existing on-

tologies rarely use language constructs that do not falltimt Horn fragment of OWL DL

[103]. So it can be projected that even in the future thesstecocts will play a minor role

and thus should be the first to be tempered with in order to tgagtable reasoning.

Our approach provides ABox reasoning with polynomial timeptexity. While it is
complete, it is also unsound with respect to first-orderdogMe have shown, however,
that the inference underlying our approach can be charaeteusing standard methods
from the area of non-monotonic reasoning. We have also preg@ur implementation
ScREECH and verified the usefulness of our approach by means of iexpets.

The checking whether a conjunctive query is a predicateclegnsequence of a
(negation-free) disjunctive logic program amounts to checking whether the query is

Time (DD) Time (SPLIT) Instances Class Name

32997 ms 4817 ms 154/154 Biologicabject

33028 ms 4947 ms 9/9 Specifisdt

32927 ms 4987 ms 9/13 Multiple

32977 ms 4957 ms 16/16  Prab&ucturalpartof_heart
32987 ms 7350 ms 4/4 Humagd blood cell_mature
32947 ms 4796 ms 24/58  Biologicabjectthat. ..

Jan 30, 2006

Table 3.3: Performance comparison as in Table 3.2, but vid&hMByte intial memory.
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valid in all minimal models ofP, i.e. corresponds toautiousreasoning with minimal
models. Theorem 3 suggests how an anytime algorithm fonigbt be obtained: After
performing approximate SLD-resolution, it remains to beaked whether there is any
(ground instance of a) rule used in the refutation of the yjughich has an atom in

its head besides the one used in the refutation and sucH tisafcautiously) entailed by
the program. Such an algorithm might then first find a bravefpoba query, and then
substantiate this proof by subsequent calculations. Oproaggh may also be useful for
the quick derivation opossibleanswers to a query, which may then be used for efficient
guidance of the search within a sound and complete OWL reasdrieese and other
issues are currently under investigation.
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Chapter 4

Robust Query Processing for
Personalized Information Access

by PETER DOLOG, HEINER STUCKENSCHMIDT & HOLGER WACHE

4.1 Motivation

Users are often not able to formulate queries correctly vresults in user dissatisfaction
and frustration. This is even more the case for semantic wslesms based on RDF for
the following reasons:

* The data accessed often comes from different sources. nibmal structure of
these sources is not always known.

» The data is semi structured. Sources do not have to desaltilBspects of the
information resources.

» There is no fixed integrated schema. Each source can hamentschema, sources
may make partial use of different available schemas.

With the increasing popularity of RDF as a representatioguage in domains such
as medicine [94] or e-leaning [21] this problem becomes npoessing. If RDF query
languages are to be used in a large scale we have to make aupedtple will be able to
formulate meaningful queries. If this is not the case, weettavind ways to still provide
the user with the intended results.

Research in Cooperative Query answering is triggered by tberaétion that users are
often not able to correctly formulate queries to databdsassreturn the intended result.
Cooperative query processing supports the user by autatgticodifying the query in
order to better fit the real intention of the user. Based on $iseraed kind of mismatch
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between the users intention and the formulated query therditerent techniques used.
We consider two basic mechanisms of cooperative query psaag query refinement
andquery relaxatiorwhich are briefly presented in the following.

4.1.1 Query Refinement and Relaxation

Due to a lack of knowledge of the contents and the structure @dtabase, users will
often only be able to provide very broad queries, for exampterms of the type of the
objects she wants to retrieve and maybe one or two propefiadsng an example from
the domain of e-learning, the user might be able to spec#ighe is looking for a lecture
on the Java Programming Language. Learning resources,vhovwae often annotated
with a fair amount of metadata that specifies important mition such as the assumed
level of expertise and required previous knowledge. In otdeselect learning resources
that are suited for the user, these additional propertigse tmbe specified in the query
as well. Dolog et al [21] show that this information can beluded into a user query
based on a user profile. They describe a method for autortiatieéining queries with
information from the user profile thereby enabling a prestbn of query answers.

A problem of the automatic refinement of queries lies in thet fhat it often over-
shoots the target instead of too many results an automgtredined query often returns
no result at all, because none of the resources exactly egmthk users needs. A possible
solution to this problem is to successively relax the caists imposed in the refinement
step. Different Techniques for relaxing queries have beepgsed in the database area.
Gaasterland et al [28] provide a unifying view on differegiaxation techniques in terms
of replacing subexpressions in the query. In other work weedeed an approach for re-
laxing conjunctive queries over description logic knovgedbases by removing conjuncts
from the query in a particular order (see 2 and [93, 105]).

In this chapter, we build upon existing work on query refinatrier personalized
information access [21] and start to extend it in the follogvivays:

* We describe a framework for information access that cosnuery refinement
and relaxation in order to provide robust, personalizegssto heterogeneous RDF
data.

* We propose an implementation of the framework in terms ofd@gmnal rewriting
rules for RDF query patterns.

» We discuss the application of the framework in the contéaincexisting e-learning
system.
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4.2 Background

The Background on robust querying is in the domain of opemiegrepositories where
learning resources (courses, exercises, modules, etcanaotated with RDF metadata
to allow users to find suitable material for his or her leagrgoal.

There are several characteristics of open learning rep@stthat are quite character-
istic for RDF data in general and that make them a suitabledas# for our approach:
Resources are authored by different people with differeatsgydackground, domain ex-
pertise, etc. Providers of a resource can maintain the reson proprietary databases.
They might already have some personalization techniqupkemented for the purposes
of their specific context. They might employ user or learnedeis (which usually reflect
applied techniques as well). User or learner features caady be maintained in human
resource management systems, task management systenass oraakeling servers. Fur-
thermore, resources are accessed and consumed by peoplediffer in a wide range
of characteristics. Learning in open environments demaiffdstive personalization ap-
proaches to provide learner orientation and individudlizecess support.

4.2.1 Personalization by Query Refinement

In previous work, we have described a personalization seichitecture for supporting
users in finding learning resources in open learning enments. The central component
of this architecture is the Personal Learning Assistan®)F&ervice [21] which integrates
and uses other services to find learning resources, coorsasnplete learning paths suit-
able for a user. The PLA accepts queries from a user and trydatiie corresponding
resources. The Personal Learning Assistant extends a usegy by additional restric-
tions, joins, and variables based on various profiles. Tktisnsion is performed based
on heuristic rules/functions. In the following, we briefliustrate the kinds of heuristics
used in the system based on an existing open learning repofir Computer Science
Courses that contains about 2000 instances of learning nesdaken from university
courses.

SELECT * FROM
{Resource} subject {Subject},
{Resource} title {Title},
{Resource} description {Description},
WHERE
Subject Like "inference engines"

Figure 4.1: Basic Query

User queries to the open learning environment will condishe or several keywords
related to the topic the user wants to learn about. The rissallist of learning resources
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including information about the subject and the title of thsource as well as a descrip-
tion of the content. In order to produce this list, the usquest is translated into a query
an RDF query language that matches the metadata use to @elsarhing resources in
the system. Figure 4.1 shows the query corresponding toraregeest for "inference
engines” in SeRQL syntdx

In a second step, the general query shown in figure 4.1 is edapbetter reflect the
learning preferences of the user. In this step, the quergfised by extending it with
additional constraints that are derived from the user @ofihis is done by extending the
path expression in the FROM and by adding variable assigteamethe WHERE part of
the query. Typical additions to a query are a restrictiorheflanguage of resources to the
preferred language of the user and a general constraintrakngethat the user must have
all competencies that are required for understanding thauree.

SELECT * FROM
{Resource} subject {Subject},
{Resource} title {Title},
{Resource} description {Description},
{Resource} language {Language},
{Resource} requires {} subject {Prerequisite},
{User} hasPerformance {Performance},
{Performance} learning_competency {Competence}
WHERE
Subject Like "inference engines”,
Prerequisite = Competence,
Language = de,
User = user42

Figure 4.2: Query extended with user preferences

Figure 4.2 shows the result of refining the general query fiigare 4.1 with language
and competence constraints.

4.2.2 Problems with Refinement

In practice it turns out that the approach of personalizabip query refinement suffers
from serious problems. In fact problems occur in both stdpth® query formulation
process. The first problem already occurs when the basig/asidormulated. In our
open learning repository, this query does not return amnylregspite the fact that there
are 8 resources on the subject. The reason for this is thattolut 10% of all resources

1we omit namespaces for the sake of readability
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are completely annotated with subject, title and desaniptUnfortunately, all 8 potential
answers miss at least one of these properties and are treeneforeturned as an answer.
This problem can be reduced bugking predicates or triples optional in the query

Another problem lies in the fact, that the subject assignealdourse does not always
correctly summarize the content. In our test data set fomgika, if the user provides
the keyword "Lernen” (German for "learning”) no resources eeturned despite the fact
that there are resources for instance about Bayesian lgaanith learning in case based
reasoning. The problem is here that in the case of the firsures the term learning
only occurs in the title, but not the subject. In the case efdbcond resource, the term
only occurs in the description and is mentioned neither endiibject nor the title of the
resource. This problem can be usedrbglacing triples/predicates for the othelmsed
on domain knowledge.

We can observe the similar problems in connection with thi@ement of the gen-
eral query based on the user profile as the competence of esugten defined in terms
of learning resources that were successfully mastered dttident. This means that
the subjects that represent the competency of a user arahfexts previously used re-
sources and suffer the problems discussed above: If a @stagks a subject, it cannot
be added to the competencies. If the subject does not ajpgeprdescribe the content,
the competencies of the user do not adequately reflect thalatate of knowledge etc.
Therefore, a mechanism foeplacing predicate values query restrictions should be
provided to solve the problem.

Another problem is connected for example with a request ttwimall prerequisite
with user background knowledge. Sometimes it is enough,alsubset of user back-
ground knowledge for a resource is available in his profilmttude particular resource
in query results. Therefore, a mechanismréplace quantifierof a query should be
provided as well.

Further Problems arise from the inflexible nature of the itavg mechanism that
instantiates variables with the preferred value and leaveom for taking the second
best choice if the available resources are for example ntitarpreferred language, the
user does not have all but most of the required competencig® @ompetencies of the
user are not the same but very similar to the required oneswilNeome back to these
examples when we discuss our solution to the problem.

4.3 Rewriting RDF Queries

We propose an approach for query rewriting based on Eventi@om-Action (ECA)

rules (see e.g. [80]) to solve the problem of over-constiqieries. This rewriting relaxes
the over-constraint query based on rules and in order debgexVents and conditions.
This has an advantage that we start with the strongest pesgibry that is supposed to
return the “best” answers satisfying most of the conditiolighe returned result set is
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either empty or contains unsatisfactory results, the gisemyodified either by replacing
or deleting parts of the query, or in other words relaxed. Télaxation should be a
continuous step by step, (semi-)automatic process, tageav user with possibility to
interrupt further relaxations. Before we investigate ceterelaxation strategies in the
context of our example domain, we first give a general dediniof the framework for
re-writing an RDF query.

Each resource is annotated with an RDF description which easekn as a set of
triples [44]. A query over these resources is formulatedrigéetpatterns and a set of
conditions that restrict the possible variables bindimgthe patterns. Each triple pattern
represents a set of triples. The corresponding abstractititefi of a query focuses the
essential features of queries over RDF; several concrety taregguages are founded on
these ideas including SeRQL which we use in our examples ingfigli1 and 4.2.

Definition 4 (RDF Query) Let7 be a set of termsy a set of variablesRN a set of
relation names, an@® .\ a set of predicate names. The set of possible triple pattEéfs
is defined as7 R C 2(7WVIX(RNUVIX(TUV) - A queryQ is defined as the tupl Rg, Pg)
with TR, € TR and Py C P whereP is the set of predicates with narf®\/, defined
over7, andV.

The triple patternd'R, in a query( determine those ground triples where a substi-
tution 7 exists. Formally a substitutionis a list of pairs(.X;, T;) where each pair tells
which variableX; has to be replaced 3§, € 7 U V. Applied to a query, the substitution
T replaces variables ifi R, with appropriate terms. (T R) is equal to some ground
triples then the substitution is valid. All valid substituris constitute answers to the query.
The predicate$, restrict these substitutions additionally because ordgérbindings are
valid answers where the predicates, i.@"), are also satisfied. The predicates define ad-
ditional constraints for the selection of appropriatelé®y Using this abstract definition,
the query in figure 4.1 would be represented as

TRy = ({(Resource, subject, Subject),
(Resource, title, T'itle)
(Resource, description, Description)},

Py = {like(Subject, “inferenceengines™)}

whereResource, Subject, Title, Description € V, as well asubject, title, description,
“inferenceengines” € T andlike € PN. Alternatively, we could use variables as
placeholders for the relations and assign the concretéaelaames to them as condi-
tions that use the equality predicate. The correspondifigitien of the example query
would be
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TRy = {(Resource, R1, Subject),
(Resource, R2, Title)
(Resource, R3, Description)},
Py = {R1 = subject, R2 = title, R3 = description,

like(Subject, “in ferenceengines”)}

whereResource, Subject, T'itle, Description, R1, R2, R3 € V, subject, title, descrip-
tion,”inferenceengines” € T andlike,=€ PN . This later representation can be seen
as a normal form for queries that makes it easier to formuéateritings in a general way.
For sake of readability we will refer in the following to theiginal form instead of the
normal form.

Based on the abstract definition of an RDF query, we can now difeneotion of a
rewriting rule and rewriting process as such. We define tewgrin terms of rewriting
rules that take parts of a query, in particular triple patesind conditions, as input and
replace them by different elements.

Here we employ the principle of ECA-rules (event-conditamtion rules) [18, 79] for
continuous relaxation of user queries. A rewriting rulenfafly consists of three parts:
a pattern a replacementand someconditions The pattern corresponds to the event,
i.e. in our case an occurrence of particular triple pattemgredicates in a query. The
replacement contains the terms which will substitute th&ched pattern in a query; the
replacement can be seen as the action in the ECA principle. it@mslconstrain the
rewriting and determine when particular rule can be firecahee the rewriting rule can
only be applied if the conditions are satisfied. These canditcan be used to define
certain relaxation strategies. In particular, we will satet that conditions can be based
on user preferences or background knowledge about the domai

Definition 5 (Rewriting Rule) A rewriting rule Ris a 3-tuple(PA, RE, CN) whereP A
and RE are RDF queries according to Definition 1 addV is a set of predicates.

For conditions the same constructs as for queries are userkwlie possible results
are also constrained by predicates. Patterns and replatefioemally have the same
structure like queries. They also consist of a set of tripled predicates. But patterns
normally do not address complete queries but only a subpartjaery. Using this defin-
ition we can specify a rewriting rule that extends the sintplery in figure 4.1 with the
language preference of the user 42.
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PA = ({(Resource,title, Subject)}, )

RE = ({(Resource,title, Subject),
(Resource, language, Language)},
{Language = X})

CN = {languagePrefernce(User, X)}

wherelanguage Pre fernce is a predicate which looks in his user profile for the language
preference ot/ ser who is in our case user 42.

While this example contained a rule for refining a query, we sdgk later that we can
use the same mechanism for defining relaxations on a query.

In general a rewriting rules is applicable to all queriesahgontain the pattern at least
as a part. The pattern does not have to cover the whole quermaly it addresses some
triples as well as some predicates in the query. In order ite\wrore generic rewriting
rules the pattern must be instantiated which is done by astisudion.

Definition 6 (Pattern Matching) A patternP A of a rewriting rule R is applicable to a
query@ = (T'Rq, Pq) if there exists two subsehi;, C TRq and P, C P, and a
substitutiory with (T'Ry,, P,) = 0(PA).

In contrast to term rewriting systems [5] the definition ofteery as two sets of triples
and predicates simplifies the pattern matching, i.e. thetiieation of the right subpart
of the query for the pattern match. A subset of both sets hlas tietermined which must
be syntactically equal to the instantiated pattern. Plaatethat due to set semantics, the
triples and predicates in the pattern may be distributed theequery.

Now we will define how the new rewritten query is constructathwhe help of the
rewriting rule and pattern matching.

Definition 7 (Query Rewriting) If a rewriting rule R = (PA, RE,CN)

* is applicable to a query) = (T'Rq, Pq) with subsetd' R\, C TRq and P, C P
and substitutior® and

* §(CN) is satisfied,

then the rewritten quer@” = (T'R{, P) can be constructed withR{§ = TR\ T R(,U

Informally spoken, if the pattern match to a query and thedd@mns are satisfied then
the matched pattern is substituted by the replacement. iépte above rewriting rule
for to the basic query we get the following refined rule:

Please note that the language preference of user 42 is “dehwleans German.
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4.4 Domain-Dependent Relaxation for Personalized Ac-
cess

The formal apparatus introduced in the previous sectionipes us with a general mech-
anism for refining and relaxing RDF queries based on certaitenps and conditions.
We have developed a specialized rule language that implsntieis mechanism which
we will discuss in this section. In order to successfully tige language to relax over-
constraint queries, we need a strategy for successivelyiagpelaxations in such a way
that we find answers that match the interests of the user aslglas possible and im-
plement it in terms of query rewriting rules. The main probleith this approach and
with query relaxation in general, is the fact that it is altniospossible to find generic
relaxation strategies that work well across different egapilons. A good strategy rather
depends on many factors including the nature of the infaomaind the goals of the user.
A solution for this problem is to employ explicit knowledge drive the relaxation of a
guery. Corresponding to the factors that influence the use$sl of a strategy, there are
two sources of knowledge we use for relaxation:

» Domain and Application knowledge;

» Knowledge about the user and user preferences.

The former represents a domain knowledge about dependebpeieeen predicates
and ordering according to their importance for queries withdomain. The second type
of knowledge concerns the interests of the users and hisgorbr example, to correctly
determine the content of a resource in e-learning domainshwelld first look into the
subject, then the title, and finally the description in ittadgata. This information can be
used to constrain rewriting rules for the subject of thedtirgsource in the title of the
resource and the rule that looks for it in the descriptiom, way that the rewriting for title
is performed before the rewriting for the description. Hiere, the order of importance
between predicates in a domain serves as an order in whigkwhiing rules should be
applied. We will show later how this approach can be imple@gmising our rewriting
approach. Another example relates to the structuring otithmeain. If for example the
language of a learning resource is not mentioned in the rattadve can for example
look at other learning resources that are part of the sameseou

The second type of knowledge concerns the interests of thes.udhese interests
are hard to determine automatically as they are influenceddnyy factors. A common
approach is to use an explicit model of user preferencegunstef a user model. In the
context of e-learning, this user model contains informatout topics of user’s inter-
est, previous knowledge and preferences with respect ttyfigeand format of learning
resources, and so on.

As described in previous section, the rewriting rules aowipled in terms of patterns
(events), conditions, and replacements (actions). FiguBealepicts a high level archi-
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Figure 4.3: An architectural view on the components usetiwihe rewriting process

tectural view on our rewriting system. We employed the Udif\odeling Language
(UML) [39] package diagram. The boxes represent packageshenrelations represent
dependencies between the packages. We assume a genaoatappénvironment where
presentation elements which are depicted at a user ingeaf@ccharacterized by an ontol-
ogy described in RDF/RDFS. This includes for example fill inuhpoxes to type search
terms, column descriptions in result sets, and so on. Eapciobf the user environ-
ment can be then described as an abstract environment ¢omicielh instantiates class,
predicates, or values from domain ontology used in an agpdic. This is represented as
Environmenpackage in the figure 4.3. Such an approach to represenbament allow
us to express user preferences on the environment conggpdéiting to the environment
concepts, predicates and values. This is represented Bynarmnment Preferencgsmck-
age and corresponding dependencies tdemnronmentpackage. User preferences can
be ordered by an importance relation. Thigleringtogether with the ordering derived
from other parts of user profild&J6er Profilepackage) and ordering iDomain Knowl-
edgeis used to generate conditions determining the order okadélan stepsConditions
package). The conditions constrain the query rewritinggwihich consist oPatterns
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EnvironmentConcep

isa isa

EnvironmentProperty EnvironmentClass

SubjectPredicat4 Instance| rdf:Property SubjectTerm| Instance| rdfs:Class

isa isa isa

EnvironmentPredicateLiteralValug

EnvironmentPredicateConceptValje

SubjectLiteral | Any

Figure 4.4: A Schema for Generic Environment

andReplacementsThe set of generated queries is represented@sesiespackage in
figure 4.3. Theoccurrenceof a pattern in a query is a triggerirgyentfor the Replace-
mentsactions. The set oQueriesis dependent on the trigger&keplacements.e. the
replacementghangethe Queriespackage. Note that just a query which was produced
as a last one is considered in each step of rewriting prodéssdetails of the packages
from the figure 4.3 are described in the following sections.

4.4.1 Environment and Preferences

In order to include knowledge about the domain of interedtthe preferences of the user
into the query relaxation process, we have designed a deswrame for representing
relevant knowledge independent of a concrete applicaiibins general scheme exploits
the meta-modeling capabilities of RDF to define aspects ofnvtwdd we can take into
account in the rewriting process (compare fig. 4.4).

The schema follows an idea, that each environment can baaedeaccording to
an application domain schema used by the application. R#thardirectly representing
domain knowledge or user preferences it provides metadatmt can be instantiated
by existing representation schemes for information ressisuch as Learning Object
Metadata (LOM) [75] as well as metadata schemas like theiD@are standard [23], and
taxonomies and ontologies used for predicate values imfoemation resource schemas
such as ACM computing classification system [77].

Environment concept can be for example linked to a field onex ugerface form
where the user can type a search term or it can be filled in wethss from a taxonomy.
Such a generic environment schema provides us with a flayilbd describe any user
environment which is based on schemas. For example, aroenvant concept can model
a field on an entry form which is used to enter a subject terneaissearching for in the
metadata. Such a field will be an instanceeoivironmentProperty class pointing
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environmentpreferences:LanguagePreferenc...
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isa isa

environmentpreferences:MeasuredEnvironrr{e...

Figure 4.5: A Schema for Environment User Preferences

to a dc:subject predicate of the Dublin core schema. An elaoficombined class and
predicate instance of an environment would be a predicaseib@ct with a class from a
taxonomy like ACM CCS as its value.

Another advantage of such a generic environment schematisvéhcan refer to en-
vironment concepts from user preferences. Figure 4.5 tsegischema for environment
user preferences. Each user can express his level of preéefer any environment con-
cept. Thisis reflected by tHenvironmentitem  property of theEnvironmentUser-
Preference class. Classes for environment preferences are furtheiadiped ac-
cording to which environment concept class is used to dasdhem. The level of a
user preference can be expressed as a value from a metric isThiodeled by the
MesuredPreference  as a subclass of a user preference. The values from preéerenc
measures can be used to order them, i.e. to deduce the grdelations between prefer-
ence instances which is modeledhmsimportanceOver  relation of user preference.
Besides the user preferences, we also consider schema aflzagckground. This is rep-
resented as a learning performance and skills gained bgrparfg learning. We use our
schema for such a learner’s learning performance [22] witeréearning performance is
described by a relation to learning competence, portfaieated and certificates gained
during/from learning activities which have been connetteithe learning performance.

To show a concrete instance of the environment preferenicasuser, let us now
consider a situation where a user John prefers a Germandgagun addition, he has
attended two lectures, one on predicate logic and one on Inmgla. An instance re-
flecting this situation described according to the envirentruser preference schemas is
depicted in figure 4.6. John has a profile Userl. His profiletsaio two performance
objects: UserlP1, and UserlP2. The UserlP1 is a perforrmanced from the predi-
cate logic lecture where user learned about inference egglr2.3.2 of ACM CCS) and
backtracking (1.2.8.0 of ACM CCS). The UserlP2 is a performaecerd from modal
logic lecture where user learner about the modal logic qotsc@.2.4.1 of ACM CCS).
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EldcLanguageDe

environment:SubjectPredicate [-dc:language|

environment:SubjectTerm = lang:de

environmentpreferences:Environmentl

Userlldl

UserName :| JohnLearner| UserlLPDe

LastName = | Learner environmentpreferences:EnvironmentIterr+ EldcLanguageDe

FirstName = | John

\%\sldentification hasPreference

Userl

UserlP2
UserlP1

hasPerformance 4

hasldentification = Userlld1
hasPreference =| UserlLPDe

%Performance asPerformance

acmccs:l.2.3.2 UserlP2
acmcces:l.2.8.0 papi_rdfs:learning_competency I:acmccs:l.2.4.1

UserlP1

papi_rdfs:learning_competency =

papi_rdfs:learning_experience_identifier |:kbs:praedikatenlogik. pd

Figure 4.6: An Excerpt of Instance Examples for Environméser Preferences

The Userl profile also points to one preference object: W$dDe. This is a language
preference referring to a German language (lang:de).

This explicit representation of user preferences basedemants from the domain
can be used to drive our rewriting process as it connectsegleirom the domain that
occur in query expressions with user preferences. UsingakBnportanceOver relation,
we can now decide which parts of an over-constrained querglax first. By encod-
ing this connection in RDF, we can use RDF queries to deterriesetpreferences and
specify the rewriting rules accordingly. In the followinge describe how preference
knowledge about the domain and user can be used to relaxcomstrained queries in
our e-learning example.

4.4.2 Domain Knowledge and Relaxation

In general the rewriting is a very powerful approach in ordemanipulate the overcon-
strained query. With replacing parts of a query we can redie types of actions:

» Making Triples/Predicates optionat- this provides a query which considers a situ-
ation that some of the triples/predicates do not have toappenetadata. A query
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then gives also results where particular predicate reléxeh optional predicate
does not occur;

* Replacing Value— this provides a query where particular predicate valuesis r
placed with another value. Taxonomies may be used to prasillangs, more
general terms, and so on;

» Replacing quantifiers and operators this provides a query where quantifiers (like
forall and exists) are replaced for each other. It also mhetuoperators replacement
like AND for OR, equal for a range, and so on;

» Replacing Triples/Predicate- this provides a query where particular triple resp.
predicate in restrictions is replaced by another triplgrgsedicate. A domain
knowledge is employed for this purposes. For example, iflgesti query is not
satisfied, it may be replaced by title query with similariteasures;

» Deleting Triple/Predicate— this provides a query where particular predicate is
deleted from a query completely.

As such, these operations are independent of the apphicdtbmain and the user
preference. A connection to the knowledge described alsavade through the elements
of the query that are affected by the corresponding operatia most cases, we can
identify a certain property that is affected. For exampthethie learning environment a
user searches a resource with a specific subject. But if tisene resource with that
subject then we would like to relax the query that the subjech can also appear in
the title of a resource description. This strategy can bévelgrfrom an environment
preference stating that the "subject” relation has the dsgpriority as it can be assumed
to most precisely reflect the content of a resource followethle "title” and finally the
"description” relation. In the environment preference mlpdhis order is described in
terms of the hasimportanceOver relation. For the actuakegion process each of these
relations is implemented by a rewriting rule. The fist reingtrule for that relaxation is
specified in Figure 4.7.

Obviously, PATTERNdefines the pattern, tiREPLACE-BYthe replacement, and
WITHthe conditions for the rewriting. The pattern contains oipd and one predicate.
The triple {Resource } subject {Subject } looks for any resourc®esource
with subjectSubject . The predicat&ubject Like Value " xsd:string con-
strains the variabl&ubject to the user’s term\(alue of type string), i.e. the subject
the user is looking for. If a query contains such an triple anch an predicate then the
rewriting rule is applicable.

The replacement part of the rule defines how the matchee taipdl predicate has to
be replaced. The triple is extended by the second tfiBlesouce } title {Title  }.
The second triple now allows to refer to the title of a reseurdhe first triple about
the subject of the resource is not removed because there enagrbe other triples or
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PATTERN
{Resource} subject {Subject}
WHERE
Subject Like Value™xsd:string,
REPLACE-BY
{Resource} subject {Subject},
{Resource} title {TMPTitle}

WHERE
TMPTitle Like NEWTitle
WITH
NEWTitle = concat(" *",concat(Value," *"))

Figure 4.7: Simple rewriting rule

predicates in the query which may refer to the subject of éiseurce. But the predicate
is no longer needed and is completely substituted by theiqgaedl MPTitle Like
NEWTitle , which now try to constrain the title of the resource instetithe subject. The
variableNEWTitle is determined in the conditions. With the build-in functiconcat

the value is prefixed and finished with a star which means tigetitie must only contain
the subject the user is looking for.

The rewriting rule from figure 4.7 can be applied to the quaryigure 4.2. The result
is shown in Figure 4.8. Note that now the query refer twicéntotitle of a resource. The
second reference was introduced by the rewriting.

SELECT » FROM
{Resource} subject {Subject},
{Resource} title {TMPTitle},

{Resource} title {Title},

{Resource} description {Description},

{Resource} language {Language},

{Resource} requires {} subject {Prerequisite},

{User} hasPerformance {} learning_competency {Competence}
WHERE

TMPTitle Like " =inference engines L

Prerequisite = Competence,

Language = de,

User = user42

Figure 4.8: Relaxed query extended with user preferences

KWEB/2005/D2.1.2.2.v1/1.0 Jan 30, 2006 45



Realizing practical approximate and distributed reasoning IST Projee2084-507482

4.4.3 User Preferences and Relaxation

Another kind of relaxation is the rewriting the overconsteal query according to the
knowledge about the user. In the learning scenario the uggt prefer learning resources
in German but Dutch may also be okay. This knowledge is useefilwe the query, i.e.

looking for resources in German. However if there is no resesiin German then the
guery can be relaxed according to user’s second preference.

As described above, our environment preference model slis®r to specify an im-
portance order between predicates. In contract to the dopraferences mentioned in
the last section that can be specified inside the applicat@se preferences can be dif-
ferent for each user. As a consequence we have to providdexfare where each user
can specify his or her personal preferences that can thetobedsin the user profile
(compare figure 4.6). A user interface for that is very simplslider is provided next to
each item at a user interface for specifying an important¢bepredicate for a user. The
default slider positions are provided according to a defdoinain knowledge (compare
figure 4.10). Using our general environment model, theskemrces can be used in the
same way as domain preferences once they have been entetied bser. In particu-
lar, the hasimportanceOver relation then defines conditamch are satisfied just when
particular predicate is on its turn to rewrite it.

4.4.4 Conditions for User-constrained Relaxation.

Conditions play a crucial part for rewriting queries accogdio user’s preferences. They
can control when particular rewriting rule can applied.

Formally, conditions can be predicates where variableshvare used in the pattern
and the replacement are set together with some built-intiimmefor manipulating strings
or numbers. The condition in the simple rewriting rule of g 4.7 is such an example;
the used predicate is equality. But a condition can also beeeyquhich should return at
least one result in order to be satisfied and to bind variablése values returned by the
query. In this case, a query behaves like a normal predi@ateonly the first result will
be used during the rewriting; further results will be igrebréVe use such queries to refer
to users profile and user preferences.

An example is given in Figure 4.9. The rule try to relax usérs language prefer-
ence to his second reference as stored in his profile. Thatmondf that rewriting rule
starts from the root of his profildJser ) to find his two preferenceRBreference and
Preference2 whereas the first preference is preferred to the secondrprefe (rela-
tion hasimportanceOver ). Both preferences refer to an environment item of type
EnvironmentPredi-
cateConceptValue  with subjectTerm language . Their values are addressed in
the pattern resp. replacement. The value of the first preferés replaced by the value
of the second preference. The above rewriting rule canydasijeneralized to a rewriting
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PATTERN
{Resource} language {Language}
WHERE
Language = L,
User = UserlD

REPLACE-BY
{Resource} language {Language}
WHERE
Language = L2,
User = UserlD

WITH
SELECT * FROM
{User} hasPreference {Preference},
[{User} hasPreference {Preference2}],
{Preference} hasimportanceOver {Preference2},

{Preference} Environmentltem {ltem},

{Item} type {EnvironmentPredicateConceptValue},
{Item} subjectPredicate {language},

{ltem} subjectTerm {L},

{Preference2} Environmentltem {ltem2},

{Item?2} type {EnvironmentPredicateConceptValue},
{Item2} subjectPredicate {language},

{ltem2} subjectTerm {L2}

WHERE

true

Figure 4.9: Rewriting rule for language preferences

for any value preference which the user related with thdicgidasimportanceOver

The condition then would be that the environment items ofigwreferences must not refer
to the subject predicatanguage but only to the same predicate (which is represented
as a variable). So a variable instead of the littaabuage in the condition yields into

a general rewriting rule for value preferences.

4.4.5 Ordering different rewriting rules

Conditions help to control the application of rewriting rsilgecause they can implement a
user-suggested ranking over the application of rewritings. For example, the rewriting
rules will first replace a value of predicate dc:languagginélly comparing to “German”
for value “Dutch” and then for value “English” for user pref@ag resources in German
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before Dutch and Dutch before English.

However, there might be the problem that several rewritulgs are applicable to the
same query. This situation might happen for example if tiex specifies just preference
order between values but does not specify an order betweelicptes. For example, he
can give an order between the languages and formats of cesoomt between predicates
for language or format. In that case, rewriting rules foaxatg the language and format
requirements are applicable at the same which can causelaeation.

A second problem which is related to the ordering is ternmmabdf relaxation. An
interactive solution to these problems is letting the usmide which kind of relaxation
he prefers in particular situation. The rewriting ruleswham his possibilities. For
example, [73] allows the user to select directions of reiaxaand thus to indicate which
relaxed answers may be of interest.

A naive but automated strategy may be controlled by the numbetwfned answers.
The number of results are counted globally; i.e. each rélaxatep adds the number of
results to the global counter. If the number of answers remalthreshold, the relaxation
is stopped. If any of the relaxation reaches the number ofiteegreater then threshold
further relaxations are not considered.

More promising approaches uses top-k [27, 40, 16] or skydif64, 62]. Top-k needs
a function which associates a ranking number with each andwe k best answers then
are returned. Obviously, the function should operate ieddpntly from the relaxation
in order to select answers from different relaxations. Blkyy assume several different
dimensions. Ittries to return the best answers accordiegtb dimension. In this context
the dimensions are the different possibilities of relaxati Skylined relaxation returns
the best answer from each possible relaxation.

4.5 Implementation Notes

We have implemented the rewriting approach as an extensipersonalized search ser-
vice of personal learning assistant [21]. The prototype lwoes user preference elicita-
tion with user query formulation dialog. The original vensiof the personalized search
had just a query formulation for restrictions of subjectedaurces. We have extended the
user interface with generating environment based on theamient schema, a default
environment for novice users, and a user preference elwitaA user interface of such a
personalization search environment is depicted in fig..4.10

The default environment consists of items for specifyingjsct concepts, title, de-
scription, and language as query literals. Each of thebat&s on the user interface have
a preference elicitation slider. The slider is used to dpexivalue measuring an im-
portance of a preference of particular attribute to a usées€ values are then used to
derive an order in which the attributes will be processetiénquery rewriting; i.e. the or-
der of preference importance. In addition, user can spgaifye preferences for attributes
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Figure 4.10: A user interface for personalized search basetgser preferences

where a taxonomy of values is used. This is the case for exafoplanguage and subject
preferences. A button for opening a dialog where a user cacifgghe value preferences
and their order is provided where it is appropriate (&gbject Values Preferenchstton

or Language Preferencdsutton). The source of values for subject preferences isiin o
case the ACM CCS taxonomy, used also for selecting conceptseamstr dialogs. We
use standard set of language identifiers as a source forsveduéanguage preferences.
The value preference dialog displays a tree, a graph or & sehoepts with value labels
determining the importance of the preference. When a usetgtn a concept, a slide
bar is drilled down to change the preference importanceevdfwser needs to extend her
restrictions, he can do that by selecting from other schettniéwes which are offered
when he presse&dd Attributesbutton. The attributes which a user filled in on the user
interface are used to construct the restriction part ofigaer

The query results interface is organized into sub views hiaep in query rewriting
results in separate html table with rows from the query tesel. The most restricted
guery results are on top following step by step the querieated by query rewriting
component.

The query results user interface is described using our@mwient ontology as well.
The environment contains the attributes which should belalygd on the user interface
for query results. These attributes are used in the projegiart of the query (select
part). The recommendation strategy on results is keptaileser gets a recommendation
also based on the results according to her background kdge/las it was in the original
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prototype. This is indicated by traffic light metaphor — rewoended resources are
green, may be recommended resources are yellow, and nohmezeded resources are
red (see [21] for detalils).

Personal Learning
Link Generation Assistant Services

Services
-
/ - Query Rewiiting
Ontol%éy Services Servic
Annotation
Services
Recommendation
Seriees esource
Resourc provider
Metadata\ §j,1apase
User

Metadata

User »
Interaction -1~
Component

Learner

itory Services

() odicaion'))

Service

Figure 4.11: An architecture for personalized search basequery rewriting adopted
from ([21])

Due to flexible architecture adopted from [21] (fig. 4.11), mave just replaced the
components for query rewriting and repository access. Tsygrewriting component
is written in prolog, which understands the rewriting stgaes written in the language
we have proposed here. In addition, the rewriting compantake user preferences as
an input. The preferences are used to dynamically build ¢éimeliions determining the
order of the events to be fired; i.e. the order in which the itevg rules are applied. We
have used Sesame RDF database as a repository service. Wexpaxienented with two
metadata sets: the EU/IST Knowledge Web REASE (http://reaseanticweb.org/ubp)
and metadata from ULI project (http://www.uli-campus)d&/e have imported metadata
from both repositories to the SESAME RDF database.

4.6 Related Work

Query relaxation have been studied in the context of cotiperquery answering where
information systems explicitly attempt to cooperate withit users [28]. Relaxation is a
form of generalization where the scope of a query is extetleigh rewriting so that
more information can be gathered in the answers. A quernyitregapproach in deductive
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databases with a help of specialized clauses is presen{@d]inif the head appears in
a query then the head is replaced by the body of the spedatilzeise. A variant is
presented in [30, 31] where users preferences are direutigtated to the logical atoms.

The work presented here shares the principle of query retendaut proposes a frame-
work for the semantic web meta data. As we described in Sedt®, the semantic web
environment differs from the databases in its less strigt @faannotating the resources
and heterogeneity. Therefore, more dimensions of knovaeadgput where to find the
missing information have to be considered in a relaxatiaméwork. Furthermore, our
approach is more expressive due to the fact that the patt@rresvriting rule can refer to
more than one item [29] and use the more intuitive matchiag tmification.

Our approach also relates to term rewriting systems (seg¢&)and graph transfor-
mation (see e.g. [82]) Our approach assumes the RDF querge e set semantics of
triple patterns and the conditions simplify considerably tewriting process.

Furthermore, query relaxation approaches based on queriting (and many term
rewriting approaches) proposed so far lack on conditiorialsur approach, we are able
to define conditions which guard rewriting that it can takacgl just when the condi-
tions are met. This allows us control the rewriting procdgéereover, with the help of
conditions in the rewriting rules we are able to incorporager profiles and user prefer-
ences which is separated from the data itself; annotatm&DF data of each distributed
resource directly with all user preferences as propose@®yi§ not applicable for the
semantic web.

Preference models have been studied in the fields of datwlbaskartificial intelli-
gence. A foundation on preference models in database sys$tastbeen given in [61]. A
model for numerical and lexicographical preferences igmgivAn algebra which defines
modification operators for such preferences is given as. Wik preference model we
have defined considers the partial order between sever@renees similarly. We also
allow for the numerical preferences ratings which is statedctly from a position of
slider at the user interface. Contrary, we distinguish tlegligate or schema preferences
from the value preferences and their order. This allows wsder the relaxation steps in
a way given by the order of preferences.

A query relaxation approach for discovering web servicescmag user goals has
been proposed in [8]. They define preference model as a damn&itogy, similarly to
our approach. The approach differs in an algorithm for caimguelaxation order. The
main difference is that the preference model does not dehlavdering between predi-
cates and values separately. It assumes them as boundaiodgaiithermore, it does not
consider any ordering relations between the predicates. oftter of relaxation is then
computed according to combinations provided as levels.l&leds are computed accord-
ing to siblings in preference ontologies which are congden several query predicates.
As oppose, in our approach we consider order between thécptes and values sepa-
rately. This gives us more informed strategy for computirdgo of relaxation steps.

Our environment and preference ontology relates to the warkP-NETSs [14] and
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TCP-NETSs [15] in artificial intelligence. The formalism ale to specify importance
over variables and values as in our approach. This meanghthatodel for environment
preferences using semantic web formalism is transform@biee TCP-NETs. This al-
lows to employ a reasoning about ceteris paribus used ieEete models based on the
TCP-NETSs. In our approach, we have used the preference nurdgléry approximation
based event-condition-action and term rewriting system.

4.7 Conclusions and Further Work

In this chapter, we have proposed a framework for query atiamx to provide personal-
ized information access to resources on the semantic weé.framework is based on
the event-condition-action (ECA) paradigm where eventsnaa&ching patterns, condi-
tions are based on ordering between concepts of common denssEn knowledge and
user preferences, and actions are the replacements faimgela query. The relaxation
is based on the term rewriting principles enhanced with ttimms provided by the ECA
paradigm. This integration is a contribution to the termnigiag domain. The relaxation
is controlled by conditions from domain and user preferemdelogy. The order is given
by importance of predicates and values in the ontology feirenment preferences, user
profile, and common sense domain knowledge. This makes fireagh very well suit-
able for the access to metadata on the semantic web as thendkomosvledge helps to
overcome the fact of heterogeneity and differences in h@wnbtadata are authored on
the semantic web.

In our further work, we would like to concentrate on orderofghe different rewrit-
ing possibilities and the algorithms for determining teration of relaxation. We have
considered several strategies in this chapter but it regdiurther studies to give a recom-
mendation how to decide among them. We also would like to rx@at with different
user preference models and how they contribute to the mabexprocess. Last but not
least, user preference elicitation methods and technigeeds to be studied to get as ac-
curate user preferences as possible to support persahalkizess to information on the
semantic web.
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Chapter 5

DRAGO - Scalable Distributed
Reasoning and Applications

by LUCIANO SERAFINI & ANDREI TAMILIN

In this chapter, we overview the theoretical and practieaidof distributed reasoning
platform DRAGO (Distributed Reasoning Architecture for a &l of Ontologies) for
dealing with multiple distributed ontologies interreldtey semantic links.

In particular:

we start with a motivation of DRAGO for the semantic web andaduce its high
level architectural vision;

we recall major definitions of Distributed Description Liog framework (DDLS)
[10, 87]. This framework forms a theoretical foundation éapturing the case of
multiple ontologies interrelated by semantic links;

we describe the intuitions and formal algorithms for perfing distributed reason-
ing and simple distributed instance retrieval in DDLSs;

we describe the design and implementation principles of BRAeasoning plat-
form which implements the distributed reasoning and queryglgorithms for the
case when ontologies are expressed in OWL [9] and intertelatesemantic links
in C-OWL [11, 12];

we give a simple working scenario describing the use of DRAG®step-by-step
manner;

we enumerate several applications of DRAGO for the semarsis;

and finally we conclude and highlight the future directitmbe taken.

Ihttp://trinity.dit.unitn.it/drago
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5.1 Motivation and Vision

Ontologies have been advocated as the basic tools to supigsdperability between dis-
tributed applications and web services [2]. The basic iddhat different autonomously
developed applications can meaningfully communicate loygus common repository of
meaning, i.e., a shared ontology. The optimal solution @lmsly lies in having a unique
worldwide shared ontology describing all possible domaidsfortunately, this is non
achievable in practice. The actual situation on the web &atterized by a prolifera-
tion of different ontologies. Each ontology describes ac#gmedomain from different
perspectives and at different level of granularity so thitis fact inevitably leads to a
heterogeneitypetween ontologies describing even the very same domaina émse-
guence, the initial problem of application interoperapipasses to the level of ontology
interoperability. Although the semantic standardizatisriar to be reached, the syn-
tactic standardization is almost there, as it is widely pte that ontologies should be
expressed in OWL language, which is a variation of a desedtinguage [9].

The common approach for enabling ontology interoperasdrased on the definition
of semantic relations between entities belonging to dffiéontologies, called semantic
mapping A simple example of semantic mapping is the one statingtii@atoncepstu-
dentin one ontology is more specific than the conde@tson of another ontology. So far,
several proposals of languages for expressing semantipinggphave been done. Some
of them have a well-defined formal semantics, for example C-QWdl, £-connected
OWL [36]. Examples of less formally grounded proposals are REdnsformation [78]
and MAFRA Semantic Bridge Ontology [69].

Given this situation, one of the challenges on the semardirig/of being able to deal
with a large number of overlapping and heterogendocal ontologies We use the term
“local” to stress the fact that each ontology describes aaioraof interest from a local
and subjective perspective. One of the most crucial aspéaistology management on
the semantic web is the capability of providing reasonind guerying services. Due
to that fact, the problem aofeasoningwithin and queryingover a web of distributed,
heterogeneous, and overlapping local ontologies intedlby semantic mappings is of
significant importance for enabling the practical semangb.

Most of state of the art formalizations of that problem aredshon the notion of a
global ontologythat allows to uniformly represent a set of local ontologiesl seman-
tic relations between them. In these approaches, reasonanget of local ontologies is
rephrased into a problem of reasoning in the global ontolegyg state of the art reason-
ers [43, 51, 34].

The approaches based on the global ontology, however, ireseeral main draw-
backs. First, from a computational complexity point of vigwg more convenient to keep
the reasoning as much local as possible, exploiting thetstrel provided by semantic
relations for the propagation of reasoning through thellootologies. Some intuition
in this direction can be found in the computational comgiesesults for satisfiability in
Multi-Context Systems described in [88]. Second, the reiagoprocedure that has to be
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Figure 5.1: DRAGO reasoning architecture for the semantiz we

- semantic mapping

implemented in the global ontology should be capable ofidgatith the most general
local language, whereas having a some distributed apprwaihl allow to apply to every
local ontology the specific local reasoner, optimized ferltical language.

To overcome the pointed out disadvantages of global reag@puiproach we pursue an
alternative technique, which is based on th&tributed contextual reasoning paradigm
Namely, the reasoning with multiple ontologies is propotsede accomplished through
a suitable combination, via semantic mappings, of locaeaang chunks, internally ex-
ecuted in each distinct ontology.

For enabling the distributed reasoning we propose an aathite called DRAGO
(Distributed Reasoning Architecture for a Galaxy of Ontadsy. From the architectural
point of view, our vision is inspired by general peer-to4pearadigm and particular dis-
tributed knowledge management architectures, such amdggemoposed in SWAP [24]
and Edamok [71] projects, and by C-OWL language [11].

As depicted on Figure 5.1, DRAGO envisages a web of ontoldupasg distributed
amongst a peer-to-peer networkkBRAGO Reasoning Peefisereafter, DRP). The role of
a DRP is to provide reasoning and querying services for ogtedaregistered to it, as well
as to request reasoning and querying services of other sieadfnrelated peers. The key
difference of DRP from standard ontology reasoners (nomiloliged) is that it registers
not just a stand alone ontology, but an ontology coupled &kt of semantic mappings.
The reasoning and querying services provided by a DRAGO @eebe subdivided into
two groups: (1)ocal, when semantic mappings are ignored, andd{&)ributed when
behind a local ontology the semantically related ontolegiee considered.
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5.2 Distributed Description Logics Framework

Distributed Description Logics (DDLSs) is a framework desg to formalize the case of
multiple ontologies interconnected by semantic mappirigghis section, we recall the
definitions of DDLs as given in [10, 87].

5.2.1 Syntax and Semantics of DDLs

Given a set/ of indeces enumerating ontologies, a DDL is a collection egatiption
logics {DL,}.c; corresponding to each ontology. We will denote a T-boxDdf; as7;
and an A-box as4;. The semantic mapping between ontologies are expressdulidge
rules” between pairs of connects belonging to differenblmgies.

A bridge rule fromi to j is an expression of the following two forms:
i ij :y — aninto-bridge rule
i:x ij :y — anonto-bridge rule
wherez, y are concepts or individuals belonging®d.; andDL; respectively. The de-

rived bridge rulei : = — j : y can be defined as a conjunction of the corresponding
into- and onto-bridge rule.

Despite this general form allowing for unrestricted mix ohcepts with individuals,
e.g., nominals (classes with a singleton extension), s¢hapter, we restrict the bridge
rules to be expressions connecting only pairs of conceplerefore, bridge rules are
allowed to connect only terminological parts of two DLs (@ogies). Moreover, we
will prohibit the use of nominals in component logifd.; of DDLs. This restriction is
motivated by the hardness of dealing with nominals even se cd standard Description
Logics [98, 99].

Bridge rules fromi to j express relations betweemand; viewed from thesubjective

point of view of thej-th ontology. For example, the into-bridge rule C £, j
D intuitively says that, from the-th point of view, the individuals in concepgt in i
correspond (via an approximation introduced by an impéieihantic domain relation) to
a subset of the individuals in its local concept

A distributed T-box (DTBoxE = ({7;}.cs,B) consists of a collection of T-boxes
{7:}ic;r and a collection of bridge rule® = {B;;},..,c; between pairs of corresponding
T-boxes.

A bridge graphG+ of a DTBox ¥ is a directed graph with an arc froirio j exactly
when the set of bridge ruleB;; is non-empty.

In order to express correspondences between semantiekdtgd heterogeneous in-
dividuals between A-boxes, we follow the approach of intrddg the individual-level
equivalent of bridge rules:

i:x— j:y — anindividual correspondence
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Figure 5.2: Graphical intuition of Distributed Descripti@ogics framework

wherez, y are individuals of4; and.A; respectively.

Similarly to bridge rules, individual correspondencestiroto ; reflect a subjective
point of view of thej-th ontology. For example, the correspondencea — j : b
intuitively expresses that according teth point of view, the individuab is one of the
possible translations of the foreign individuain the local domain of. Notice, that this
definition admits multiple translations of foreign indivials, i.e., one can simultaneously
havei :a+— j:bandi:a+— j: 0.

A distributed A-box (DAbox)l = ({A;}.cr, €) consists of a collection of A-boxes
{A;}ier and a collection of individual correspondenees- {¢;;},.;c; between pairs of
corresponding A-boxes.

A distributed knowledge base (DKB)= (%, 2l) is then a pair containing a distributed
T-box and a distributed A-box.

The semantics of DDLs, graphically depicted on Figure So2ally interprets each
ontology by a standard Description Logics interpretatiants local domain. Since local
domainsA; may be heterogeneous, the semantic correspondences bé@iespgeneous
domains are modeled using so called domain relatjpfrom A; to A; and defined as a
subset ofA; x A;. For instance, if\; andA, are the representation of time as Rationals
and as Naturals; , could be the round off function, or some other approximatedation.

A distributed interpretatio¥ = ({Z; };cs, {r:; }izjer) Of a DKB & = (%, ) a consists
of local interpretations; for eachDL; on local domainsAZ: and a family of domain
relationsr;; between these local domains.
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To deal with possible inconsistencies, DDLs utilizes théiamof a special non-
classical interpretatiofi, called a hole (see [87] for details), that interprets ewenycept
or role in the empty set. The hole satisfies any statement@ilkatge base, even classi-
cally unsatisfiable (inconsistent). To highlight that dizited interpretatiod can contain
holes, we will subscript the inferences w.fitwith a symbol ‘¢”.

A distributed interpretatiofy is said to satisfy (writtef¥ |=.) the elements of distrib-
uted T-box¥ if

I, =EcAC Bforal AC Bin7;

TEi: A =G, if ri;(A%) D G% (A, G are concepts df;, 7;)

Jkei:B-—=j:H,if r;(BY) C HY (B, H are concepts df;, 7;)

J . T, ifforeveryi,j € 1,3 . 7; andJ = By,

Finally, ¥ =i : C C D ifforeveryJ,J = T impliesT =, i : C T D. We say
that¥ is satisfiableif there exists & such that |=. €. Concepti : C is satisfiablewith
respect t if there is aJ such thad |=. T andC%i # ().

Concerning the assertional part, a distributed intergoetdl is said to satisfy the
elements of distributed A-baX if

* 7, Ec C(a), Z; = R(a,b) for all assertiong’(a), R(a,b) in A;

s JEcizarj:bif (B, b5) €ry (a, b are individuals of4;, A;)

* J =, ifforeveryi,j e I,J = A andJ =, ¢;;

Finally, 2 =. i : C(a) (A =c i : R(a,b))ifforeveryd,J =, Aimpliesd =, i : C(a)
(J =c i : R(a,b)). We say tha®l is consistentf there exists & such thal |=, 2.

A statementx is entailed by the distributed knowledge bage= (T, ) (written
R =) iff for every distributed interpretatiof, if J |=. ¥ andJ =, 2, thenf |=, a.

5.2.2 Properties of DDLs

In the following, we intuitively recall paradigmatic propies of DDLs that are desirable
for multi-ontology environments. For the formal descptiof properties we refer an
interested reader to [10, 87].

Knowledge propagation Bridge rules from a source ontologyto a target ontology
constitute asemantic channdrom i to 5 which allows ontology; to access and
import knowledge from ontology. In particular, bridge rulepropagateacross
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ontologies a terminological knowledge in form sfibsumption axiomsAlso, a
combination of bridge rules with individual correspondes\propagate across on-
tologies an assertional knowledge in formooincept membership assertions

Directionality Bridge rules fromi to j support knowledge propagatiamly in such a
direction from: towards;.

Isolation If there are no bridge rules that go franmiowardsj, thenj is not affected by
1. This says that an ontology without incoming bridge rulesasaffected by other
ontologies. Vice versa, an ontology without outgoing beidgles does not affect
the other ontologies.

Localized inconsistencyThe inconsistency of one ontology, or some subgroup of con-
nected ontologies, does not automatically rendeetitee multi-ontology environ-
ment inconsistent.

5.3 Distributed Reasoning in DDLs

Reasoning is the fundamental process of discovering fattslem by knowledge base.
Although both in DLs and DDLs the fundamental reasoning tagk in a verification
of concepts subsumption, in DDLS, besides the ontologifitde subsumption depends
also on other ontologies that affect it through the seman#ppings. In this section, we
describe a decision procedure that computes DDLs subsomgutid a distributed tableau
reasoning algorithm for determining whethfel=, i : A C B.

5.3.1 Subsumption Propagation Mechanism

Before turning to the description of decision procedureukefirst recall a DDLs sub-
sumption propagation mechanism that constitutes the neasoning step in DDLs. The
basic idea is that a combination of onto- and into-bridgesalllows for directional prop-
agating the terminological knowledge across ontologie®iim of DL subsumption ax-
ioms.

Formally this reasoning pattern is formulated accordinth&following proposition:
Given a distributed T-bo = ({7; }icr, {Bi; }ixzjer), if B;; containsi : A =, j:Gand
z’:Bkij:kaorl < k <nandn >0, then:

T i AC| |Bi= Tk j:GC| |H (5.1)

k=1 k=1

Where|_|2:1 D, denotesl . Figure 5.3 depicts this result for the case of simple disted
T-box %1, = ({71, T2}, B15) when a single pair of into-onto-bridge rules specified.
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Figure 5.3: Example of subsumption propagation in DDLsefirdd subsumption is
dashed)

Taking this reasoning pattern allows to definbrage operatorwhich encapsulates
the subsumption axioms that has propagated via bridge. rules

Given a set of bridge rule®,, from DL, to DL,, thebridge operatorB,,(-), taking
as input a T-box iDL, and producing a T-box i L, is defined as follows:

7 ): AC LlZ:1 By,

Bio(T) =G| |H | A 20 € B
k=1 1: By — 2: Hy, € By,
for1<k<n,n>0

Notationally, |_|2:1 D, expressesl. It is also remarkable that these are essentially
all the inferences that one can get according to the semant@Bb$ with holes. Thus,
given a distributed T-bo%, = (71,73, B12) we have thaf, = 2 : X C Y ifand only
if LUB(T)EXLCY.

For arbitrary familyB = {8, }, ;; of bridge rules, we can then compose a combined
new operato® on a family of T-boxes as follows:

B({Titier) = {75 ulJ %jz‘(Tj)}

J#i

If I is finite and eaclB;; is finite, then there is a positive integesuch that for every
family of T-boxesT, B°(T) = B**1(T). Let us then defin&*(T) asB(T), whereb is
the first positive integer such th&’(T) = B*"1(T). Furthermore leB*(T);, be the
i-th T-box inB*+1(T).

Finalizing description of subsumption propagation, we state the correctness and
completeness of the defined operator. Formally, forany (T,8), T . j: X C Y if
and only if thej-th T-box of B8*(T) entailsX C Y.
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5.3.2 Distributed Tableaux Algorithm for DDLs

To simplify the description, we suppose that local ontadsgare expressed in (a subset
of) the SHZ Q language — one of the most widely known DLs. Also, we will assu
that the consequences of bridge rules are atomic names.lashisondition can easily
be achieved by introducing, through definitions, namesHerdonsequent concepts. We
need the usual notion of axiom internalization, as in [53}eg a T-boxZ7;, the concept
Oy, is defined agly; = [|p-pey. ~F U D; also, the role hierarchi®z, contains the role
axioms of7;, plus additional axiom$> C U, for each roleP of 7;, with U some fresh
role.

The algorithm for testing-satisfiability of a concept expressiox (i.e., checking
T [~ j : X C 1) builds, as usual, a finite representation of a distributéerpretatiory,
by running locabutonomouss’HZ Q tableaux procedures to find each local interpretation
Z; of 7.

For eachj € I, the functionDTab; takes as input a concept expressiorand tries to
build a representation df; with X% = () (called acompletion tred53]) for the concept
X NCg NYU.Cr;, using theSHZ Q expansion rules, w.r.t. the role hierarcRy,, plus
the following additional “bridge” expansion rules:

Unsat-B,,-rule
if1. GeL(z),i: A—=j:G e B, and
2. IsSaf(A M —| |B’) = False for someH’ Z L(z),
then £L(z) — L(z) U{| |H'}

New-5;;-rule
if1. GeL(x),i: A—=>j:Ge By and
2. BC{B|i: B-—=j:HeB,;} and
3. fornoB’ C BislIsSat(Am—| |B’) = False and
4. fornoB’ D BislIsSaf(A M —||B’) = True, then
if DTab;(A M —| |B) = Satisfiable
thenlsSat(A M —| |B) = True
elselsSaf(Am—| |B) = False

The idea, inspired by bridge operat®;(-), is that wheneveDTab; encounters a
nodex that contains a labelr which is a consequence of an onto-bridge rule, then if
G C UH is entailed by the bridge rules, the lahgH, is added tor. To determine if
G C UH is entailed by bridge rule®,;;, DTab, invokesDTab; on the satisfiability of the
conceptA 1 —~(uB). DTab; will build (independently fronDTab,) an interpretatiorf;,
as illustrated in Figure 5.4. To avoid redundant cdli3ab; caches the calls tDTab,
in a data structurésSat, which caches the subsumption propagations that have been
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DTab,(A"— (B,LB,)) DTab,(X)
14
L@ ={AT—(B,UB)}/Z

Vi N

Figure 5.4: lllustrative step of the distributed tablealgoathm: subsumption propaga-
tion forced by bridge rules : A ij -G, i By ij :Hyandi: By ij : Hy

computed so far. Specifically, for evefy, IsSat(C') will be set toTrue/Falsewhenever
T Wi C C L isdetermined.

Note, that the construction of the distributed interpiietaican be parallelized, as
each local tableau procedure can run independently frorottiers, without checking for
standard blocking conditions with nodes generated by therdbcal tableau.

The proposed distributed tableaux algorithm can be easitemlized for the case of
arbitrary distributed T-boxes. To prevent infinite loopitige to the cycles in the bridge
graph, the satisfiability requests are named withicarLater on, the samei is used for
naming all initiated satisfiability subqueries. Doing slowak to distinguish that a certain
satisfiability requesf : X; is a consequence of initial satisfiability requgstX and thus
needs to be properly handled, e.g., blocked. This later m#baat a satisfiability request
should never generate itself.

What does it mean that a certain satisfiability request “retdrback” through the
cyclical bridge rules? — It means that the request couldnttlbsed locally in none of the
local tableaux and bridge rules do not propagate any cantiaial.

Every tableaux procedui@Tab;, therefore, is extended to take as input parameters
a concept expressioX and an identifietidx, i.e., DTab;(X,idx). Before applying
tableaux rules described abougTab; checks whetheX' has been already asked and
if so returns immediatelatisfiable Otherwise the tableaux rules are applied and when-
ever necessapTab;(.. ., idy) is invoked with the same identifier.

It worth stressing out that a localized inconsistency priypef DDLs (see Section
5.2.2) is automatically reflected by the specified distedutableaux. Indeed, the dis-
tributed tableaux procedure, sByfab,, takes into account only tho$&Tab; that return
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Unsatisfiable whereas a reasoner for an inconsistent ontology will abwayly Satisfi-
ableand thus will have no effect.

5.4 Distributed Query Answering in DDLs

The query answering is a second crucial requirement to egyalechnology on the se-
mantic web. One of the simple ontological queries defineteindard Description Logics
is aninstance retrievali.e., finding all instances of a particular concept. Irveity for the
case of multi-ontology environments, to guarantee the detapess of instance retrieval,
besides locally retrieved instances one should also vetimstances of other semantically
related ontologies.

To clarify the idea of distributed instance retrieval, Istaonsider a simple scenario.
The human resource offices of a university and one of its deyeart utilize ontologies
for describing research staff. The university exploitsotmdgy OV, while the department
usesOP<P, The obvious overlap of the domains of interest in both @gi@s occurs
since every person that works in the department belongsetariversity. However, let
us additionally suppose thé&™ instantiates its concegitersonContact in the domain
of personal e-mails, whil®?<rt, respectively, instantiates its concéptrsonContact in
the domain of world wide web personal homepages.

When the ontology of the university is asked for all persowmaitacts, to guarantee a
complete answer, this query should be propagated to thetdegratal ontology expanding
the result set. However, since instantiations of semditicdated concepts are expressed
using different “formats”, one needs a mechanism of serog@méserving instance trans-
formation. In our example, when retrieving instancesPef-sonContact in OU™, i.e.,
contacts of the university staff, besides locally found &isnone should also augment
the response by retrieving the instance®ef sonContact in OP!, i.e., personal home-
pages, and further project them into domairQdfe?, i.e., “visit” every homepage found
and extract, if any, personal e-mails from the pages.

In this section, we analyze the semantics of bridge rulesiadigidual correspon-
dences in order to understand their operational behavrdr mropagating the assertional
knowledge. Later on, this will allow us to define the disttdu instance retrieval algo-
rithm.

5.4.1 Assertional Propagation Mechanism

As we could see in Section 5.3, bridge rules constitute tla@ichl for propagating across
ontologies the knowledge in form of subsumption axioms.rifeoto get the intuition of
the affect Let us now investigate the consequence of brigdlgs and individual correspon-
dences in order to understand their affect on assertiomabpinowledge in distributed
knowledge base. We visualize on Figure 5.5 the semantiendgivbridge rules in DDLSs:
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A —=>|G B —=> j:H

(a) Onto-bridge rule (b) Into-bridge rulé

Figure 5.5: Visualized semantics of bridge rules in DDLs

T-box 1 /C)\ C @

isInstanceOf isinstanceOf
12 :
Abox 1 (ipd ——>——H - O2n D Arbox2

Figure 5.6: Concept membership propagation in DDLs (inteagsertion is dashed)

T-box 2

The special role of into-bridge rules can be intuitivelyspad from these visualiza-
tions. Indeed, the semantics of into-bridge rule depictedrigure 5.5(b) says: if in on-
tologyi a conceptB has an instanckthen in ontology; there should exist such instance
h of H that a pair(b™, h%7) belongs to the domain relatior;.

Formally this intuition can be stated as an assertional ggapon pattern: Given a

distributed knowledge base= (%, ), if ®B,; containsi : B =, j:H andc;; contains
i:bw+— j:h,then:

REci:Bb) = &&= j: H(h) (5.2)

The result of applying the pattern (5.2) to DDLs describwwg populated ontologies
can be depicted graphically as given on Figure 5.6.

According to the semantics of individual correspondericeb +— j : h means that
the pair of individuals<b1i,hfj> belongs to the domain relation;. On one hand, to
have a complete set of individual correspondences a kngeledgineer should take all
individualsz of ontologys, find all semantically corresponding individual$n ontology
j, and explicitly specify that : = — j : y (extensional approach). On the other hand,
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one can imagine a more compact definition, when an engineeifigs a transformation
relation f;; that allows to transform a set of individuals frarto individuals of; such that

their interpretations respect the semantics of domairtioela;;. In this later option, we

can reformulate the pattern (5.2):

Given a distributed knowledge bage= (%, 2() and a set of transformation relations
fij» if B;; contains an into-bridge rule: B ij : H, then:

RiEci:Bb) = R j: H(f;() (5.3)

Consequently, we can give another reading to Figure 5.6, ihgtanceh was injected
into A-box A, with an assertioR : H(h) as a result of propagation via transformation of

assertiorl : B(b) from A, along the into-bridge rulé: B = H.

It should be stressed again that a transformation relgtigulays a similar role on the
level of individuals in A-boxes that the domain relatignplays on the level of interpreta-
tion domains. However, since DL interpretation functionpm@ndividuals into elements
of domain we can roughly think of the transformation relatas of a partial specification
of the domain relation.

5.4.2 Distributed Instance Retrieval in DDLs

Given a distributed knowledge base= (%,2(), adistributed retrieval of instancesf
a conceptD in ontology: is a task of finding all individuals: that instantiateD, i.e.,
R = i : D(z). For the sake of simplicity, we will consider only the posiiypto retrieve
instances of named concepts, leaving for the future workrdgaith instance retrieval
of complex concept expressions.

Our proposal consists in building an instance retrievingmaaism for DDLs on top of
standard DLs instance retrieval algorithms. We will ddsethe intuition of the algorithm
for the case of distributed knowledge base with only two tirent ontologies, i.e., when
R = (%) = ({71, T2}, B12) , ({A1, A2}, €15)). Due to the direction of bridge rules
from 1 to 2, we will denote ontology7;,.4,) as asourceontology, and(7;, A;) as a
targetontology.

We will also put some restrictions on a structure of A-boxas.4, admitting only
those logics that enjoy the property of reduction reasomiitg instances to a pure ter-
minological reasoning (see [97, 96, 50] for more detaild)iswill allow us to complete
the part of local instance retrieval with simple sound anchgiete instance retrieval al-
gorithms defined for these logics.

The terminological propagation results in refining a com¢aponomy of target on-
tology according to the pattern (5.1). Hereafter, we wifergo a taxonomy built with
respect to the terminological propagation atisiributed taxonomgnd a reasoner capa-
ble of that functionality as distributed terminological reasoner
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The assertional propagation reveals in either (a) asgengw concept membership
for existing individuals of target ontology when a patten?] is used, or (b) injecting
new individuals to target ontology in accordance with pat{®.3) and further asserting
their concept membership similarly to (a). In both caseswillerefer to such concept
membership assertions distributed concept membership

The consequence of both propagational aspects affect#bdiet instance retrieval.
The resulting instances can be naturally subdivided intodgwoups: ones that were ex-
plicitly defined in the target ontology A-box, and the othdrat were injected as trans-
formation of instances of source ontology. Therefore, tisériduted retrieval problem
should be approached in a 3-step manner: (1) retrieve all lnstances with respect to
the distributed taxonomy of the target ontology, (2) rewiall relevant instances of the
source ontology and apply transformation to them, and fir{8) merge the results of two
previous steps.

Algorithmically, the process of distributed retrievingetinstances of named concept
D in ontology(75, A5) w.r.t. a distributed knowledge basecan be sketched as follows:

dRetrive,(D)

1. compute a distributed taxonomy of

2. create a seb,z, of named concepts iff; that are subsumed by a concéptw.r.t.
a distributed T-boX¢ (these are equivalents and descendants of 7; computed

w.rt. %)

3. retrieve a se$’>“ of individuals in.4, using a standard DL instance retrieval algo-
rithm with respect to the computed distributed taxonomy-of

4. for every concepH € D7, connected via an into-bridge rule B —- i : H

(a) retrieve a sef’z of instances of3 in ontology 1 invoking ofdRetrive; (B)

(b) apply to elements df;z a transformation functiort;, and collect transformed
instances in a sty

(C) Sdist - Sdist U SH
5. returnSlocal |y gdist

The described algorithm can be generalized to a case oibdigtd knowledge bases
with acyclical bridge graphs. Dealing with cycles opensitaithl questions, e.g., when
to stop application of transformation for transformed undiials.
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5.5 DRAGO Peer-To-Peer Reasoning Platform

In this section we will describe a design and implementagianciples that lay in the
base of DRAGO (Distributed Reasoning Architecture for a GalaixOntologies), the
platform for reasoning with multiple ontologies connecbgtsemantic mappings.

As depicted in Figure 5.1, DRAGO envisages a Web of ontololgesg distributed
amongst a peer-to-peer networkRRAGO Reasoning Peef®RP). The role of a DRP is
to provide reasoning services for ontologies registerat] &s well as to request reason-
ing services of other DRPs when this is required for fulfillmehdistributed reasoning
algorithm. The key issue of the DRP is that it provides po8gilib register not just a
stand alone ontology, but an ontology coupled with a set wiasgic mappings.

In order to register an ontology to a DRP, the users specifygeadb identifier for
it, a Unified Resource Identificator (URI), and give a physicalation of ontology on
the Web, a Unified Resource Locator (URL). Besides that, it iSiptesto assign to an
ontology a set of semantic mappings, providing in the samenerxatheir location on the
Web. As we discussed in the previous sections, attachingpmggto ontology enriches
its knowledge due to the subsumption propagation mechariismrevent the possibility
of attaching malicious mappings that can obstruct or falsshsoning services, only the
user that registered the ontology is allowed to add mapgmds

Similarly to the process of attaching mappings to ontoleg®RP allows for attach-
ing instance transformation relations, so that during ts&itduted instance retrieval the
individuals from heterogeneous domains could be corréxctysformed.

When users or applications want to perform reasoning/gngnyith a one of regis-
tered ontologies, they refer to the corresponding DRP armkinits reasoning/querying
services giving the URI of the desired ontology.

5.5.1 Architecture

A DRP constitutes the basic element of DRAGO. The major commquisnaf a DRP are
depicted in Figure 5.7.

A DRP has two interfaces which can be invoked by users or agifuits:

» A Registration Serviceterface is meant for creating/modifying/deleting ofiseg
trations of ontologies and mappings assigned to them.

» A Reasoning/Querying Servicederface enables the calls of reasoning and query-
ing services for registered ontologies. Among the reagps@nvices can be a pos-
sibility to check ontology consistency, build classificatj verify concepts satisfia-
bility, and etc. The querying services are limited to hamatance retrieval queries

2http://trinity.dit.unitn.it/drago
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Figure 5.7: DRAGO architecture.

from defined (atomic) concepts.

All reasoning/querying services are divided into to groulogal and distributed.
Local services are handled by a standard tableau reasoniég, distributed, by a
distributed tableaux.

All accessibility information about registered ontolagjend mappings is stored by a
DRP in its localRegistration Storage

In order to register an ontology with a collection of semamtiappings attached to
it (both available on the Web) a user or application invokesRegistration Service of a
DRP and sends to it the following registration information:

URI to which the ontology will be bound
URLSs of ontology and semantic mappings attached to it, if any

if the semantic mappings connect this ontology with ordas registered to ex-
ternal DRPs then additionally the URLs of these DRPs should beifsgd. This
requirement is explained by the necessity to know who isaesiple for reasoning
with these ontologies.

when dealing with heterogeneous individuals, a DRP shoeldl$o provided with
instance transformation specification.
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The Registration Service interface is implemented byRbegistration ManagenWhen
the Manager receives a registration request, it (i) coeghlt Registration Storage and
verifies if the URI has not occupied yet, (ii) if not it accessesologies and assigned
mappings from their URLS, (iii) asks Parser component to @gedhem, (iv) initializes
the Distributed Reasoner with the parsed data, and (v) firaltls a new record to the
Registration Storage.

The Parsercomponent translates ontologies, mappings and instaansftrmations
source files to the internal format used by the DistributedsBear. For doing so, the
Parser consist from two sub components: the ontology paeskmred on ontology lan-
guage formats (for example, OWL [9]), the mapping parsegrad on mapping formats
(for example, C-OWL [11]), and parser of instance transforomst(in XML format, see
Figure 5.9 for a sample code).

The Reasoning/Querying Manageomponent implements the Reasoning Services
and Querying interfaces. When users, applications or otfiPDinvoke this interface
sending the URI of requested ontology, the Manager verifidstive Registration Storage
whether the URI is registered to the DRP and, if yes, asks theilRised Reasoner to
execute corresponding reasoning/querying task for thialayy.

The Distributed Reasonetepresents a brain of a DRP. It realizes the distributed rea-
soning and querying algorithms sketched in this chapter@asbns on ontologies with at-
tached mappings and instance transformations that asgeegyl to the DRP. The Distrib-
uted Reasoner is built on top of standard tableau reasonesendigorithm was extended
with the additional Bridge Expansion Rule in accordance wighdistributed tableau al-
gorithm. Distributed tableaux was also extended to handiance retrieval requests in
accordance with the distributed instance retrieval atgori When the Bridge Expansion
Rule is applied it analyzes semantic mappings and possillgrgées reasoning subtasks
that are required to be executed in the ontologies partiog@ the mappings. Similarly,
the querying subtasks can be possibly generated.

To dispatch the reasoning/querying subtasks generateddistidbuted Reasoner to
the responsible reasoners, tReasoning/Querying Propagatcomponent refers to the
Reasoning Manager and either dispatches reasoning to thel@tributed Reasoner or
sends out a request of reasoning service to the corresppextiarnal DRP.

5.5.2 Implementation

The described DRAGO architecture has been implementeddaabe of OWL [9] ontol-
ogy space. For expressing semantic mappings between OWlogieewe use a C-OWL
[11, 12]. According to C-OWL, mapping consists of referenaethe source and target
ontologies and a series of bridge rules relating classegdeei these ontologies (see Fig-
ure 5.8 for a sample extract). Among the possible C-OWL bridge types DRAGO
supports the use af, C, J rules connecting defined(atomic) concepts.
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A Distributed Reasoner was implemented as an extension tgeamn source OWL
reasoner Pellet [34]. Originally, Pellet parses OWL ontgltg a Knowledge Base (T-
box/A-box). To satisfy the needs of DRAGO we extended a Pelkowledge Base
with an M-box containing parsed C-OWL mappings. Other extarsof Pellet were done
by adding a Bridge Expansion Rule to the core tableau algontharder to transform
it to the distributed tableau and extending core instantieval mechanism of Pellet
reasoner. The Bridge Expansion Rule rule is called for evederayeated by the core
tableau algorithm and consist in finding such bridge rulethéM-box that are capable
of importing new subsumptions from mapping-related orgs.

DRAGO is implemented in java and consist of two core packa@gEsa reasoning
peer, DRP, and (2) a client, called DRPConnector. Both appbicathave opened APl so
that external java-applications can easily invoke (stap/reason/query) DRAGO func-
tionality.

DRP plays a role of reasoning server. Being started, it opepskeson a specified
port and listens for incoming reasoning/querying requeRsquests are send/received
over the TCP/IP network in accordance with a simple text-thgsetocol. DRP is a
multi-threaded application, thus it can service multiptaidtaneous requests from users.
To simplify the communication with DRP and “hide” from a us@mnecessary awareness
of the communication protocol we have developed the DRPCdonapplication, which
serves as a middleware between user and a certain reasemnuay. sMoreover, a DRP
itself utilizes DRPConnector functionality in a Reasoningg@ung propagator block.

Starting multiple DRPs on different hosts forms a DRAGO nelkwoir distributed
reasoning peers.

5.5.3 Working example

Let us step-by-step “run” a working example to get the imgpi@s of using DRAGO.
Consider again the illustrative scenario that we have givethé beginning of Section
5.4. Two human resource offices, of a university and of ondsoflépartment, utilize
ontologies for describing research staff, the universggga®’™, while the department
OPert, The idea is that the university wants to re-use knowledgeekists in the depart-
ment.

To run this idea, we associate to the university human resaifice a reasoning peer
DRPUY™ and to a department officelaR PP"*. Further, the following steps need to be
performed:

« assign ontology) <! to DR PPert

« define semantic mappingy ”<**~U"" petween overlapping concepts of ontologies
OPert andOV™ utilizing C-OWL format (see a sample extract on Figure 5.8). Fo
example, we can have the statement that
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OPert . PersonContact OUn . PersonContact
OPert . Article —= OY™ : ConferencePaper
OPert . PhDThesis — OY" : DoctoralThesis

[ lm

« define individual level transformationg’*?'~U"i (see a sample extract on Figure
5.9). For example, we can have the statement that

<domain-relation sourceOntology=" Obevtr
<instance-transformation
sourceConcept=" OP" . PersonContact"
value="$ {function.JavaEmailExtractor I
whereJavaEmailExtractor is a function in java class that is capable of down-

loading the web pages, parsing the text and extracting ft@amail addresses.

« assign ontology"" with mapping)/ P<P*~U"* and instance transformatigi <!~
to DRPU™

« notify the DRPY™ that ontologyOPe* in M Pert=Uni gnd fPert=Uni is supported
by DRPPer!

« start the peer®V" andOP<t,

From that moment, both of the reasoning peers are readypomdgo reasoning and
guerying questions (see a sample extract of DRAGO API invoicah java on Figure
5.10).

As we have described in Section 5.5, every DRP is capable wiging local and dis-
tributed reasoning and querying services. Local serviggmfe” semantic mappings (if
any) and consider only local axioms of ontology. In turn, dm&ributed services depend
on axioms that propagate via mappings and instances thpagate via combination of
mappings with the specified instance transformations. $ondjuish these services we
will use letters L.” to denote local, andD” to denote distributed reasoning and querying
services. In particular, you can see the sample invocatiGeweral services on Figure
5.10, such agetLSubClassegetDSubClassegetLTaxonomygetDTaxonomygetLIn-
stancesgetDInstancesnd etc.

5.6 Applications

The main application domain of proposed in DRAGO peer-ta-pegsoning and query-
ing paradigm comes out from its seamless integration withesgic matching techniques
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[13, 76, 35, 33]. Indeed, the goal of semantic matchers isddyce semantic relations
between heterogeneous ontologies, whereas the goal of DRa&@®@xploit these map-
pings for enabling distributed reasoning and querying.iktagombined semantic match-
ing techniques with distributed reasoning and queryingreges will allow to create a
full-fledged platform for resolving ontological heterogéy problems on the semantic
web.

In this section, we describe several intuitive applicaziohDRAGO. In particular, we
sketch the problems of modular ontology reasoning, vetiboaof semantic mappings,
deriving new mappings, and finally, assisting ontology tgwaent.

5.6.1 Modular Ontology Reasoning and Querying

The semantic web can be rationally assumed to contain reutfigtributed ontologies,

modules, and the modularization, therefore, can be seemexhanism for assembling
some of these modules into a coherent network that can begéfto as a single entity,
a modular ontology. Utilizing semantic mappings as gluedonnecting autonomous
ontological modules and then applying DRAGO to such a settiggget the possibility

of composing a modular ontology.

5.6.2 Reasoning about Mappings

As we have already seen, semantic mappings are very impdotagnabling reasoning
and querying over heterogeneous ontologies. However, #ygpmgs used should be
of good quality. This can be achieved in certain cases whegmpimgs are established
manually by a knowledge engineer. However, automatic neascbuffer from mapping
imperfectness. To improve the quality of mappings one naadechanism of reasoning
over mappings themselves. In [92] authors make a first steartts shedding the light
on this problem grounding their approach on top of DisteloubDescription Logics and
implementing it on top of DRAGO.

5.6.3 Semantic Mappings Verification

The problem of mapping verification can be roughly consida®giving response on the
guestion how good is certain mapping produced by any semargicher. Following a
simple idea that of applying to that mapping a distributemsoming technique and fur-
ther checking which concepts due to the mappings becomeisiredale allows to built a
mechanism of detecting defective mapping.
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5.6.4 Ontology Development Assistance

Ontology development process is difficult and time consgntéisk. Due to that the OWL
language proposed a mechanism of “importing” already emtsbntologies allowing to
reuse previously defined knowledge. However, the importhaeism allows for only
importing the whole ontology, whereas in many situations would like to selectively
import specific knowledge. For that reason, we envisagedhenfing ontology devel-
opment scenario. A knowledge engineer defines (enumeiagsjoncepts of ontology
he needs to create. Afterwards, running some (semi-)adtomatcher he establishes
semantic links to different preferred ontologies whichatidse the similar problem do-
main. Applying then to that setting DRAGO reasoning techaigliows reifying initial
enumeration of key concepts into, for example, a hieraatlyiordered taxonomy.

5.7 Conclusions and Future Directions

In this chapter, we described the main theoretical and jgeddéssues of distributed rea-
soning on the semantic web. First, we did an overview of ihisted Description Logics
framework (DDLSs) that is capable of representing multipiéeinogeneous ontologies. Af-
terwards we clarified the propagational driving forcestgras) of reasoning and query-
ing in DDLs. Having the propagational patterns allowed wuntko define distributed
algorithms for basic reasoning and query answering sesyg&h as checking concepts
satisfiability and retrieving the set of individuals thastantiate a certain concept. We
finalized the discourse with describing the architectural anplementation aspects of
DRAGO distributed reasoning platform and highlighted salvpossible applications of
DRAGO to different problems on the semantic web.

As a future work, we plan to extend the DDLs framework with as@n-able ability
to support complex mappings involving nominals, and to @nalstributed answering
not just instance retrieval queries over defined conceptsuar arbitrary concept expres-
sions. From the practical side, we will pursue the impleragomn in DRAGO of the ideas
identified in the Application section, in particular intagjpn with semantic matchers,
performing mappings verification and reasoning about mrayspi
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<rdf :RDF
xmins:rdf="http ://www.w3.0rg/1999/02/22 rdf —syntax—ns#”
xmlns:rdfs="http ://ww.w3.0rg/2000/01/rdfschema#”
xmins:owl="http ://www.w3.0rg/2002/07/owl#”
xmlns:cowl="http ://www. itc . it /cowl#”
xmlns="http :// example#” xml:base ="http :// example”
<cowl :Mapping>
<cowl:sourceOntology>
<owl: Ontology rdf:about="http ://dept.owl™
</cowl:sourceOntology>
<cowl:targetOntology>
<owl: Ontology rdf:about="http ://uni.owl"t
</cowl:targetOntology>
<cowl:bridgeRule>
<cowl:Into >
<cowl:source>
<owl: Class rdf:about="http :// dept#PersonContact”/
</cowl:source>
<cowl:target>
<owl: Class rdf:about="http ://uni#PersonContact’/
</cowl:target>
</cowl:Into >
</cowl: bridgeRule-
<cowl: bridgeRule>
<cowl:Onto>
<cowl:source>
<owl: Class rdf:about="http :// dept#Article
</cowl:source-
<cowl:target>
<owl: Class rdf:about="http ://uni#ConferencePapes”/
</cowl:target>
</cowl :Onto>
</cowl: bridgeRule-
<cowl: bridgeRule>
<cowl:Equivalent>
<cowl:source>
<owl: Class rdf:about="http :// dept#PhDThesis”/
</cowl:source>
<cowl:target>
<owl: Class rdf:about="http ://uni#DoctoralThesis®/
</cowl:target>
</cowl:Equivalent>
</cowl:bridgeRule>

</cowl :Mapping>
</rdf :RDE>

Figure 5.8: Extract of sample mapping in C-OWL format
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<?xml version="1.0"2
<drago-dr—config>
<domain-relations>
<domain-relation sourceOntology="http :// dept.owl™>
<local—functions>
<function
name="JavaEmailExtractor”
cls="it.unitn.drago.JavaEmailExtractor.class”
>
<params>
<param type="String”’bt
</params>
</function>
<instance-transformations
<instance-transformation
sourceConcept”http :// dept#PersonContact”
value ="function.reverseString{ param. sourcelnstancé
description="Extract email visit ww homepage”t

<linstance-transformations-
</domain-relation>
</domain-relations>
</drago-dr—config>

Figure 5.9: Extract of instance transformations specifican XML format
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/] starting DRP for source ontology

DRP drpSource = newDRP(4444);
drpSource.setOntology (" http// dept.owl”, "onto/dept.owl”);
drpSource.load (); drpSource.startDRP ();

/] starting DRP for target ontology + mapping

DRP drpTarget = newDRP(5555);
drpTarget.setOntology (" http//uni.owl”, "uni.owl”);
drpTarget.setMapping (* http// dept-uni.cowl”, "onto/deptuni.cowl”);
drpTarget.setSupportedBy ("httg/uni.owl”, "localhost:4444");
drp5555. setlnstanceTransformations ("onto/dephi.dr”);
drpTarget.load (); drpTarget.startDRP ();

/1 starting Client to access reasoning services for targebluty
DRPConnector client = new DRPConnector();
client.connect(”"localhost:5555");

/1 check local consistency of target ontology
client.isLConsistent ());

/1 check distributed consistency of target ontology
client.isDConsistent ());

/1 get all local subclasses of Article concept
client.getLSubClasses (" http//uni#Article”));
/1 get all distributed subclasses of Article concept
client.getDSubClasses (" http//uni#Article"));

/1 get all local superclasses of Employee concept
client.getLSuperClasses (" http/uni#Employee”));
/1 get all distributed superclasses of Employee concept
client.getDSuperClasses (" httg/uni#Employee™));

/1 compute local concept hierarchy (use only local axioms)
client.getLTaxonomy ());

/1 compute distributed concept hierarchy (+ propagated axdpm
client.getDTaxonomy ());

/1 retrive local instances (use only local axioms)
client.getLInstances ("http//uni#PersonContact”)

/1 retrive distributed instances (+ propagated axioms + trimmened instances)
client.getDInstances (" http// uni#PersonContact”)

client.disconnect();
// Stop reasoning peers

drpTarget.stopDRP ();
drpSource.stopDRP ();

Figure 5.10: Extract of sample java code of DRAGO API usage
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Chapter 6

Efficient Distributed Information
Retrieval based on Classification and
Content

by WOLF SIBERSKI

6.1 Introduction

In this chapter, we treat the integration of Ontology-bagadrying and classic infor-
mation retrieval methods In practical Semantic Web applications, resources such as
Web pages often have associated document metadata (restmscriptions), according

to some ontologyand some document content which is not available through reason
ing approaches. In case of text-based content, informagivieval provides proven and
reliable algorithms for identification of relevant docurtergiven user-specified search
terms. Of course, in the Semantic Web we need an approach pwloeides search capa-
bilities in a network of information sources.

Peer to peer systems are a powerful paradigm to address dotinese problems.
Not relying on central coordination federations of infotroa sources are formed dy-
namically by independent nodes. At any time new sources @anthe network and
disseminate their documents in a more timely way than thelcrg of central servers
can ascertain. File sharing applications, where mediadilesetrieved based on simple
meta-data annotations like file formats or names, have bedooneasingly popular due
to their ease of use. Also digital library collections caméfé from the advantages of
P2P infrastructures, since much of their content (like eddled images) can be annotated
by meta-data.

IpPart of this work has been presented at the InternationakBgen\Web Conference 2004 [74], the
International Conference on Data Engineering 2005 [7], twedEuropean Conference on Research and
Advanced Technology for Digital Libraries 2005 [6]
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However, flexible search based on classification and corgenthallenge in a P2P
environment. On one hand this is because queries have tcahe®d over the network
at search time, which in basic file sharing applications isallg done by flooding queries
through the complete network (or at least within a certatlius). On the other hand
almost all effective textual measures for informationiestal not only rely on statistics
about the single documents, but also integrate statistiche entire collection of all
documents, e.g. how well individual keywords discriminbtween documents with
respect to the entire collection (inverted document fregies). This so-called collection
wide information cannot be derived locally.

To improve query efficiency techniques one way are centddxas and distributed
hash tables (DHTSs)[91, 81, 1]. Besides the speed up above gaery flooding an ad-
ditional advantage is that by such a structure also cofiecivide information can be
provided for subsequent querying. A major drawback is thahsndexes use up a lot of
the available bandwidth by the necessary administrativesage exchange for upkeep,
because every change in the federated document colleetignontent changes within
some peer) has to be registered in the index. A contrastiygoivgaining query effi-
ciency are local routing indexes that avoid the overhea@o$tant index upkeep, but due
to their local nature face problems with acquiring the nsagscollection-wide informa-
tion. Besides having to be efficient, querying schemes vsl &lave to take into account
that the information in digital libraries often is pre-sttured. Libraries usually catego-
rize documents following some standardized taxonomied) that documents on similar
topics might be distinguished e.g. by rather taking an esooa or sociological point of
view, etc. This structure is also used to sometimes resohl@guities of keywords.

In this chapter we investigate the querying of federatedrmftion sources over a
peer-to-peer network. But in contrast to central indexingesees, our aim is to create
a local indexing scheme that allows effective indexing vatminimum of management
message overhead and even efficiently use collection-widennation. Moreover, we
will exploit taxonomies to structure the individual coltems and investigate how this
pre-structuring interacts with the effectiveness of owalandexing scheme and how to
deal with the trade-off between the total number of docuseneach category and our
respective index size. We have measured the necessarygedsaffic, the quality of
result sets (as opposed to the perfect results using a tieratea), and a number of other
characteristics of our novel approach. For our work, we ragsa strong cooperation
between peers, e.g. in order to ensure consistency of igndgults, score values have to
be calculated uniformly by all peers.

We motivate our approach with the example of federated neNeations. News
items can also be compound documents and are usually catgjarithin certain topics
like politics or sports. Since we want to focus on the textaaieval, we use a collection
of LA Times news articles from the TREC-5 collection for our lexgtions. By assuming
periodic changes of user interests we can also experiménte arrival or removal of
complete corpora from our federation. Since queries in puattical applications usually
form a Zipf distribution (i.e. considering the total set afegies very little queries are
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posed very often, whereas most queries are posed only orcelile), we will present
extensive experiments for such a distribution. Given oapvative results, peer-to-peer
networks are on the verge of forming efficient infrastruetufor federations of digital
libraries utilizing even collection-wide information Wwibut the communication overhead
of central indexes.

6.2 Information Retrieval in a Distributed Environment

In large document collections information retrieval teigues are mandatory for efficient
retrieval. Over centralized repositories these techriduae been investigated since the
70ies and work quite effective, e.g. using inverted file weefor subsequent retrieval
[63]. Maintaining these indexes, however, is a major pnobla distributed systems,
especially peer-to-peer networks that often share vasbetsrof documents and have a
high volatility with respect to peers joining and leaving thetwork. In contrast to static
document collections every peer joining or leaving the ekwegisters its document
collection or removes it, thus indexes have to be updatedofézn.

For local query evaluation schemes a particular probleseanvhen collection wide
information is an integral part of the query processing tége. For instance in the case
of TEXIDF [107] the term frequency may be locally evaluateddach specific document,
however, for the document frequency a snapshot of the entirent content of all active
peers needs to be evaluated. Of course this would immegliatelihilate any benefits
gained by sophisticated local querying schemes.

Consider a simple example to show how local scorings failplfection-wide infor-
mation has to be considered in the retrieval process. Assbhenease that we have just
two peers that should return their best matches with redpettte most popular infor-
mation retrieval measure TFxXIDF. This measure is a comioinatr two parts, the term
frequency (TF, measures how often a query term is contamadatertain document), and
the inverted document frequency (IDF, inverse of how oftequary term occurs in the
document collection). This measure needs to integratecah-wide information and
cannot be determined locally.

As an instance take a simple conjunctive qu@rpr the terms ’a’ and ’b’ posed to two
peersP; andP; that has to be evaluated locally at each peer. Let's asswuahgithontains
three document®,, D, and D3, and P, also contains three documenis, D5 and Dg.
For simplicity of our example let us further assume thatlftoDg, our two keyword
occur mutually exclusive in the document®);, D, and Dy contain the keyword 'a’,
whereasDs, D, and D5 contain the keyword 'b’. Moreover, assume that all docurment
are of the same length and the keywords occur in the same munmddedocuments, such
that the respective term frequency is the same for all doatsn&valuating our quer§
locally we have now to rank the documents in each peer. Shreckeywords are mutually
exclusive in our document base and the TFs are equal for eatinent, the ranking is
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only determined by the weighting factor of the occurringrten the IDF.

In peer P, we have two documents out of three containing term ’'a’, i.e.IRF of
% = 1.5, and only one document containing 'b’, i.e. an IDF il’of: 3. That means
that with respect t@) P, ranks D3 as better thaD,; and D,. SymmetricallyP, ranks
Dg higher thanD, and D5, because here 'b’ occurs in two documents and ’'a’ only in
one. Integrating the results froml and P2 we get a higher ranking adb; and Dg than
of the four other documents. In contrast, performing quergver a central collection
containing all six document®; to Dg, we find that both query terms 'a’ and 'b’ occur in
three of the six documents, i.e. have an I?E 2. Since the TF is still the same, all six

documents will be correctly assigned the same score.

As shown, collection-wide information is essential to pdayproper document scores.
But the index holding this information does not necessamlgdto be completely up-to-
date; obviously there is a trade-off between index inforamathat is 'still current enough’
given the network volatility and the accuracy of the quesutes. Research on what dis-
semination level is required in Web IR applications to alfowefficient retrieval showed
that a complete dissemination with immediate updates iallysunnecessary, even if new
documents are included into the collection [102]. Morepthez required level was found
to be dependent on the document allocation throughout ttveorie[101]: random allo-
cation calls for low dissemination, whereas higher dissation is needed if documents
are allocated based on content. Thus a lazy disseminati@aily$ias comparable effec-
tiveness as a centralized approach for general queriedf, dwily parts of the networks
containing most promising documents with similar contenet gueried, the collection-
wide information has to be disseminated and regularly wgziat

6.3 Approach

As shown in the previous section, we need collection-wid@mation at each peer to do
a correct score computation. The challenges are

* how to compute this information
» where to store it, and

* how to distribute it in the network.
The key to success is the observation that we don’t need aletampverted index to

process a query. For example, to calculate the correctsgoeersP; and P, need only
IDFs for termsa andb, but not for all terms occurring in their documents.

Storage To store this information, we use a super-peer network amproin a P2P-
network peers often vary widely in bandwidth and computiogv@r. As discussed in
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[108] exploiting these different capabilities can lead moedficient network architecture,
where a small subset of peers, called super-peers, takesmaefic responsibilities. In
our case, we assign the index management responsibilityetsuper-peers. The super-
peers form the network backbone, and each document prgwederis directly connected
to one of them.

Distribution A query consists of a category of the taxonomy which shoulgdaeched
and a conjunction of keywords that are searched in the cbotéhe documents. Before
distributing such a query, a super-peer adds the necesshegton-wide information
from its index to it. If it isn’t yet in the index, an estimatias provided.

The category in the query is used as a filter for two purposést # reduce the
number of peers (and thus documents) which must be searddeciaked. Second the
user can use the category to avoid ambiguities. If a usetesdasted in the local sport-
team called 'Jaguars’, the appropriate category will avuisl Jaguar-cars and the animal
Jaguar. The keywords which are specified in the query will belused for the documents
which are in the named category.

Computation Responding peers do not only deliver matching documents|lsoteach
add local data necessary to compute the collection-widenmdtion (for TFxIDF this is
the document frequency for each query term and the docuroent)c On the way back
to the originating super-peer, this data is aggregateds,Tthe originating super-peer gets
everything it needs to compute the complete aggregate,amsdtore the computed result
in its index.

The next subsections discuss in detail how this approacphpbeal to the digital library
network context.

6.3.1 Query Processing

Query distribution at super-peer Each super-peer maintains an IDF index containing
IDF values for the keywords. This is done separately for emtbgory, not for all doc-
uments in all categories. Thus, the key for this index istduim a category and one
keyword. As mentioned above a query contains the IDF valoietheé query-terms. The
IDFs are taken from the IDF index, or estimated if a keywordasyet in the index. In
the latter case, the average IDF is used as estimation.

Query processing at peer At each peer, first only documents in the specified category
are taken into account. The tdpedocuments are determined using the TFxIDF algo-
rithm, but based on the IDF values from the query. If this ggteugh (%) results in

the queried category, these are sent to the super-peee. iutmber of documents match-
ing the query is smaller thah, the query is relaxed, first to subcategories and then to
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the super-categories. This process is repeated until thiehaesk results or the root of
the taxonomy is reached. The entries found in all newly sestcategories are sorted
by their similarity to the originating category using thdldaving measure (from Li et
al. [65]):

; _ —al  efh—ePh
sim(cy, c2) = e - Sty

where | is the shortest path between the topics in the taxgrigea and h is the depth
level of the direct common subsumer.and 5 are parameters to optimize the similarity
measurement (best setting is usually- 0.2 andg = 0.6).

The super-peer then gets the tomf the peer or a numbet < k& of documents
matching. This query-relaxation is shown in the followirggle:

Initialize a ResultSet results;
Set searchRoot := Category from query

do
Initialize a new set searchCategories
Add searchRoot to searchCategories
while (number of results < k and searchCategories is not empt y
begin
Initialize new set allChildren
for all cat in searchCategories do
begin
/I retrieve hits matching category exact
Initialize ordered list matchingDocuments
for all doc in documents
begin
if (document-category = cat
AND document contains terms from query
AND number of matching documents < k
OR doc.score(query.terms) > matchingDocuments.getLastD oc.score))
then add document to matchingDocuments
end
results.addHits(retrieveExact(cat, query))
allChildren.add(cat.children);

end
searchCategories = allChildren; // go one level down in cate gory tree
removesearchRoot from searchCategories; //do not to trave rse subtree twice
end
searchRoot := parent of searchRoot / go one level up in categ ory tree

while(not k results AND searchRoot != nil);
trim results to k // in case we collected more than k entries

return results;

Result merging at super-peer A super-peer retrieves mak.hits from each of its peers
and combines them to the tdp-As described above it is possible that peers also send
results which are coming from another category as requeltehis case, the super-peer
first takes all hits which match the queried category. If tagults in a set smaller thant
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takes the next best-matching hits from each peer and cosbieen using the described
sorting.

IDF index update The IDF index can be updated in two ways:

1. By summing up document frequencies and document counteik from con-
nected peers and super-peers, the super-peer where tlyeogigénated computes
IDFs for each query term and updates its IDF index. If theedéfhce between com-
puted IDF and estimated IDF value exceeds a threshold, tbey aggiredistributed,
this time using the computed IDF values.

2. if a super-peer receives a query it checks, if the IDFsainatl are marked as
estimated. If this is not the case, these values are useditdeithe IDF index.

6.3.2 IDF index entry expiration

Viles and French have shown that in a large document catledDF values change
slowly [102]. In our context, this is not strictly applicahlbecause there are two kinds of
changes that may influence our collection-wide informasigmificantly:

1. New documents with similar content: new peers join the network.
Imagine a large federation of library servers which offaicés from different
newspapers. Let's assume we already have a newspaperdiRévtiTimes in the
collection. What can happen if peers join the network offg@r@nnew newspaper,
i.e. the LA Times? In this case we can be sure that the articdaally will be on
nearly similar topics except a few local news. Thus, we daeally have to update
our IDFs since the words in the articles are distributed #mesway as before.

2. New documents or new corpora: New library servers join the it or new
documents are included in existing collections, whose cigevery different from
existing articles and thus shifts IDFs and changes the digoators.

Let’'s look at an example: Assume there is an election e.grané¢e and people use
our P2P-news-network to search for news regarding thigiefec This normally
will be done using queries like ‘election France’ and resuita list of news that
contain these words. In this case there would be a lot of nentaming France,
thus ’election’ is the discriminator, and the IDFs will gius the correct results.
Now think of another election taking place in the US in paallThe term 'elec-
tion’ will no longer be the best discriminator, but the terfarance’ then gets more
important.

In these cases we have to solve the problem that entries ilDfendex become
outdated over time. We can handle both cases in the same veayt IBF value gets a
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timestamp when the term appears for the first time and théll@F¥pair is stored. After a
specific expiration period (depending on the network-vitgk the item becomes invalid
and the entry gets deleted. In this way we force IDF recomjmutaf the term occurs
again in a query. By adjusting the expiration period we caderaff accuracy against
performance. We reduce the expiration period for terms wirgumore frequently, thus
ensuring higher accuracy for more popular queries.

6.3.3 Query Routing Indexes

So far, we still distribute all queries to all peers. We canidbroadcasting by introducing
additional routing indices which are used as destinatiter§i

» For each category in our taxonomy thategory indexcontains a set of all peers
which have documents for this category. It is not relevatitigf peers did contribute
to queries in the past.

* In thequery indexfor each posed query the set of those peers which contriboted
the top# for the query are stored.

Query Distribution  The super-peer first checks if all query terms are in the I[RIexn
If this is not the case the query has to be broadcast to peDfitalggregation. We also
broadcast the query if none of the routing indexes contaiticable entries.

If an entry for query exists in the query-index, it is senttte peers in this entry only,
since no other have contributed to the topesult for the current query.

Otherwise, if the query category is in the category indeg,ghery is sent to all peers
to the corresponding category entry.

Index Update For each delivered result set, a query index entry is creatattaining
all peers and super-peers which contributed to the result.

For the category index, we need to know all peers holding ohacus of the speci-
fied category, even if they didn’t contribute to the resutt seherefore, we collect this
information as part of the result set, too, and use it to ereategory index entries.

As with the IDF index, the network volatility causes our liogtindexes to become
incorrect over time. We use the index entry expiration apphohere as well to delete
outdated entries.
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10000 100%

90%
1000 80%
70%
60%
100 50%

40%
30%

#of indexed terms
index ratio (floating avg)

20%
10%
0%

& R R

o *r

O N O O O
S S S LS
& & O & P

# of processed queries #of processed queries

Fig. 1. Index size Fig. 2. Coverage of query index
6.4 Evaluation

6.4.1 Simulation Environment

We use the TREC document collection volume 5 consisting of LrA€E articles for our
experiments. The articles are already categorized actptdithe section they appeared
in, and we use this information as base for our document ititzetfon. To simulate
a network of document providers, these articles are digthamong the peers in the
network. The simulated network consists of 2000 peers, eaoViding articles from
three categories on average (with a standard deviatiorOdf 2.

The simulation is based on the framework described in [8%e $Super-peers are
arranged in a HyperCuP topology [85]. The TFxIDF calculabased on inverse indexes
was done using the (slightly modified) search engine Jakaitane?.

We assume a Zipf-distribution for query frequencies witevglof -0.0. News articles
are popular only for a short time period, and the requesugaqgy changes correspond-
ingly. With respect to the Zipf-distribution this meanstttfae query rank decreases over
time. Query terms were selected randomly from the undeglgimcuments. In our simu-
lation, we generate 200 new most popular queries every 2080a$ which supersede the
current ones and adjust query frequencies accordinglys diift may be unrealistically
high, but serves well to analyze how our algorithm reactaitthopularity changes.

6.4.2 Results

Index size Figure 1 shows how the IDF index at each super-peer growsiover After
10000 queries it has grown to a size of 2015, only a smallibracif all terms occuring in
the document collection. A global inverted index we wouldéndad contained 148867
terms. This underlines that much effort can be saved whegnindéxing terms which are
actually appearing in queries.

2http://jakarta.apache.org/lucene/docs/index.html
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Index effectivity Both category and query index become quite effective. Afearly
2000 queries, the query index achieves a coverage of 80%urd-&y shows how each
popularity shift causes a coverage reduction from whichgihery index recovers after
about 1000 queries. This shows that a change in query pagwaer time is coped with
after a very short while.

As there are only about 120 different categories, aftertlesms 1000 queries the index
contains nearly all of them (Figure 3). We assume that neosgher specialized on some
topics change these topics only very infrequently. Theggfoeers do not shift their topics
during the simulation. Thus, the category index servesdacge the number of contacted
peers continuouosly, also after popularity shifts.

Figure 4 shows how many peers had to be contacted to computeghlt. The in-
fluence of popularity shifts on the whole outcome can alsodsn slearly. The cate-
gory index takes care that the peaks caused by popularity stuin’'t become too high.
Summarized, the combination of both indexes yields a higiiedese of contacted peers
compared to broadcasting.

Indexed Categories Contacted Peers / Query

100% 500
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3 80% S 400
2 70% =
E 60% @ _ 300
s o Pl A
£ 30% g Vw
3 20w s 100
S 10% S
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# of processed queries # of processe! d queries
Fig. 3. Coverage of category index Fig. 4. Contacted peers per query

In the experiments described here we didn't introduce dyosinegarding the peers
contents. Therefore, our algorithm yields exactly the sagselts as a complete index.
In [7] (where we didn't take categories into account), wevgltioat if 20% of the peers
contents during a simulation run, the error ratio is abob¥%3.

6.5 Related Work

Since the concepts of the highly distributed P2P networkiktha rather centralized IR
engines are hard to integrate, previous work in the areacissfog on efficient dissem-
ination of this information. There is a challenging tradetetween reduced network
traffic by lazy dissemination however leading to less effectetrieval, and a large net-
work traffic overhead by eager dissemination facilitatirgyveffective retrieval. What
is needed is "just the right” level of dissemination to mainta "suitable” retrieval ef-
fectiveness. Thus previous approaches to disseminatectiol-wide information rely
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on different techniques. We will briefly review the techregurom peer-to-peer systems,
from distributed IR and Web Search engines and compare the@urtapproach.

For peer-to-peer systems there are different approachés. PlanetP system [19]
does not use collection-wide information like e.g. the mweé document frequency of
query terms directly, but circumnavigates the problem bggia so-called inverted peer
frequency estimating for all query terms, which peers aer@sting contributors to a cer-
tain query. Summarizations of the content in the form of Blddters are used to decide
what content a peer can offer, which are eagerly dissendriateughout the network by
gossiping algorithms. Thus in terms of retrieval effeatiess this scheme describes doc-
uments on the summarization level, which is a suboptimariiisnator and by gossiping
the system’s scalability is limited. The idea of PeerSe§é&his comparable to our ap-
proach, but instead of a broadcast-topology CAN [81] is usedombination with the
vector space model (VSM) and latent semantic indexing (k&styeate an index which is
stored in CAN using the vector representations as coordindteus all collection-wide
information has to be disseminated again leading to a ladrstalability. Also summariz-
ing indexes have been used to maintain global informati@uté set of documents like
e.g. in [106]. Here so-called cell abstract indexes are {meapproximate queries. The
abstract of a set of documents is some statistics of all deatsrin the set and the ab-
stract of a peer is an abstract of the shared document seéing#n the peer. An abstract
index of a P2P system then is an organization of all abstadgigers in the system. All
peers of a system can thus be formed into an overlay networkrygoining peer will
be added to a cell that contains its abstract and subseyuprmties are routed to those
cells that contain their abstract. However, also in thisedadexes for all cells have to
be updated regularly leading to a high overhead of netwaffi¢r Moreover, peers in
the end cells will just deliver all documents to the querypeger not removing subopti-
mal objects and again causing unnecessary network traffién Aur approach, [67] use
super-peers (called "*hub™ nodes) to manage indices antyeneesults. Depending on
the cooperation capability/willingness of document pdevs (leaf” nodes), hub nodes
collect either complete or sampled term frequencies foh éeaf peer. This information
is used to select relevant peers during query distributgynusing query sampling hubs
are able to give an estimate of relevant peers, even in caseogbperative peers. As
with the other systems, indices are built in advance, thusing possibly unnecessary
management messages.

From the perspective of information retrieval the probldmdisseminating collection-
wide information first occurred when IR moved beyond certedl indexing schemes
over collections like e.g. given by TREC, and had to deal witt distributed document
collections like the WWW. Here due to the random-like disttib of content over the
WWW, research on effective retrieval in Web IR applicationsved that a complete
dissemination with immediate updates is usually unnecgssas allowing for a little
volatility [102], The required level of dissemination, hever, was found to be depen-
dent on the document allocation throughout the network Jf1dndom allocation calls
for low dissemination, whereas higher dissemination isledef documents are allocated
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based on content. In peer-to-peer networks this randoendigtribution does usually not
hold. We have argued in our news scenario, that in practmalieations peers often will
not carry a random portion of the entire document collectibmough some newspapers
like the New York Times will cover a wide area of topics, spdiced newspapers like
the Financial Times will limit the range and some publicati@an even provide corpora
that essentially differ in the topics and keywords contdirioreover, though a lazy dis-
semination in terms of effectiveness usually is compartbllee centralized approach for
general queries, our indexing scheme focuses only on pattemetworks containing
most promising documents, thus the collection-wide infation has to be disseminated
and (at least) regularly updated. Hence, classical Welzls@angines like Google crawl
the Web and individually index the sites, but then all indexinformation is transferred
over the network and managed in a vast centralized repgsorsubsequent retrieval.
Novel approaches to distribute Web search engines like Bassktop will have to deal
with the same problem of dissemination this informationcedfitly. Therefore, though
designed for peer-to-peer infrastructures, our work harebe assumed to have an inter-
esting impact on future developments in distributed Welbcteangines.

6.6 Summary

In this chapter we have discussed the important problentiofezitly querying federated
information sources using peer-to-peer infrastructuspgeially if collection-wide infor-

mation is needed. We have described a practical use-casargcéor the problem and
have presented an innovative local indexing scheme whigibReincludes collection-

wide information. Our novel indexes are not created in adgartut are maintained
qguery-driven, i.e. we do not index any information which &ver asked for. This al-
lows our algorithm to scale, even in more volatile networkgother improvement is
our introduction of a separate category index that allowprtme large portions of the
network and thus also enhances scalability.

In the next step, we plan to extend the simple classificatieimie to a description
logic based annotation scheme. This will allow more comptastraints on the metadata
part of a query, and thus result in improved query expressivi
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Chapter 7

Conclusion

This deliverable reports on new methods for achieving &délg as proposed by work

package 2.1, especially on how to do practical approximatand distributed reasoning
for ontologies. In the beginning, the focus is, as in the fiession of this deliverable, on

approximation methods and their applications and restikxjperiments. In the end we
concentrate on distributed reasoning methods and the waprents that they offer.

In the beginning of this deliverable, two major solutiongevgiven to the well known
problem of Description Logic reasoners that don’'t seemactrevell for A-Box reasoning
when the number of instances of an ontology becomes largeZhapter 2 we gave an
overview over such two approximation methods and desciiosdthey can be applied
to the problem of instance retrieval. We also presenteddhbelts of experiments done
with these methods applied to the above stated problemg @&me Ontology. The ex-
periments focus on the problem of whether the approximatiethods can lead to any
reductions in complexity and if the costs for doing this atiwy or not. These exper-
iments and evaluations against benchmarking sets wereatghicted with the purpose
of improving the instance retrieval methods from the pointiew of scalability of such
ontologies with a large number of instances.

In Chapter 3, we described the new SCREECH system for approxdnBiex rea-
soning, which is based on a language weakening transfamatiOWL DL into Datalog.
The method has polynomial time complexity and is completeumsound with respect
to OWL DL semantics. A performance evaluation showed, howebat SCREECH
achieves improvements in run-time while delivering onlpwew wrong answers.

Starting from the observation that users don’t manage toesstully formulate their
own queries over extensive amounts of data, in Chapter 4 warided how we devel-
oped a specialized rule language which implements queryitnegvof RDF rules in or-
der to provide personalized information access to distetbuesources (on the semantic
web). This approach was created as a personalized seavetesafra personal learning
assistant, which combines user preferences and user querylation dialogue. By im-
plementing query relaxation and query refinement, the egipdin in this framework has
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also been tested on two metadata sets. It proved how RDF guaebe reformulated in
order to give good answers, even if the user didn’t managertoulate them accurately.

The architecture of DRAGO, clearly based on a peer-to-pegctstre and distributed
knowledge management systems, showed in Chapter 5 howgestatnieval and distrib-
uted reasoning can be accomplished. It makes use of thébdistl contextual reasoning
and querying paradigm, which is based among others on semmappings and local
reasoning. This is a very clear example about how we can bémefi the advantages of

distributed reasoning and querying algorithms over ([p@@/L ontologies, interrelated
by semantic links.

The last contribution in this deliverable described thebpem of efficiently querying
distributed sources using peer-to-peer structures, &glyeit collection-wide informa-
tion is needed. Experiments have been done on a TREC documiétdtion volume
consisting of LA Times articles categorized according t® $skctions they appeared in.
They proved that the proposed algorithm scales, even in wadadile networks. Another
important improvement is the fact that by adding a separatiegory index, it allows to
cut back on large portions of the network, thus enhancintabidy even more.

Besides the value of the deliverable itself, several sahstio the scalability problem
have been presented, specifically in the area of approxiaradedistributed reasoning
for ontologies. Without doubt, we must mention here thaséheesults emerged from
fruitful cooperation between different partners, leadingery good ideas. The theoret-
ical solutions were also followed by implementations arardligh test cases to support
their novelty and contributions, outlining the effectiveoplem present in the semantic

web, that of continuously expanding ontologies and dat seid the need for improved
solutions.
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Related deliverables

A number of Knowledge web deliverable are clearly relatethi® one:

tion” contains experiments of InstanceStore

Project| Number | Title and relationship

KW | D2.1.1 | D2.1.1 Survey of Scalability Techniques for Reasoning with
Ontologiesgives an overview of methods for approximating the
reasoning.

KW | D2.1.2 | D2.1.2 Methods for Approximate Reasoningcontains earlief
reports about investigated approximation methods

KW | D2.1.3.1| D2.1.3.1 Report on Modularization of Ontologiescontains ear-
lier reports about approaches for distributed reasoning

KW | D2.5.2 | D2.5.2 “Report on Query Language Design and Standardisa
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