
D2.1.2.2.v1 Report on realizing
practical approximate and

distributed reasoning for ontologies

Stefania Ghita-Costache (Research Center L3S)
Peter Dolog (Research Center L3S)

Pascal Hitzler (Universität Karlsruhe)
Luciano Serafini (Centro per la ricerca scientifica e tecnologica)

Wolf Siberski (Research Center L3S)
Heiner Stuckenschmidt (Vrije Universiteit Amsterdam)

Andrei Tamilin (Centro per la ricerca scientifica e tecnologica and University of Trento)
Denny Vrandecic (Universität Karlsruhe)

Holger Wache (Vrije Universiteit Amsterdam)

Abstract.
EU-IST Network of Excellence (NoE) IST-2004-507482 KWEB
Deliverable D2.1.2.2.v1 (WP2.1)
This document reports on practical applications of approximate reasoning, mainly based on A-
Box techniques or cooperative query processing. It also shows examples and implementations of
distributed reasoning systems for ontologies, as distributed instance retrieval or a mix of ontology
querying and information retrieval methods.
Keyword list: approximation, reasoning, distribution, scalability

Copyright © 2006 The contributors

Document Identifier KWEB/2005/D2.1.2.2.v1/1.0
Project KWEB EU-IST-2004-507482
Version v1/1.0
Date Jan 30, 2006
State final
Distribution public



Knowledge Web Consortium

This document is part of a research project funded by the IST Programme of the Commission of the European Com-
munities as project number IST-2004-507482.

University of Innsbruck (UIBK) - Coordinator
Institute of Computer Science
Technikerstrasse 13
A-6020 Innsbruck
Austria
Contact person: Dieter Fensel
E-mail address: dieter.fensel@uibk.ac.at

École Polytechnique F́edérale de Lausanne (EPFL)
Computer Science Department
Swiss Federal Institute of Technology
IN (Ecublens), CH-1015 Lausanne
Switzerland
Contact person: Boi Faltings
E-mail address: boi.faltings@epfl.ch

France Telecom (FT)
4 Rue du Clos Courtel
35512 Cesson Śevigńe
France. PO Box 91226
Contact person : Alain Leger
E-mail address: alain.leger@rd.francetelecom.com

Freie Universität Berlin (FU Berlin)
Takustrasse 9
14195 Berlin
Germany
Contact person: Robert Tolksdorf
E-mail address: tolk@inf.fu-berlin.de

Free University of Bozen-Bolzano (FUB)
Piazza Domenicani 3
39100 Bolzano
Italy
Contact person: Enrico Franconi
E-mail address: franconi@inf.unibz.it

Institut National de Recherche en
Informatique et en Automatique (INRIA)
ZIRST - 655 avenue de l’Europe -
Montbonnot Saint Martin
38334 Saint-Ismier
France
Contact person: Jérôme Euzenat
E-mail address: Jerome.Euzenat@inrialpes.fr

Centre for Research and Technology Hellas /
Informatics and Telematics Institute (ITI-CERTH)
1st km Thermi - Panorama road
57001 Thermi-Thessaloniki
Greece. Po Box 361
Contact person: Michael G. Strintzis
E-mail address: strintzi@iti.gr

Learning Lab Lower Saxony (L3S)
Expo Plaza 1
30539 Hannover
Germany
Contact person: Wolfgang Nejdl
E-mail address: nejdl@learninglab.de

National University of Ireland Galway (NUIG)
National University of Ireland
Science and Technology Building
University Road
Galway
Ireland
Contact person: Christoph Bussler
E-mail address: chris.bussler@deri.ie

The Open University (OU)
Knowledge Media Institute
The Open University
Milton Keynes, MK7 6AA
United Kingdom
Contact person: Enrico Motta
E-mail address: e.motta@open.ac.uk



Universidad Politécnica de Madrid (UPM)
Campus de Montegancedo sn
28660 Boadilla del Monte
Spain
Contact person: Asunción Gómez Ṕerez
E-mail address: asun@fi.upm.es

University of Karlsruhe (UKARL)
Institut für Angewandte Informatik und Formale
Beschreibungsverfahren - AIFB
Universiẗat Karlsruhe
D-76128 Karlsruhe
Germany
Contact person: Rudi Studer
E-mail address: studer@aifb.uni-karlsruhe.de

University of Liverpool (UniLiv)
Chadwick Building, Peach Street
L697ZF Liverpool
United Kingdom
Contact person: Michael Wooldridge
E-mail address: M.J.Wooldridge@csc.liv.ac.uk

University of Manchester (UoM)
Room 2.32. Kilburn Building, Department of Computer
Science, University of Manchester, Oxford Road
Manchester, M13 9PL
United Kingdom
Contact person: Carole Goble
E-mail address: carole@cs.man.ac.uk

University of Sheffield (USFD)
Regent Court, 211 Portobello street
S14DP Sheffield
United Kingdom
Contact person: Hamish Cunningham
E-mail address: hamish@dcs.shef.ac.uk

University of Trento (UniTn)
Via Sommarive 14
38050 Trento
Italy
Contact person: Fausto Giunchiglia
E-mail address: fausto@dit.unitn.it

Vrije Universiteit Amsterdam (VUA)
De Boelelaan 1081a
1081HV. Amsterdam
The Netherlands
Contact person: Frank van Harmelen
E-mail address: Frank.van.Harmelen@cs.vu.nl

Vrije Universiteit Brussel (VUB)
Pleinlaan 2, Building G10
1050 Brussels
Belgium
Contact person: Robert Meersman
E-mail address: robert.meersman@vub.ac.be



Work package participants

The following partners have taken an active part in the work leading to the elaboration of this
document, even if they might not have directly contributed to writing parts of this document:

Centre for Research and Technology Hellas
École Polytechnique F́ed́erale de Lausanne
France Telecom
Free University of Bozen-Bolzano
Freie Universiẗat Berlin
Institut National de Recherche en Informatique et en Automatique
Learning Lab Lower Saxony
National University of Ireland Galway
The Open University
Universidad Polit́ecnica de Madrid
University of Innsbruck
University of Karlsruhe
University of Liverpool
University of Manchester
University of Sheffield
University of Trento
Vrije Universiteit Amsterdam
Vrije Universiteit Brussel



Changes

Version Date Author Changes

0.1 2005-10-12 Wolf Siberski creation
0.2 2005-10-31 Pascal Hitzler input chapter 3
0.3 2005-12-01 Stefania

Ghita-
Costache

integrated chapter 2, 4, 5

1.0 2005-12-09 Stefania
Ghita-
Costache

including the comments from Pascal Hit-
zler

1.1 2006-01-13 Stefania
Ghita-
Costache

including the comments from WPL Hol-
ger Wache

1.2 2006-01-29 Stefania
Ghita-
Costache

including the comments from QA Fausto
Giunchiglia





Executive Summary

Solving the problem of scalability in ontologies is a must, since we are dealing with many
novel applications that produce even larger ontologies anddata sets. This deliverable con-
tinues the work of deliverable 2.1.2, in which we deal only with methods for approximate
reasoning. This version not only focuses on practical applications for deploying such al-
gorithms, but also handles the problem of distributed reasoning in ontologies and their
further progresses.

In the beginning of this deliverable we concentrate upon various approximate rea-
soning methods proposed by our partners, as approximation techniques in instance re-
trieval, which make A-Box reasoning in Description Logics more scalable. We present
SCREECH, a system which implements the same type of technique, but for OWL DL
ontologies and a system applied in e-learning for making robust query processing over
RDF heterogeneous data in order to provide personalized information access.

In the end we change the focus upon distributed reasoning in instance retrieval, as in
large distributed environments, the process of introducing or removing new resources is
always a problem, and therefore the scalability issue is ubiquitous. We introduce DRAGO
and its applications in the Semantic Web, and an informationretrieval system spread over
a federated structure, able to give very good, easily scalable results.





Contents

1 Introduction 1

2 Scalable Instance Retrieval by Approximation 3
2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Instance Retrieval Queries . . . . . . . . . . . . . . . . . . . . . . . . .4

2.2.1 Conjunctive Queries . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.2 Instance Store . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Approximation Techniques for Instance Retrieval . . . . . .. . . . . . . 6
2.3.1 Approximating Description Logic Satisfiability . . . .. . . . . . 7
2.3.2 Approximating Conjunctive Queries . . . . . . . . . . . . . . . .8

2.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . .10
2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 SCREECH – Faster OWL using split programs 15
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Non-Classical Reasoning — Common Grounds . . . . . . . . . . . . . . 16
3.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.1 OWL DL Syntax and Semantics . . . . . . . . . . . . . . . . . . 18
3.3.2 Datalog and SLD-Resolution . . . . . . . . . . . . . . . . . . . . 19

3.4 Reducing OWL DL Knowledge Bases to Disjunctive Datalog Programs . 20
3.5 Approximate Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5.1 Approximate SLD-Resolution . . . . . . . . . . . . . . . . . . . 22
3.5.2 Approximate Resolution for OWL DL . . . . . . . . . . . . . . . 24

3.6 SCREECHOWL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.7 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.8 Experiments and Evaluation . . . . . . . . . . . . . . . . . . . . . . . .26
3.9 Conclusions and Further Work . . . . . . . . . . . . . . . . . . . . . . . 28

4 Robust Query Processing for Personalized Information Access 31
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.1 Query Refinement and Relaxation . . . . . . . . . . . . . . . . . 32
4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

v



Realizing practical approximate and distributed reasoning IST Project IST-2004-507482

4.2.1 Personalization by Query Refinement . . . . . . . . . . . . . . . 33
4.2.2 Problems with Refinement . . . . . . . . . . . . . . . . . . . . . 34

4.3 Rewriting RDF Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4 Domain-Dependent Relaxation for Personalized Access . .. . . . . . . . 39

4.4.1 Environment and Preferences . . . . . . . . . . . . . . . . . . . 41
4.4.2 Domain Knowledge and Relaxation . . . . . . . . . . . . . . . . 43
4.4.3 User Preferences and Relaxation . . . . . . . . . . . . . . . . . . 46
4.4.4 Conditions for User-constrained Relaxation. . . . . . . . .. . . . 46
4.4.5 Ordering different rewriting rules . . . . . . . . . . . . . . .. . 47

4.5 Implementation Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.7 Conclusions and Further Work . . . . . . . . . . . . . . . . . . . . . . . 52

5 DRAGO - Scalable Distributed Reasoning and Applications 53
5.1 Motivation and Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2 Distributed Description Logics Framework . . . . . . . . . . .. . . . . . 56

5.2.1 Syntax and Semantics of DDLs . . . . . . . . . . . . . . . . . . 56
5.2.2 Properties of DDLs . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3 Distributed Reasoning in DDLs . . . . . . . . . . . . . . . . . . . . . . .59
5.3.1 Subsumption Propagation Mechanism . . . . . . . . . . . . . . .59
5.3.2 Distributed Tableaux Algorithm for DDLs . . . . . . . . . . .. . 61

5.4 Distributed Query Answering in DDLs . . . . . . . . . . . . . . . . .. . 63
5.4.1 Assertional Propagation Mechanism . . . . . . . . . . . . . . .. 63
5.4.2 Distributed Instance Retrieval in DDLs . . . . . . . . . . . . .. 65

5.5 DRAGO Peer-To-Peer Reasoning Platform . . . . . . . . . . . . . . . .67
5.5.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.5.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.5.3 Working example . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.6.1 Modular Ontology Reasoning and Querying . . . . . . . . . . . .72
5.6.2 Reasoning about Mappings . . . . . . . . . . . . . . . . . . . . . 72
5.6.3 Semantic Mappings Verification . . . . . . . . . . . . . . . . . . 72
5.6.4 Ontology Development Assistance . . . . . . . . . . . . . . . . .73

5.7 Conclusions and Future Directions . . . . . . . . . . . . . . . . . . .. . 73

6 Efficient Distributed IR based on Classification and Content 77
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.2 Information Retrieval in a Distributed Environment . . . .. . . . . . . . 79
6.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.3.1 Query Processing . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.3.2 IDF index entry expiration . . . . . . . . . . . . . . . . . . . . . 83
6.3.3 Query Routing Indexes . . . . . . . . . . . . . . . . . . . . . . . 84

6.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

vi Jan 30, 2006 KWEB/2005/D2.1.2.2.v1/1.0



CONTENTS

6.4.1 Simulation Environment . . . . . . . . . . . . . . . . . . . . . . 85
6.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7 Conclusion 89

KWEB/2005/D2.1.2.2.v1/1.0 Jan 30, 2006 vii





Chapter 1

Introduction

by STEFANIA GHITA-COSTACHE & HOLGER WACHE

The main goal in the KnowledgeWeb work package 2.1 is to deliver viable solutions
for the scalability problem in the Semantic Web, that is how to meet the growth require-
ments for computing solutions, without affecting their performance, emphasizing the fact
that scalability needs robust and high-performance reasoning. One of the identified, more
general solutions for this, rely on modularization, approximation and distribution of rea-
soning methods. In this deliverable we will focus on the lasttwo solutions, concentrating
more on practical implementations of them.

As already introduced in deliverable D2.1.2, approximation techniques can be distin-
guished in approaches which

• weaken the language,

• compile the knowledge,

• approximate the deduction, or

• combination of them.

In this deliverable we consider approximation approaches which compile the knowl-
edge and/or approximate the deduction. Furthermore these investigated approximation
approaches are restricted to the use cases of instance retrieval, i.e. A-Box reasoning in
terms of DL reasoning, as it doesn’t scale up well when the number of instances increases
significantly. It is obvious that this use case we dominate the practical use of the Semantic
Web in future.

The first contribution is in comparing the performance of twoapproximate reason-
ing methods, using Instance Store [56], developed to scale-up instance retrieval for such
ontologies with a large number of instances, and Gene Ontology as benchmark data set.
It continues the approximation effort already reported in D2.1.2. The second approach

1



Realizing practical approximate and distributed reasoning IST Project IST-2004-507482

also covers approximate A-Box reasoning for OWL DL ontologies, but using a differ-
ent technique. The approximation method is based on the factthat reasoning with Horn
logic is more efficient than reasoning with non-Horn knowledge bases. The idea is thus
to use language compilation for transforming OWL DL ontologies into Disjunctive Horn
clauses, or more precisely, into approximated Datalog rules. The compilation is mainly
done by powerful KAON2 transformation algorithm; the additional part is performed by
the SCREECH system which implements the approximation approach. SCREECH can
report impressing performance results.

Instead of improving the performance we also focus on robustreasoning. In particular
our approach investigates RDF query formulating, as basis for queries used on a large
scale and as a necessity in order to provide high system scalability. By combining the
two basic methods for cooperative query processing, query refinement and query relax-
ation, an implementation of a framework is proposed for information access, in order to
provide robust, personalized access to heterogeneous RDF data, in the context of widely
used querying over RDF data, but without the ability of users to formulate meaningful
queries. The implementation mainly deals with conditionalrewriting of rules for RDF
query patterns and its application is discussed in the context of an e-learning system. The
rewriting of queries is based on Event-Condition-Action [80] rules, in order to solve the
problem of over-constraint queries.

This deliverable also concentrates upon providing solutions to the scalability problem
in distributed environments, i.e. distributed ontologies, distributed resources of informa-
tion. The first approach tries to reason about distributed ontologies: DRAGO is a dis-
tributed reasoning platform for distributed ontologies which are interrelated by semantic
links. The theory is described behind performing distributed reasoning and simple dis-
tributed instance retrieval in Distributed Description Logics, the architecture and imple-
mentation of DRAGO and also some applications of the proposedmodel for the semantic
web. DRAGO proves itself to perform well for the instance retrieval problem, making use
of different semantic mappings and reasoning on top of them.

The second approach broaden the view on distributed reasoning. It continues along
the distributed resources paradigm, especially into a peer-to-peer network, by combining
ontology-based querying and classic information retrieval methods in such an environ-
ment. The main idea is creating a local indexing scheme that actually indexes resources,
diminishes the message overhead in the network and makes useof the collection-wide
information efficiently. Additionally, this method allowseasy dissemination of newly in-
troduced information resources among the participating peers. Also, the introduction of
the idea of a separate category index allows the reduction oflarge portions of the network
without affecting quality, and therefore enhancing even more scalability.

2 Jan 30, 2006 KWEB/2005/D2.1.2.2.v1/1.0



Chapter 2

Scalable Instance Retrieval by
Approximation

by HOLGER WACHE, PERRY GROOT & HEINER STUCKENSCHMIDT

2.1 Motivation

A central issue in the Semantic Web research community is theexpressivity of its under-
lying language and the complexity of the reasoning servicesit supports. There is a direct
correspondence between the current Semantic Web ontology language OWL and Descrip-
tion Logic (DL).1 Research in DL has lead to sophisticated DL reasoners [48, 41,43] that
can be used to reason with OWL ontologies on the Semantic Web. Considering T-Box
reasoning, current state of the art techniques seem capableof dealing with real world on-
tologies [49, 42]. However, besides T-Box reasoning, an important application domain of
ontologies is A-Box reasoning, i.e., reasoning and retrieving the individuals in an ontol-
ogy. Experiments have shown that state of the art DL reasoners break down for A-Box
reasoning when the number of instances becomes large [56]. Present work focuses at ap-
proximation techniques to make A-Box reasoning in DLs more scalable when retrieving
instances from an ontology with a large number of instances.Approximation is a general
technique that has been proven useful in many areas. The Semantic Web is no different,
it is a typical application domain that can benefit from an approximate form of reasoning,
which can deal with time pressure as well as other limited resources and is scalable to the
vast amount of available information. These conditions hold in particular when instances
need to be retrieved from an ontology.

Here we investigate optimization techniques that are basedon approximate logical
reasoning. The underlying idea of these techniques is to replace certain inference prob-
lems by simpler problems such that either the soundness or the completeness, but not

1More precisely two of the three species of OWL.

3



Realizing practical approximate and distributed reasoning IST Project IST-2004-507482

both, of the solutions is preserved. The solutions to the simpler problems are approximate
solutions to the original problem.

The contribution of this work is in comparing the performance of two approximate
reasoning methods proposed in the literature applied to thereal world task of answering
conjunctive queries over DL Knowledge Bases. For this, we used the Instance Store [56],
a state of the art system developed to scale-up instance retrieval for ontologies with a
large number of instances, and extended it with two approximation techniques. The Gene
Ontology is used as benchmark data set to evaluate the performance of the approximation
techniques.

The chapter is organized as follows. Section 2.2 defines the problem of instance re-
trieval in the context of Description Logics, which is restricted to conjunctive queries.
Section 2.3 gives a brief overview of two approximation methods and describes how they
can be applied to the problem of instance retrieval. Section2.4 gives the results of exper-
iments with the two approximation methods applied to instance retrieval using the Gene
Ontology. Section 2.6 concludes our work.

2.2 Instance Retrieval Queries

In this article we focus on the following instance retrievalproblem:

Definition 1 (Instance retrieval w.r.t. some query) Given an A-BoxA and a queryQ,
i.e., a concept expression, find all individualsa such thata is an instance ofQ, i.e.,
{a | ∀a ∈ A, a : Q}.

Often, an analogy is made between databases (DBs) and DL KBs. The schema of a
DB corresponds to the T-Box and the DB instances correspond tothe A-Box. However,
A-Boxes have a very different semantics. This makes query answering in a DL setting
often much more complex than query answering in a DB. Given theexpressivity of DLs,
retrieving instances to a query cannot simply be reduced to model checking as in the data-
base framework because there is no single minimal model for aquery. Knowledge Bases
may contain nondeterminism and/or incompleteness. Therefore, deductive reasoning is
needed when answering a query in a DL setting.

2.2.1 Conjunctive Queries

A-Box query languages have been quite weak for earlier DL systems. Usually they sup-
ported very simple A-Box queries like instantiation (is individual i an instance of concept
C, i.e., i : C), realisation (what are the most specific conceptsi is an instance of), and
retrieval (which individuals are instances of conceptC).

4 Jan 30, 2006 KWEB/2005/D2.1.2.2.v1/1.0



2. SCALABLE INSTANCE RETRIEVAL BY APPROXIMATION

In [55] an approach for answering conjunctive queries over arbitrary DL KBs is given
based on the translation of the query into an equivalent concept expression, i.e., byrolling
up the query.

Definition 2 (Boolean Conjunctive Query) A Boolean conjunctive queryQ is of the
form q1 ∧ · · · ∧ qn, whereq1, . . . , qn are query terms of the formx : C or 〈x, y〉 : R,
whereC is a concept,R is a role, andx, y are either individual names or variables.

The approach makes use of the fact that binary relations in a conjunctive query can
be translated into an existential restriction such that logical consequence is preserved.
Standard DL inference methods can then be used to classify the concept expression the
query is translated into as well as retrieve the instances that belong to it. The method of
[55] enables us to use an expressive query language for arbitrary expressive DL KBs.

Because binary relations in a conjunctive query can be translated into an existential
restriction such that logical consequence is preserved, standard DL inference methods
can then be used to classify the concept expression the queryis translated into as well as
retrieve the instances that belong to it. [55] enables us to use an expressive query language
for arbitrary expressive DL KBs.

2.2.2 Instance Store

DL reasoning is hard, especially in the case of instance retrieval when the number of
instances grows very large. To speed up the overall cost of instance retrieval, one can
address the number and cost of checking whether a single instance belongs to a query.

Instance Store [56] is developed to speed up instance retrieval by replacing costly
instantiation checksa : Q with database retrieval. However, Instance Store can not re-
place all DL reasoning steps using database retrieval. In some situations DL instantiation
checks must still be performed. An analysis of the Instance Store revealed a drastic break-
down in performance in these situations, which hampers its goal to scale-up reasoning to
ontologies with a large number of instances. At the moment Instance Store only supports
role-free A-Boxes, i.e., relationships between instances in the A-Box are not allowed, but
this was sufficient for our purpose.

Checking each individual in an A-Box if it instantiate a conjunctive queryQ is in-
efficient especially for large A-Boxes. A technique that has been developed to scale DL
reasoners for role-free A-Boxes with a large number of instances is the Instance Store (IS)
[56]. The IS combines DL reasoning with Database retrieval to speedup the process of
instance retrieval.

To describe the IS algorithm we use the following notation. For a T-BoxT , an A-Box
A, a conceptC, and a queryQ:

KWEB/2005/D2.1.2.2.v1/1.0 Jan 30, 2006 5



Realizing practical approximate and distributed reasoning IST Project IST-2004-507482

- C ↓T stands for the set of atomic concepts inT subsumed byC (i.e., equivalents
and descendants ofC ). The set of individuals inA that realisesomeconcept in
Q ↓T is denoted byI1. Any individual inI1 is an answer toQ.

- ⌈C⌉T stands for the set of most specific concepts inT subsumingC. The set of
individuals inA that realiseeveryconcept in⌈Q⌉T is denoted byI2. The individuals
in I2 must be checked for instanciation ofQ constitutingI3.

Please note, that [56] showed that theI1 andI3 contains all answers toQ. Using this
notation, IS can be described as a 7 step process:

1. use the DL reasoner to computeQ ↓T ;
2. use the database to find the set of individualsI1;
3. use the reasoner to check whetherQ is equivalent to any atomic concept inT ; if

that is the case then simply returnI1 and terminate;
4. otherwise, use the reasoner to compute⌈Q⌉T ;
5. use the database to computeI2;
6. use the reasoner and the database to computeI3, the set of individualsx ∈ I2 such

thatx : C is an axiom inA andC is subsumed byQ;
7. returnI1 ∪ I3 and terminate.

Step 1 an 2 computeI1. Step 3 and 4 are optimisations which avoid unnecessary compu-
tation ofI2 resp.I3. Step 5 and 6 computesI2 andI3.

2.3 Approximation Techniques for Instance Retrieval

There are three components of the instance retrieval problem where approximation meth-
ods can be applied:

The Query. The query can be made weaker, i.e., more general, by omittingor replacing
parts of the query. The underlying assumption is that simpler queries are easier to
check.

The Ontology. We assume that the query is formulated relative to a given ontology. Con-
cept expressions in the ontology (representing for examplean instantiation check)
can be approximated by weaker or stronger concept expressions.

The Instance Descriptions.In order to check whether instances belong to the query,
first the descriptions of instances are translated into equivalent concept expres-
sions. Consequently, those concept expressions can be approximated by weaker
or stronger concept expressions.

6 Jan 30, 2006 KWEB/2005/D2.1.2.2.v1/1.0



2. SCALABLE INSTANCE RETRIEVAL BY APPROXIMATION

Conjunctive Query
q1 ∧ · · · ∧ qn

Concept
Expression Q

Instance I
Concept

Expression I ′

I ′
⊑ Q

?>=<89:;1 ?>=<89:;2

?>=<89:;3 ?>=<89:;4

?>=<89:;5

Roll up
//

//

��?
??

??

??�����

Figure 2.1: Various components

This section reviews the techniques of [84] and [93] that canbe used to approximate
instance retrieval in DL. Figure 2.1 gives an overview of thevarious components used
in instance retrieval. The method of [84] was proposed to approximate satisfiability of
concept expressions (usable in step 5 of Figure 2.1).2 The method of [93] can be used to
approximate conjunctive queries, or its concept expression counterpart (usable in steps 1
and 2 of Figure 2.1).

Both methods propose to approximate an instantiation test using a sequence of tests
C1, . . . , Cn. Assuming that less complex tests can be answered in less time, instance
checking can then be speeded up. However, both methods differ in their strategy for
selecting the sequence of expressionsCi to be checked successively. In general, [93]
argues that the order should balance two factors:

1. Thesmoothnessof the approximation. In particular, the next testCi+1 should lead
to the next best approximation.

2. The potential contribution of the extension ofCi+1 to the time complexityof the
tests to be done by the system.

2.3.1 Approximating Description Logic Satisfiability

In DLs, satisfiability checking can be seen as the most basic task as many reasoning ser-
vices can be restated into satisfiability checks [4]. In [84]a technique has been developed
to approximate satisfiability checks. Concept expressions are approximated by two se-
quencesC1, . . . , Cn of simpler concept expressions, obtained by syntactic manipulations,
which can be used to determine the satisfiability of the original concept expression.

For every subconceptD, [84] defines thedepthof D to be ‘the number of universal
quantifiers occurring inC and havingD in its scope’. The scope of∀R.φ is φ which
can be any concept term containingD. A sequence of weaker (stronger) approximated
concepts can be defined, denoted byC⊤

i (C⊥
i ), by replacing everyexistentially quantified

2[84] should also be usable in steps 2 and 4, although not proposed originally.

KWEB/2005/D2.1.2.2.v1/1.0 Jan 30, 2006 7



Realizing practical approximate and distributed reasoning IST Project IST-2004-507482

subconcept, i.e.,∃R.φ whereφ is any concept term, of depth greater or equal thani by
⊤ (⊥). Concept expressions are assumed to be in negated normal form (NNF) before
approximating them.

Theorem 1 ([84]) For eachi, if C⊤
i is unsatisfiable thenC⊤

j is unsatisfiable for allj ≥ i,
henceC is unsatisfiable. For eachi, if C⊥

i is satisfiable thenC⊥
j is satisfiable for all

j ≥ i, henceC is satisfiable.

The sequencesC⊤ andC⊥ can be used to gradually approximate the satisfiability
of a concept expression. [84] only replaces subconceptsD ≡ ∃R.C as the worst case
complexity depends on the nesting of existential and universal quantifiers. Theorem 1
leads to the following forC⊥-approximation:

(I ⊑ Q)⊥i is not satisfiable ⇔ (I ⊓ ¬Q)⊥i is satisfiable ⇒
(I ⊓ ¬Q) is satisfiable ⇔ (I ⊑ Q) is not satisfiable

Therefore, we are only able to reduce complexity when approximated subsumption tests
are not satisfiable. When an approximated subsumption test(I ⊑ Q)⊥i is satisfiable,
nothing can be concluded and the approximation continues tolevel i + 1 until no more
approximation is applicable, i.e., the original concept term is obtained. Analogously,
from Theorem 1 one obtains that when(I ⊑ Q)⊤i is satisfiable this implies that(I ⊑
Q) is satisfiable. When(I ⊑ Q)⊤i is not satisfiable nothing can be deduced and the
approximation continues to leveli + 1.

Research on this kind of DL approximation is quite limited. [84] is the only method
that deals with approximation of satisfiability in DLs. Few results have only been obtained
recently [38].

2.3.2 Approximating Conjunctive Queries

In [93] a method is introduced for approximating conjunctive queries. The method com-
putes a sequenceQ1, . . . , Qn of queries such that: (1)i < j ⇒ Qi ⊒ Qj and (2)Qn ≡ Q.
The first property ensures that the quality of the results of the queries doesn’t decrease.
The second property ensures that the last query computed returns the desired exact result.

The proposed method can easily be adapted for instantiationchecks. The computed
sequenceQ1, . . . , Qn is used to generate the sequenceC∆

1 , . . . , C∆
n with C∆

i = a : Qi.
Assuming that less complex queries can be answered in less time, instantiation checks
can then be speeded up using the following implication:

(I 6⊑ Q′) ∧ (Q ⊑ Q′)⇒ I 6⊑ Q

In [93] the sequence of subsuming queriesQ1, . . . , Qn is constructed by stepwise
adding a conjunct (of the original query) starting with the universal query.

8 Jan 30, 2006 KWEB/2005/D2.1.2.2.v1/1.0



2. SCALABLE INSTANCE RETRIEVAL BY APPROXIMATION

A problem that remains to be solved in this approach is a strategy for selecting the
sequence of queries to be checked successively. This problem boils down to ordering
the conjuncts of the query which should balance the two factors ‘smoothness’ and ‘time
complexity’.

As described in [93] the smoothness of the approximation canbe guaranteed by ana-
lyzing the dependencies between variables in the query. After translating the conjunctive
query to a DL expression, these dependencies are reflected inthe nesting of subexpres-
sions. As the removal of conjuncts from a concept expressionis equivalent to substitution
by⊤, this nesting provides us with a selection strategy to determine a sequence of approx-
imationsSi where all subexpressions at depth greater or equal thani are replaced by⊤.
Hence, this method is somewhat similar toC⊤-approximation except that it is restricted to
the conjunctive query, i.e., the instance description is not approximated, and it can replace
any conjunct in the query with⊤, not only existentially quantified conjucts.

Typically, however, queries often have a very flat structure. For example, all queries
used in our experiments with the Gene Ontology are of depth one. This means thatS0 is
the query⊤ whereasS1 is already the original query. To avoid this bad approximation
scheme, next we propose an improved strategy.

An Improved Approximation Strategy

To overcome the flatness of queries typically found in ontologies, we propose a strategy
that also provides an order for subexpressions at the same level of depth. A possible
ordering is the expected time contribution of a conjunct to the costs of the subsumption
test. As measuring the actual time is practically infeasible, a heuristic is proposed.

For this purpose, we unfold the conjuncts using the definitions of the concepts from the
ontology occurring in the conjunct. In order to determine a suitable measure of complex-
ity for expressions, we consider the standard proof procedure for DLs. Most existing DL
reasoners are based on tableau methods, which determine thesatisfiability of a concept
expression by constructing a constraint system based on thestructure of the expression.
As the costs of checking the satisfiability of an expression depends on the size of the
constraint system, we can use this size as a measure of complexity. As determining the
exact size of the constraint system requires to run the tableau method, heuristics are used
for estimating the size. Based on this estimated size, we determine the order in which
conjuncts at the same level of depths are considered.

In the following, we propose a method for estimating the sizeof the tableau for ex-
pressions inALC that will be used in the experiments. The tableau rules [4] provide us
with quite a good idea about an estimation of the maximal sizeof the tableau in the worst
case. For this purpose, we define a functionΦ that assigns a natural number representing
the estimated size of the corresponding constraint system to an arbitraryALC expression

KWEB/2005/D2.1.2.2.v1/1.0 Jan 30, 2006 9



Realizing practical approximate and distributed reasoning IST Project IST-2004-507482

in the following way:

Φ(A) = 1

Φ(¬A) = 0

Φ(C ⊓D) = 2 + Φ(C) + Φ(D)

Φ(C ⊔D) = φ + 2 + Φ(C) + Φ(D) whereφ is the current value ofΦ(E)

Φ(∃ R.C) = 2 + Φ(C)

Φ(∀ R.C) = n + n · Φ(C) wheren is the number of existential quantifiers inE

A and¬A: Atomic concepts are added as a single constraint. Negated concepts are not added as
they are merely used to check the existence of a contradiction.

C ⊓D: Two new constraints are added. The expressions in these constraints have to be evalu-
ated recursively, therefore, we also have to estimate the number of constraints that will be
generated byC andD.

C ⊔D: Two new constraints are added and each of the constraints has to be evaluated recursively,
however, we have to deal with two separate constraint systems from this point on. The
number of constraints in the system at this point has to be doubled. For an estimation we
add the current estimation value.

(∃ R.C): Two new constraints are added, one for the relation and one restricting theobject in the
relation toC Objecty has to be evaluated recursively.

(∀ R.C): A new constraint has to be added for every existing constraintxRy in the constraint
systemS and each one has to be evaluated recursively. As we do not know how many of
these statements are or will be inS, we use the overall number of existential quantifiers in
the expression that can lead to the addition of these constraints as an upperbound.

The valueΦ can now be computed for each conjunct in the query and be used as a basis
for determining the order in which conjuncts at the same level of nesting are processed.

2.4 Experimental Evaluation

In this section experimental results are shown of the approaches described in the previous
section. The main question focused on in the experiments isif, and if yes, inwhat way
does approximation reduce the complexity of the retrieval task. We focus on the number
of operations needed and the overall computation time used.The goal of our approxima-
tion approach is to replace costly reasoning operations by a(small) number of cheaper
approximate reasoning operations. The approximation methods used are sound and com-
plete. Therefore, the suitability of the approximation methods depend solely on the time
gained (or lost) when classical operations are replaced by anumber of approximate ones.

Our experiments were made with the Gene ontology and Instance Store [56]. The fo-
cus of our experiments are those queries where Instance Store cannot replace all DL rea-
soning with database retrieval, but must still check the instantiations of some instances.

10 Jan 30, 2006 KWEB/2005/D2.1.2.2.v1/1.0



2. SCALABLE INSTANCE RETRIEVAL BY APPROXIMATION

These instantiation checks were found to be a bottleneck in the scalability of this ap-
proach. We originally started with 17 queries (withQ1 to Q6 user formulated queries and
queriesQ7 to Q17 artificial), but discarded the queries that didn’t require instantiation
checks from further experiments.

Table 2.1: Performed Subsumption tests

normal C⊤ C⊥ C∆

true false true false true false true false

Q2

L0 20 0
L1 20 0

L0 0 19 L0 19 0 L2 9 11
no 9 11 no 9 11 no 9 11 no 9 0

Q8
L0 607 0

L0 0 606 L0 606 0 L1 10 597
no 10 597 no 10 597 no 10 597 no 10 0

Q12
L0 0 7871 L0 7871 0 L0 15 7856

no 15 7856 no 15 7856 no 15 7856 no 15 0

Q14

L0 408 0
L1 5 403

L0 0 407 L0 407 0 L2 5 0
no 5 403 no 5 403 no 5 403 no 5 0

Q15
L0 0 6693 L0 6693 0 L0 6693 0

no 46 6647 no 46 6647 no 46 6647 no 46 6647

Q17
L0 0 7873 L0 7873 0 L0 1 7872

no 1 7872 no 1 7872 no 1 7872 no 1 0

The results of the first experiments are shown in Table 2.1, which is divided into four
columns with each column reporting the number of subsumption tests performed. The
first column reports results for the experiment without any approximation, the second
column withC⊤-approximation, the third column withC⊥-approximation, and the fourth
column withC∆-approximation. Each column is further divided into smaller rows and
columns. The rows represent the level of the approximation used, whereno denotes
without approximation, andLi denotes the level of the approximation approach. The
subcolumns show the number of subsumption tests that resulted in true or false.3 This
distinction is important, because Section 2.3 tells us thatonly when aC⊤-approximated
subsumption succeeds, or aC⊥- or C∆-approximated subsumption test fails we obtain a
reduction in complexity.

3We will use the shorthand ‘true subsumption test’ and ‘falsesubsumption test’ to indicate these two
distinct results.

KWEB/2005/D2.1.2.2.v1/1.0 Jan 30, 2006 11



Realizing practical approximate and distributed reasoning IST Project IST-2004-507482

2.5 Discussion

Let us first focus on the questionif the approximation methods can lead to any reduction
in complexity. Table 2.1 shows thatC⊤- andC⊥-approximation cannot reduce the num-
ber of normal subsumption tests. OnlyC∆ is able to reduce, except forQ15, all false
subsumption tests to 0.

The first column in Table 2.1 shows that much more false subsumption tests are needed
than true subsumption tests. This indicates thatC⊤-approximation is wrong in this ap-
proach as it can only be used to lower the complexity of true subsumption tests, which
is negligible when compared to false subsumption tests. This may explain its bad ap-
proximating behaviour, however,C⊥ also performs badly, which does approximate false
subsumption tests. Closer analysis shows thatterm collapsing[38], i.e., the substitution
of terms by⊤ or⊥ results in the query becoming equivalent to⊤ or⊥, is the reason for
this. An analysis ofC⊥ shows that this occurs inall cases.

Apart from looking atif an approximation method can successfully reduce the number
of normal subsumption tests, we must also consider the cost for obtaining the reduction,
i.e., in what wayare the normal subsumption tests reduced. For example, approximat-
ing Q8 changes607 = 10 + 597 normal subsumption tests into10 normal subsumption
tests,607 C∆

1 subsumption tests, and607 C∆
0 subsumption tests. Thus, the number of

subsumption tests may increase, but the complexity of most tests will be lower than nor-
mal. Note however, that some computations seem unnecessaryas nothing can be deduced
from them, e.g., the607 C∆

0 tests. Obviously, in this approach unnecessary subsumption
Figure 2.2: Time needed for Subsumption tests (in milliseconds)

normal C⊤ C⊥ C∆

Q2 175 348 299 547
Q8 5373 8383 7753 9912
Q12 61410 93100 85764 56478
Q14 4372 6837 6017 7391
Q15 61560 90847 83714 114162
Q17 113289 158218 144689 93074

tests should be minimized. Several cases can be observed in the experiments withC∆-
approximation. Either no subsumption test is unnecessary (Q12, Q17), some subsumption
tests are unnecessary (Q2, Q8, Q14), or all subsumption tests are unnecessary (Q15).

This distinction seems to influence the overall time needed when approximating a
query. Table 2.2 reports the overall time in milliseconds needed for each query. For
comparisonC⊤ andC⊥ are also reported. For queries having unnecessary subsumption
tests, approximation always leads to more computation time. In those cases, reducing the
complexity of subsumption tests do not weigh up to the costs of additional (unnecessary)
subsumption tests. For queries having no unnecessary subsumption tests, approximation

12 Jan 30, 2006 KWEB/2005/D2.1.2.2.v1/1.0



2. SCALABLE INSTANCE RETRIEVAL BY APPROXIMATION

does save time when compared to the normal case.

Another observation of Table 2.1 is that false subsumption tests forC∆ only occur at
one level. It seems that the conjunct that is added to the approximatedconjunctive query
on which the false subsumption tests occur is crucial in determining the outcome.The role
of conjunct in a subsumption test is still unclear. More research is needed if this conjunct
(or a group of conjuncts) can be identified in advance to speedup approximation.

2.6 Conclusions

Instance retrieval is one of the most important inferences in the Semantic Web. In order to
make methods more scalable for ontologies with a large set ofinstances we investigated
two approximation methods and evaluated them on a benchmarkset. Both methods use a
similar idea, i.e., removing parts of an expression to make it simpler to speed up retrieval.
However, the method of [84] shows bad approximating behavior because the selection
and substitution of subconcepts is too restrictive. The method of [93] was extended with
a heuristic for subconcept selection and shows some potential for speeding up instance
retrieval. However, more research is needed to improve the heuristic and to determine if
the approximation method can be used to speed up instance retrieval.

KWEB/2005/D2.1.2.2.v1/1.0 Jan 30, 2006 13





Chapter 3

SCREECH – Faster OWL using split
programs

by PASCAL HITZLER & DENNY VRANDECIC

We propose a new technique for approximate ABox reasoning with OWL DL on-
tologies. Essentially, we obtain substantially improved reasoning performance by disre-
garding non-Horn features of OWL DL. Our approach comes as a side-product of recent
research results concerning a new transformation of OWL DL ontologies into negation-
free disjunctive datalog [57, 58, 60, 72], and rests on the idea of performing standard
resolution over disjunctive rules by treating them as if they were non-disjunctive ones.
We analyze our reasoning approach by means of non-monotonicreasoning techniques,
and present an implementation, called SCREECH.

This chapter is essentially a substantial update of Chapter 4in Deliverable D2.1.2.

3.1 Introduction

Knowledge representation and reasoning on the Semantic Webis done by means of on-
tologies. While the quest for suitable ontology languages isstill ongoing, OWL [104] has
been established as a core standard. It comes in three flavors, as OWL Full, OWL DL
and OWL Lite, where OWL Full contains OWL DL, which in turn contains OWL Lite.
The latter two coincide semantically with certain description logics [4] and can thus be
considered fragments of first-order predicate logic.

OWL ontologies can be understood to consist of two parts, one intensional, the other
extensional. In description logics terminology, the intensional part consists of a TBox
and an RBox, and contains knowledge about concepts (calledclasses) and the complex
relations between them (calledroles). The extensional part consists of an ABox, and con-
tains knowledge about entities and how they relate to the classes and roles from the inten-
sional part. For the Semantic Web, TBox and RBox shall provide background vocabulary,

15



Realizing practical approximate and distributed reasoning IST Project IST-2004-507482

while (annotated) webpages etc. constitute ABoxes which areinterlinked with intensional
knowledge. The Semantic Web thus envisions a distributed knowledge source, built from
OWL ontologies and intertwining the knowledge like the WorldWide Web interconnects
websites.

With an estimated 25 million active websites today and correspondingly more web-
pages, it is apparent that reasoning on the Semantic Web willhave to deal with very large
ABoxes. Complexity of ABox reasoning — also calleddata complexity— thus measures
complexity in terms of ABox size only, while considering the intensional part of the on-
tology to be of constant size. For the different OWL variants,data complexity is at least
NP-hard, which indicates that it will not scale well in general [59]. Methods are therefore
being sought to cope with large ABoxes in an approximate manner.

The approach which we propose is based on the fact that data complexity is polyno-
mial for non-disjunctive datalog. We utilize recent research results [57, 58, 60, 72] which
allow the transformation of OWL DL ontologies into disjunctive datalog. Rather than
doing (expensive) exact reasoning over the resulting disjunctive datalog knowledge base,
we do approximate reasoning by treating disjunctive rules as if they were non-disjunctive
ones. The resulting reasoning procedure is complete, but may be unsound in cases. Its
data complexity is polynomial. We are also able to give a characterization of the resulting
approximate inference by means of standard methods from logic programming semantics.

This chapter is structured as follows. In Section 3.2, we first discuss the general
rationale behind approximate reasoning, and how it relatesto other reasoning frameworks.
We then recall formal terminology and notation for OWL DL, andshortly review datalog
and SLD-resolution. Then, in Section 3.4, we explain how OWL DL ontologies can be
transformed into disjunctive datalog. In Section 3.5 we introduce the new approximate
SLD-resolution procedure which we propose. The presentation of our implementation
SCREECH in Section 3.6 is followed by an Example in Section 3.7, and anexperimental
evaluation in Section 3.8. We conclude and discuss future work in Section 3.9.

3.2 Non-Classical Reasoning — Common Grounds

Classical logic – a term which encompasses mainly propositional and first-order predicate
logic – is the foundation for many knowledge representationand reasoning paradigms in
artificial intelligence and related areas, such as semanticweb. However, reasoning in
these paradigms is often non-classical, i.e. it is obtainedby modifying classical logic.
Some of these modifications are syntactical. Conceptually, however, semantic differences
are more important. From a bird’s eye perspective, these semantic differences can often
be perceived as a modification of the notion of model, which inthe usual way has impact
on the inference relation considered. We will elaborate a bit on this.

A semantic perspective on approximate reasoning is depicted in Figure 3.1. When a
theory is being considered, classical reasoning may be of high computational complexity

16 Jan 30, 2006 KWEB/2005/D2.1.2.2.v1/1.0



3. SCREECH – FASTER OWL USING SPLIT PROGRAMS

Figure 3.1: Semantic view on approximate reasoning

and thus be unsuitable for time-critical tasks. By taking different models into account
than the classical ones, the complexity of reasoning can be reduced. The resulting ap-
proximate inference may be incomplete or unsound with respect to classical inference,
but in a controlled and well-understood manner, which makesthe inferences suitable for
further use.

Similar situations occur in the context of other sophisticated reasoning techniques. For
non-monotonic reasoning, for example, a subset of the classical models is usually con-
sidered, which is selected by means of e.g. additional syntax constructs or by redefining
the semantics of existing ones. Non-monotonic reasoning thus allows to arrive at con-
clusions which cannot be derived using classical reasoning: It is complete, but unsound,
and can be described assupraclassical[70]. The rationale in this case is to model aspects
of human commonsense reasoning likejumping to conclusions, again in a controlled and
well-understood manner. Complexity considerations are often treated as secondary in this
context.

Paraconsistent reasoning — or reasoning with inconsistency — can be approached
from a similar perspective. While inconsistent knowledge bases have no classical models,
paraconsistent reasoning strives to identify suitable models to be assigned to the knowl-
edge base nevertheless, in order to allow the inference of meaningful consequences. As
such, paraconsistent reasoning is sound, but incomplete with respect to classical logic,
and can thus be termedsubclassical.

reasoning approach focus models taken into account typical complexity
classical all classical models high
non-monotonic commonsense some classical models very high
paraconsistent inconsistency more than the classical modelshigh
approximate performance variable low

Table 3.1: Comparision of non-classical reasoning approaches

Table 3.1 summarizes our discussion. While the table can certainly be extended fur-
ther taking other forms of reasoning into account, we restrict ourselves to the mentioned

KWEB/2005/D2.1.2.2.v1/1.0 Jan 30, 2006 17



Realizing practical approximate and distributed reasoning IST Project IST-2004-507482

examples, as the main goal of this chapter is to present an approximate reasoning method
for OWL DL, and not a comparative theory of reasoning approaches. We have included
this discussion because it explains the general rationale behind our approximate reasoning
method, and will help us in analyzing it. Indeed, in all reasoning paradigms mentioned, it
is important to obtain a clear understanding of the inference relation computed. This can
be done by semantic analyses, i.e. by characterizations of the models taken into account.
From the general perspective described in this section, it will later come as no surprise
to the reader that we will analyze our approximate reasoningmethods by means of stan-
dard techniques from non-monotonic reasoning. Indeed, in our particular case the models
taken into account for approximate reasoning will turn out to be a subset of the classical
models, as in non-monotonic reasoning.

3.3 Preliminaries

3.3.1 OWL DL Syntax and Semantics

OWL DL is a syntactic variant of theSHOIN (D) description logic [52]. Hence, al-
though several XML and RDF syntaxes for OWL DL exist, it will be convenient to use
the traditional description logic notation since it is morecompact, and we recall the nota-
tion below. For the correspondence between this notation and various OWL DL syntaxes,
see [52].

We indeed assume that the reader is familiar with OWL and thus with SHOIN (D),
as space restrictions forbid to reintroduce them, but recall that SHOIN (D) supports
reasoning with concrete datatypes, such as strings or integers [68]. Recall also that the
description logic syntax for concepts inSHOIN (D) is defined as follows, whereA is
an atomic concept,R is an abstract role,S is an abstract simple role,T(i) are concrete
roles,d is a concrete domain predicate,ai andci are abstract and concrete individuals,
respectively, andn is a non-negative integer:

C → A | ¬C | C1 ⊓ C2 | C1 ⊔ C2 | ∃R.C | ∀R.C | ≥ nS | ≤ nS | {a1, . . . , an} |
| ≥ nT | ≤ nT | ∃T1, . . . , Tn.D | ∀T1, . . . , Tn.D

D → d | {c1, . . . , cn}

TheSHIQ(D) description logic is obtained fromSHOIN (D) by disallowing nom-
inal concepts of the form{a1, . . . , an} and{c1, . . . , cn}, and by allowing qualified number
restrictions of the form≥ nS.C and≤ nS.C, for C aSHIQ(D) concept andS a simple
role.

As description logics,SHOIN (D), i.e. OWL DL, andSHIQ(D) inherit their se-
mantics from first-order logic by the standard translationsknown e.g. from [54], which
we do not repeat here.

18 Jan 30, 2006 KWEB/2005/D2.1.2.2.v1/1.0



3. SCREECH – FASTER OWL USING SPLIT PROGRAMS

3.3.2 Datalog and SLD-Resolution

A (definiteor negation-free) disjunctive logic programP consists of a finite set ofclauses
or rulesof the form

∀x1 . . . ∀xn.(H1 ∨ · · · ∨Hm ← A1 ∧ · · · ∧ Ak),

commonly written as
H1 ∨ · · · ∨Hm ← A1, . . . , Ak,

wherex1, . . . , xn are exactly all variables occuring inH1 ∨ · · · ∨Hm ← A1 ∧ · · · ∧ Ak,
and allHi andAj are atoms over some given first-order languageΣ. The disjunction
H1∨ · · · ∨Hm is called therule head, and the conjunctionA1∧ · · · ∧Ak is called therule
body. The set of all ground instances of atoms defined overΣ is called theHerbrand base
of P and is denoted byBP . The set of all ground instances of rules inP is denoted by
ground(P ). A rule is said to benon-disjunctiveif m = 1. It is called afact if k = 0. We
abstract from the order of the atoms in the heads respectively bodies; it is not important
for our results. A disjunctive logic program is called a(disjunctive) datalogprogram if it
does not contain function symbols.

Note that we do not consider logic programs to come with one specific semantics.
Some people for example associate datalog with the minimal model semantics only. For
our treatment, datalog and logic programs are defined via syntax only. We do not specify
a specific semantics because in the following we will discussdifferentsemantics for logic
programs in their relation to proof procedures. One of the semantics we will consider is
the semantics coming from interpreting logic programs as a set of first order formulas,
and in this case we use|= to denote entailment in classical first-order predicate logic.

SLD-resolution(see e.g. [66]) is an efficient top-down query-answering technique for
programs consisting of non-disjunctive rules, and has beenimplemented and successfully
applied in standard Prolog systems.1 In this framework, a ground atom can be derived
from a program if and only if it is true in the least (and thus inall) Herbrand models of
the program.

In the following, we mean by aconjunctive querysimply a conjunctionB1 ∧ · · · ∧Bn

of atoms. The query is calledgroundif it does not contain any variables.

Given a conjunctive queryB1 ∧ · · · ∧Bn, anSLD-resolution stepon the atomBi with
a non-disjunctive ruleH ← A1, . . . , Ak produces a conjunctive query

B1θ ∧ · · · ∧Bi−1θ ∧ A1θ ∧ · · · ∧ Akθ ∧Bi+1θ ∧ · · · ∧Bnθ

whereθ is the most general unifier ofBi andH. An SLD-refutationof a conjunctive
queryB1 ∧ · · · ∧ Bn in a non-disjunctive programP is a finite sequence of conjunctive
queriesQ0, . . . , Qn, where (i) Q0 = B1 ∧ · · · ∧ Bn, (ii ) eachQi with i > 0 is obtained
from Qi−1 by an SLD-resolution step with some rule fromP on some literalBi, and (iii )

1Like SWI or XSB Prolog, http://www.swi-prolog.org, http://xsb.sourceforge.net.

KWEB/2005/D2.1.2.2.v1/1.0 Jan 30, 2006 19



Realizing practical approximate and distributed reasoning IST Project IST-2004-507482

Qn = 2, i.e. the conjunctive queryQn does not contain any literals. If an SLD-refutation
of B1 ∧ · · · ∧Bn in P exists, we writeP ⊢ B1 ∧ · · · ∧Bn.

One of the fundamental results in logic programming states that A ∈ BP can be
proven by SLD-resolution if and only ifA is a logical consequence ofP , i.e. if and only
if A is true in the least Herbrand model ofP :

Theorem 2 ([66]) 2 For a ground conjunctive queryB1 ∧ · · · ∧Bn and a non-disjunctive
programP , P ⊢ B1∧· · ·∧Bn if and only ifP |= B1∧· · ·∧Bn. In other words, entailment
of ground conjunctive queries under SLD-resolution is entailment in predicate logic.

SLD-resolution also allows deriving answers to non-groundqueries: For a conjunctive
(and not necessarily ground) queryQ there exist an SLD-refutation if and only ifP |=
∃x1 . . . ∃xn.Q, wherex1, . . . , xn are the variables occuring inQ. By keeping track of the
most general unifiers used in the process, it is also possibleto obtain bindings for (some
of) thexi in the form of (answer) substitutionsθ, such thatP |= ∃y1 . . . ∃yk(Qθ), where
theyi are exactly those variables occurring inQθ. In order to keep our exhibition focused,
we will only deal with ground queries.

3.4 Reducing OWL DL Knowledge Bases to Disjunctive
Datalog Programs

We utilise recent research results about the transformation of OWL DL ontologies into
disjunctive datalog, and perform approximate reasoning bytransforming the disjunctive
database into a non-disjunctive one. The transformation isbased on the fact that OWL DL
is a subset of first-order logic. OWL axioms can thus be translated directly into logical
formulas and transformed into clausal form using any of the standard algorithms. The
resulting clauses can be represented as disjunctive datalog rules which do not contain
negation.

Note, however, that due to possible skolemization steps in the clausal form transla-
tion, the resulting datalog rules may contain function symbols. In general, datalog with
function symbols is undecidable, but since we obtain the datalog program by a translation
from OWL DL, which is decidable, inferencing over the resulting program must be de-
cidable. Standard datalog engines, however, do in general not terminate in the presence
of function symbols. To cope with this problem, a sophisticated method has been pre-
sented in [58, 60] which allows to get rid of the function symbols without loosing ABox
consequences. As a result, we obtain a function- and negation-free disjunctive datalog
program, which can be dealt with using standard techniques.

There is one other catch: The approach presented in [58, 60] does not yet allow to
deal with nominals, i.e. it supports onlySHIQ(D) instead ofSHOIN (D) (the latter is

2Please note that this definition is identical to Definition 2 in Section 2.2.1

20 Jan 30, 2006 KWEB/2005/D2.1.2.2.v1/1.0



3. SCREECH – FASTER OWL USING SPLIT PROGRAMS

SHIQ(D)

KB

Elimination of

Transitivity

Axioms

Translation

into Clauses

Saturation

by Basic

Superposition

Elimination of

Function

Symbols

Conversion to

Disjunctive

Datalog

Disjunctive

Program

DD(KB)

Figure 3.2: Algorithm for ReducingSHIQ(D) to Datalog Programs

the description logic coinciding with OWL DL). We remark thatto date — and to the best
of our knowledge — no reasoning algorithms forSHOIN (D) have been implemented.
We will return to a possible treatment of nominals in our approach later.

The translation algorithm is schematically depicted in Figure 3.2. It transforms a
SHIQ(D) knowledge baseKB into a disjunctive datalog programDD(KB ). The steps
of the algorithm are as follows. (1) Transitivity axioms areremoved by adding axioms
of a form similar to∀S.C ⊑ ∀S.(∀S.C) for transitive rolesS. (2) The knowledge base
is translated into clausal form by standard transformations based on first-order predicate
logic. This introduces function symbols due to necessary skolemization steps. (3) The
TBox of the knowledge base is partially saturated by adding logical consequences. This
is the crucial step of the algorithm. (4) The saturation fromstep (3) now allows to remove
all function symbols which were introduced in step (2). Someadditional axioms are
added to ensure that the algorithm remains sound and complete. (5) The knowledge base
is translated into disjunctive datalog clauses; this step is now straightforward.

It shall be noted that the details of the crucial step (3) are very sophisticated. They
guarantee that the removal of function symbols in step (4) isat all possible. Step (3) is
of exponential complexity, however for the ABox reasoning task which we focus on in
this chapter, Step (3) can in principle be performed offline,as this step is independent
of the ABox – but note that this offline computation may still bedifficult if the TBox is
large, which is a separate issue and deserves further in-depth studies which are outside
the scope of this chapter. A full presentation of the translation with correctness proofs is
technically involved and lengthy, and space restrictions forbid to go into further detail; we
refer the interested reader to [58, 60]. In [57] full proofs are given which show amongst
other things thatKB is unsatisfiable if and only ifDD(KB) is unsatisfiable. This suffices
for reasoning overKB as reasoning tasks can be transformed into unsatisfiabilitychecks.

3.5 Approximate Resolution

While approximate reasoning methods for propositional and first-order logic have been
proposed (see e.g. [86, 84, 20, 17, 100, 37]), they have hardly been applied in the context
of Semantic Web technologies. The few exceptions are reported e.g. in [93, 56, 38] —
to the best of our knowledge, this list is exhaustive. The success of the approaches is
mixed. [38] reports on an analysis indicating that straightforward adaptations of methods
proposed by [84] do not suffice. [56] reports good results butis not an approximate

KWEB/2005/D2.1.2.2.v1/1.0 Jan 30, 2006 21



Realizing practical approximate and distributed reasoning IST Project IST-2004-507482

reasoning method in the more narrow sense as the reasoning performed is exact, and thus
does not address the complexity problems underlying OWL DL reasoning. [93] deals
with approximating queries, while we focus on ABox reasoning. We will now present a
novel approach based on the translation of OWL DL to disjunctive datalog, as presented
earlier.

3.5.1 Approximate SLD-Resolution

Having obtained the translated knowledge base in the form ofa disjunctive datalog pro-
gram, ABox reasoning remains NP-hard, and thus untractable.If the datalog program is
non-disjunctive, though, reasoning is polynomial in the size of the ABox. We therefore
propose the following approximate reasoning technique in order to facilitate this insight.
Given a conjunctive queryB1∧· · ·∧Bn, anapproximate SLD-resolution stepon the atom
Bi with a disjunctive ruleH1 ∨ · · · ∨Hm ← A1, . . . , Ak is a conjunctive query

B1θ ∧ · · · ∧Bi−1θ ∧ A1θ ∧ · · · ∧ Akθ ∧Bi+1θ ∧ · · · ∧Bnθ

such thatθ is the most general unifier ofBi and someHj. Approximate SLD-refutationis
defined analogously to SLD-refutation, where approximate SLD-resolution steps are used
instead of (usual) SLD-resolution steps.

It is necessary to pursue the question what notion of entailment underlies the approx-
imate reasoning technique we propose. Following the spiritof the observations from
Section 3.2, we want to identify the set of models which underly the inference relation
provided by approximate SLD-resolution. For this purpose,we need the following notion,
which is derived from standard notions in non-monotonic reasoning over logic programs.

Definition 3 (cf. [3, 26, 47]) A modelM of a disjunctive programP is calledwell-sup-
portedif there exists a functionl : BP → N such that for eachA ∈ M there exists a rule
A∨H1 ∨ · · · ∨Hm ← A1, . . . , Ak in ground(P ) with M |= Ai andl(A) > l(Ai) for all i

andk.

Definition 3 is a straightforward adaptation of the notion ofwell-supported model
for non-disjunctive programs, as given in [26]. For non-disjunctive (and negation-free)
programs, the well-supported models are exactly the minimal ones, but this is not in
general the case for disjunctive programs: Just consider the program consisting of the
single rulep ∨ q ←. Then{p, q} is a well-supported model, but is not minimal.

Lifted appropriately to (non-disjunctive) programs with negation, the well-supported
models coincide with the well-known stable models. This wasshown in [26] and stud-
ied in-depth in [47, 45]. Stable models [32] provide the basefor the most popular non-
monotonic reasoning paradigm calledAnswer Set Programming, of which the two most
prominent implementations are DLV and SMODELS [25, 90]. Our results thus stand within
this well-established tradition.

22 Jan 30, 2006 KWEB/2005/D2.1.2.2.v1/1.0



3. SCREECH – FASTER OWL USING SPLIT PROGRAMS

It is apparent thatA ∈ BP is entailed by a (disjunctive) programP by approximate
SLD-resolution if and only if it is true in at least one well-supported model ofP . This
is calledbrave reasoning with well-supported models. A formal proof of the following
proposition is omitted for space restrictions.

Proposition 1 Entailment of ground conjunctive queries under approximate SLD-resolu-
tion is brave reasoning with well-supported models.

As an example, consider the (propositional) program consisting of the two rulesp ∨
q ← andr ← p ∧ q. Its minimal models are{q} and{p}, sor is not bravely entailed
by reasoning with minimal models. However all of{q}, {p}, {p, q} and{p, q, r} are
well-supported models, sor is bravely entailed by reasoning with well-supported models.

There is an alternative way of formalizing approximate SLD-resolution using a mod-
ified notion ofsplit program[83]. Given a rule

H1 ∨ · · · ∨Hm ← A1, . . . , Ak,

thederived split rulesare defined as:

H1 ← A1, . . . , Ak . . . Hm ← A1, . . . , Ak.

For a given disjunctive programP its split programP ′ is defined as the collection of
all split rules derived from rules inP . Approximate SLD-resolution onP is obviously
identical to SLD-resolution overP ′.

Minimal models are well-supported, as can be seen from the following result which
was obtained along the lines of research laid out in [47, 45].

Theorem 3 ([46]) Let P be a disjunctive program. Then a modelM of P is a minimal
model ofP if and only if there exists a functionl : BP → N such that for eachA which
is true in M there exists a ruleA ∨ H1 ∨ · · · ∨ Hm ← A1, . . . , Ak in ground(P ) with
M |= Ai, M 6|= Hk andl(A) > l(Ai) for all i andk.

We hence have the following result, noting thatP |= Q for any ground conjunctive
queryQ and programP if and only if Q is true in all minimal models ofP .

Proposition 2 LetP be a (possibly disjunctive) program andQ be a ground conjunctive
query withP |= Q. Then there exists an approximate SLD-refutation forQ.

We remark that for negation-free disjunctive programs minimal models again coincide
with answer sets[32], as in the currently evolvingAnswer Set Programming Systems, as
already mentioned.

KWEB/2005/D2.1.2.2.v1/1.0 Jan 30, 2006 23



Realizing practical approximate and distributed reasoning IST Project IST-2004-507482

3.5.2 Approximate Resolution for OWL DL

Our proposal is based on the idea of converting a given OWL DL knowledge base into a
function-free definite disjunctive logic program, and thento apply approximate resolution
for ABox reasoning.

In order to be able to deal with all of OWL DL, we need to add a preprocessing step
to get rid of nominals, i.e. we need to compileSHOIN (D) ontologies toSHIQ(D).
We can do this byLanguage Weakeningas follows: For every occurrence of{o1, . . . , on},
wheren ∈ N and theoi are abstract or concrete individuals, replace{o1, . . . , on} by some
new concept nameD, and add ABox assertionsD(o1), . . . , D(on) to the knowledge base.
Note that the transformation just given does in general not yield a logically equivalent
knowledge base, so some information is lost in the process. Putting all the pieces to-
gether, we propose the following subsequent steps for approximate ABox reasoning for
OWL DL.

1. Apply Language Weakening as just mentioned in order to obtain a SHIQ(D)
knowledge base.

2. Apply transformations as in Section 3.4 in order to obtaina negation-free disjunc-
tive datalog program.

3. Apply approximate SLD-resolution for query-answering.

The first two steps can be considered to be preprocessing steps for setting up the
intensional part of the database. ABox reasoning is then donein the last step. From our
discussions, we can conclude the following properties of approximate ABox reasoning
for SHIQ(D).

• It is complete with respect to first-order predicate logic semantics.

• It is sound and complete wrt. brave reasoning with well-supported models.

• Data complexity of our approach is polynomial.

3.6 SCREECH OWL

A preliminary implementation of our approach is available as theSCREECHOWL approx-
imatereasoner.3It is part of the KAON2 OWLtools.4 KAON25 is the KArlsruhe ONtol-
ogyframework, which includes a fast OWL reasoner based on thetransformationalgo-
rithms mentioned in Section 3.4, and also includes many otherfeatures helpful to work

3http://logic.aifb.uni-karlsruhe.de/screech
4http://www.aifb.uni-karlsruhe.de/WBS/dvr/owltools
5http://kaon2.semanticweb.org

24 Jan 30, 2006 KWEB/2005/D2.1.2.2.v1/1.0



3. SCREECH – FASTER OWL USING SPLIT PROGRAMS

serbian⊔ croatian⊑ european

eucitizen⊑ european

german⊔ french⊔ beneluxian⊑ eucitizen

beneluxian≡ luxembourgian⊔ dutch⊔ belgian

serbian(ljiljana) serbian(nenad) german(pascal) french(julien)

croatian(boris) german(markus) german(stephan) croatian(denny)

indian(sudhir) belgian(saartje) german(rudi) german(york)

Figure 3.3: Example ontology

with ontologies. Among the KAON2 OWL tools,deo performs the language weak-
ening step described in Section3.5.2 in order to obtain aSHIQ(D) knowledge base.
As KAON2implements the sophisticated translation algorithms described in Section3.4,
we can convert an OWL ontology into adisjunctive datalog program, e.g. by using the
dlpconvert KAON2 OWLtool with the-x switch.SCREECHthen accesses the results
of the translation through theKAON2 API, creates the corresponding split programs and
serializes them asHorn logic programs in Edinburgh Prolog syntax. The result canbe fed
to any Prolog interpreter — or other logic programming engine —,which in turn can be
used to perform ABox reasoning and inferencing over theknowledge base.For complete-
ness, we need to mention that in general support for concretedomains and other features
like integrity constraints is not necessarilyimplementedin off-the-shelf logic program-
ming systems. In these cases,concrete domains etc. cannot be used. The KAON2 OWL
toolded ,3 for example, performs a language weakening step by removingall concrete do-
mains, and may come in handy in such situations.

3.7 An Example

We demonstrate our approach by means of a simple OWL DL ontology. It contains only a
class hierarchy and an ABox, and no roles, but this will sufficeto display the main issues.

The ontology is shown in Figure 3.3, and its intended meaningis self-explanatory.
Note that the fourth line,

beneluxian≡ luxembourgian⊔ dutch⊔ belgian,

translates into the four clauses

KWEB/2005/D2.1.2.2.v1/1.0 Jan 30, 2006 25



Realizing practical approximate and distributed reasoning IST Project IST-2004-507482

luxembourgian(x) ∨ dutch(x) ∨ belgian(x)← beneluxian(x), (3.1)

beneluxian(x)← luxembourgian(x),

beneluxian(x)← dutch,

and beneluxian(x)← belgian(x).

Thus, our approach changes the ontology by treating the disjunctions in line (3.1) as
conjunctions. This change affects the soundness of the reasoning procedure. However,
most of the ABox consequences which can be derived by approximate SLD-resolution
are still correct. Indeed, there are only two derivable facts which do not follow from the
knowledge base by classical reasoning, namely

dutch(saartje) and luxemburgian(saartje).

All other derivable facts are correct.

SCREECH translates the ontology from Figure 3.3 into the Prolog program listed in
Figure 3.4. As standard implementations of SLD-resolutiondo not use fair selection
functions and also use depth-first search for higher efficiency, they may sometimes fail to
produce answers because they run into infinite branches of the search tree. This occurs,
for example, when using SWI-Prolog6. A reordering of the clauses may improve the
results, but does not solve the problem entirely. More satisfactory performance can be
obtained by using SLD-resolution with tabling, as implemented e.g. in the XSB Prolog
system7. In this case, all desired consequences can be derived.

3.8 Experiments and Evaluation

An approximate reasoning procedure needs to be evaluated onreal data from practical
applications. Handcrafted examples are of only limited useas the applicability of approx-
imate methods depends on the structure inherent in the experimental data.

For our evaluation we have performed experiments with the OWLDL version of the
GALEN Upper Ontology,8 as it appears to be sufficiently natural and realistic. As it is
a TBox ontology only, we populated GALEN’s 175 classes randomly with 500 individu-
als.9 GALEN does not contain nominals or concrete domains. GALEN has 673 axioms
(the population added another 500). The TBox translation to disjunctive datalog took
about 2300 ms, after which we obtained 2687 disjunctive datalog rules containing 267
disjunctions within 133 rules. Among these were 152 integrity constraints (i.e. rules with

6http://www.swi-prolog.org/
7http://xsb.sourceforge.net
8http://www.cs.man.ac.uk/∼rector/ontologies/simple-top-bio/
9Using thepop KAON2 OWL tool.

26 Jan 30, 2006 KWEB/2005/D2.1.2.2.v1/1.0



3. SCREECH – FASTER OWL USING SPLIT PROGRAMS

serbian(ljiljana). serbian(nenad). german(pascal).
french(julien). croatian(boris). german(markus).
german(stephan). croatian(denny). indian(sudhir).
belgian(saartje). german(rudi). german(york).
european(X) :- serbian(X).
european(X) :- croatian(X).
european(X) :- eucitizen(X).
eucitizen(X) :- german(X).
eucitizen(X) :- french(X).
eucitizen(X) :- beneluxian(X).
beneluxian(X) :- luxembourgian(X).
beneluxian(X) :- dutch(X).
beneluxian(X) :- belgian(X).
dutch(X) :- beneluxian(X).
luxembourgian(X) :- beneluxian(X).
belgian(X) :- beneluxian(X).

Figure 3.4: Example SCREECHoutput

empty head), which we removed for our experiment as they led to inconsistency of the
database.10 After splitting disjunctive rules, we arrived at 2802 Horn rules.

We then randomly selected classes and queried for their extension using the KAON2
datalog engine, both for processing the disjunctive datalog program and for the split pro-
gram. Some of the typical results are listed in Table 3.2, which indicates a significant
speed-up of about 40% on average, while the vast majority of the retrieved answers is cor-
rect. In a complete run we queried for the extensions of all 175 GALEN classes, resulting
in a total number of 5809 classifications performed by SCREECH, of which 5353 (i.e.
92.2%) were correct. For 138 out of 175 classes the extensioncomputed by SCREECH

was correct. The average time saved when computing the extension was 38.0% over all
175 classes. Note that we obtain significant speed-up although the KAON2 datalog engine
is not optimized for Horn programs, but rather tuned to efficient performance on definite
disjunctive datalog.

The times were obtained with initial Java VM memory set to 256MByte. Under
memory restrictions, the speed-up is more significant, which is probably caused by the
necessity to allocate additional memory for the DD reasoning task. Corresponding figures
are given in Table 3.3. Our experiments also indicate that SCREECHmay be useful when
hardware is limited, for example in portable devices.

10This is an expected effect. Removal of the integrity constraints does not destroy completeness of the
approximate reasoning procedure.

KWEB/2005/D2.1.2.2.v1/1.0 Jan 30, 2006 27



Realizing practical approximate and distributed reasoning IST Project IST-2004-507482

Time (DD) Time (SPLIT) Instances Class Name
11036 ms 6489 ms 154/154 Biologicalobject
11026 ms 5959 ms 9/9 Specifiedset
11006 ms 6219 ms 9/13 Multiple
11015 ms 5898 ms 16/16 Probestructuralpart of heart
11036 ms 7711 ms 4/4 Humanred blood cell mature
11055 ms 5949 ms 24/58 Biologicalobject that. . .

Table 3.2: Performance comparison for instance retrieval using disjunctive datalog (DD)
vs. the corresponding split program (SPLIT), on the KAON2 datalog engine.Instances
indicates the number of instances retrieved using DD versusSPLIT, e.g. classMultiple
contained 9 individuals, while the split program allowed toretrieve 13 (i.e. the 9 correct
individuals plus 4 incorrect ones). The full name of the class in the last row is Biologi-
cal object that hasleft right symmetry.

3.9 Conclusions and Further Work

In a nutshell, our proposed procedure approximates reasoning by disregarding non-Horn
features of OWL DL ontologies. We argue that this is a reasonable approach to approx-
imate reasoning with OWL DL in particular because many of the currently existing on-
tologies rarely use language constructs that do not fall into the Horn fragment of OWL DL
[103]. So it can be projected that even in the future these constructs will play a minor role
and thus should be the first to be tempered with in order to gaintractable reasoning.

Our approach provides ABox reasoning with polynomial time complexity. While it is
complete, it is also unsound with respect to first-order logic. We have shown, however,
that the inference underlying our approach can be characterized using standard methods
from the area of non-monotonic reasoning. We have also presented our implementation
SCREECH, and verified the usefulness of our approach by means of experiments.

The checking whether a conjunctive query is a predicate logic consequence of a
(negation-free) disjunctive logic programP amounts to checking whether the query is

Time (DD) Time (SPLIT) Instances Class Name
32997 ms 4817 ms 154/154 Biologicalobject
33028 ms 4947 ms 9/9 Specifiedset
32927 ms 4987 ms 9/13 Multiple
32977 ms 4957 ms 16/16 Probestructuralpart of heart
32987 ms 7350 ms 4/4 Humanred blood cell mature
32947 ms 4796 ms 24/58 Biologicalobject that. . .

Table 3.3: Performance comparison as in Table 3.2, but with 128 MByte intial memory.

28 Jan 30, 2006 KWEB/2005/D2.1.2.2.v1/1.0



3. SCREECH – FASTER OWL USING SPLIT PROGRAMS

valid in all minimal models ofP , i.e. corresponds tocautiousreasoning with minimal
models. Theorem 3 suggests how an anytime algorithm for thismight be obtained: After
performing approximate SLD-resolution, it remains to be checked whether there is any
(ground instance of a) rule used in the refutation of the query, which has an atomA in
its head besides the one used in the refutation and such thatA is (cautiously) entailed by
the program. Such an algorithm might then first find a brave proof of a query, and then
substantiate this proof by subsequent calculations. Our approach may also be useful for
the quick derivation ofpossibleanswers to a query, which may then be used for efficient
guidance of the search within a sound and complete OWL reasoner. These and other
issues are currently under investigation.

KWEB/2005/D2.1.2.2.v1/1.0 Jan 30, 2006 29





Chapter 4

Robust Query Processing for
Personalized Information Access

by PETER DOLOG, HEINER STUCKENSCHMIDT & HOLGER WACHE

4.1 Motivation

Users are often not able to formulate queries correctly which results in user dissatisfaction
and frustration. This is even more the case for semantic web systems based on RDF for
the following reasons:

• The data accessed often comes from different sources. The internal structure of
these sources is not always known.

• The data is semi structured. Sources do not have to describeall aspects of the
information resources.

• There is no fixed integrated schema. Each source can have itsown schema, sources
may make partial use of different available schemas.

With the increasing popularity of RDF as a representation language in domains such
as medicine [94] or e-leaning [21] this problem becomes morepressing. If RDF query
languages are to be used in a large scale we have to make sure that people will be able to
formulate meaningful queries. If this is not the case, we have to find ways to still provide
the user with the intended results.

Research in Cooperative Query answering is triggered by the observation that users are
often not able to correctly formulate queries to databases that return the intended result.
Cooperative query processing supports the user by automatically modifying the query in
order to better fit the real intention of the user. Based on the assumed kind of mismatch

31



Realizing practical approximate and distributed reasoning IST Project IST-2004-507482

between the users intention and the formulated query there are different techniques used.
We consider two basic mechanisms of cooperative query processing,query refinement
andquery relaxationwhich are briefly presented in the following.

4.1.1 Query Refinement and Relaxation

Due to a lack of knowledge of the contents and the structure ofa database, users will
often only be able to provide very broad queries, for examplein terms of the type of the
objects she wants to retrieve and maybe one or two properties. Taking an example from
the domain of e-learning, the user might be able to specify that she is looking for a lecture
on the Java Programming Language. Learning resources, however, are often annotated
with a fair amount of metadata that specifies important information such as the assumed
level of expertise and required previous knowledge. In order to select learning resources
that are suited for the user, these additional properties have to be specified in the query
as well. Dolog et al [21] show that this information can be included into a user query
based on a user profile. They describe a method for automatically refining queries with
information from the user profile thereby enabling a pre-selection of query answers.

A problem of the automatic refinement of queries lies in the fact that it often over-
shoots the target instead of too many results an automatically refined query often returns
no result at all, because none of the resources exactly matches the users needs. A possible
solution to this problem is to successively relax the constraints imposed in the refinement
step. Different Techniques for relaxing queries have been proposed in the database area.
Gaasterland et al [28] provide a unifying view on different relaxation techniques in terms
of replacing subexpressions in the query. In other work we described an approach for re-
laxing conjunctive queries over description logic knowledge bases by removing conjuncts
from the query in a particular order (see 2 and [93, 105]).

In this chapter, we build upon existing work on query refinement for personalized
information access [21] and start to extend it in the following ways:

• We describe a framework for information access that combines query refinement
and relaxation in order to provide robust, personalized access to heterogeneous RDF
data.

• We propose an implementation of the framework in terms of conditional rewriting
rules for RDF query patterns.

• We discuss the application of the framework in the context of an existing e-learning
system.

32 Jan 30, 2006 KWEB/2005/D2.1.2.2.v1/1.0



4. ROBUST QUERY PROCESSING FOR PERSONALIZED INFORMATION ACCESS

4.2 Background

The Background on robust querying is in the domain of open learning repositories where
learning resources (courses, exercises, modules, etc.) are annotated with RDF metadata
to allow users to find suitable material for his or her learning goal.

There are several characteristics of open learning repositories that are quite character-
istic for RDF data in general and that make them a suitable text-case for our approach:
Resources are authored by different people with different goals, background, domain ex-
pertise, etc. Providers of a resource can maintain the resource in proprietary databases.
They might already have some personalization techniques implemented for the purposes
of their specific context. They might employ user or learner models (which usually reflect
applied techniques as well). User or learner features can already be maintained in human
resource management systems, task management systems or user modeling servers. Fur-
thermore, resources are accessed and consumed by people which differ in a wide range
of characteristics. Learning in open environments demandseffective personalization ap-
proaches to provide learner orientation and individualized access support.

4.2.1 Personalization by Query Refinement

In previous work, we have described a personalization service architecture for supporting
users in finding learning resources in open learning environments. The central component
of this architecture is the Personal Learning Assistant (PLA) Service [21] which integrates
and uses other services to find learning resources, courses,or complete learning paths suit-
able for a user. The PLA accepts queries from a user and try to find the corresponding
resources. The Personal Learning Assistant extends a user query by additional restric-
tions, joins, and variables based on various profiles. This extension is performed based
on heuristic rules/functions. In the following, we briefly illustrate the kinds of heuristics
used in the system based on an existing open learning repository for Computer Science
Courses that contains about 2000 instances of learning resource taken from university
courses.

SELECT * FROM
{Resource} subject {Subject},
{Resource} title {Title},
{Resource} description {Description},

WHERE
Subject Like "inference engines"

Figure 4.1: Basic Query

User queries to the open learning environment will consist of one or several keywords
related to the topic the user wants to learn about. The resultis a list of learning resources

KWEB/2005/D2.1.2.2.v1/1.0 Jan 30, 2006 33



Realizing practical approximate and distributed reasoning IST Project IST-2004-507482

including information about the subject and the title of theresource as well as a descrip-
tion of the content. In order to produce this list, the user request is translated into a query
an RDF query language that matches the metadata use to describe learning resources in
the system. Figure 4.1 shows the query corresponding to a user request for ”inference
engines” in SeRQL syntax1.

In a second step, the general query shown in figure 4.1 is adapted to better reflect the
learning preferences of the user. In this step, the query is refined by extending it with
additional constraints that are derived from the user profile. This is done by extending the
path expression in the FROM and by adding variable assignments in the WHERE part of
the query. Typical additions to a query are a restriction of the language of resources to the
preferred language of the user and a general constraint demanding that the user must have
all competencies that are required for understanding the resource.

SELECT * FROM
{Resource} subject {Subject},
{Resource} title {Title},
{Resource} description {Description},
{Resource} language {Language},
{Resource} requires {} subject {Prerequisite},
{User} hasPerformance {Performance},
{Performance} learning_competency {Competence}

WHERE
Subject Like "inference engines",
Prerequisite = Competence,
Language = de,
User = user42

Figure 4.2: Query extended with user preferences

Figure 4.2 shows the result of refining the general query fromfigure 4.1 with language
and competence constraints.

4.2.2 Problems with Refinement

In practice it turns out that the approach of personalization by query refinement suffers
from serious problems. In fact problems occur in both steps of the query formulation
process. The first problem already occurs when the basic query is formulated. In our
open learning repository, this query does not return any result despite the fact that there
are 8 resources on the subject. The reason for this is that only about 10% of all resources

1We omit namespaces for the sake of readability

34 Jan 30, 2006 KWEB/2005/D2.1.2.2.v1/1.0



4. ROBUST QUERY PROCESSING FOR PERSONALIZED INFORMATION ACCESS

are completely annotated with subject, title and description. Unfortunately, all 8 potential
answers miss at least one of these properties and are therefore not returned as an answer.
This problem can be reduced butmaking predicates or triples optional in the query.

Another problem lies in the fact, that the subject assigned to a course does not always
correctly summarize the content. In our test data set for example, if the user provides
the keyword ”Lernen” (German for ”learning”) no resources are returned despite the fact
that there are resources for instance about Bayesian learning and learning in case based
reasoning. The problem is here that in the case of the first resource the term learning
only occurs in the title, but not the subject. In the case of the second resource, the term
only occurs in the description and is mentioned neither in the subject nor the title of the
resource. This problem can be used byreplacing triples/predicates for the othersbased
on domain knowledge.

We can observe the similar problems in connection with the refinement of the gen-
eral query based on the user profile as the competence of a useris often defined in terms
of learning resources that were successfully mastered by the student. This means that
the subjects that represent the competency of a user are the subjects previously used re-
sources and suffer the problems discussed above: If a resource lacks a subject, it cannot
be added to the competencies. If the subject does not appropriately describe the content,
the competencies of the user do not adequately reflect the actual state of knowledge etc.
Therefore, a mechanism forreplacing predicate valuesin query restrictions should be
provided to solve the problem.

Another problem is connected for example with a request to match all prerequisite
with user background knowledge. Sometimes it is enough, that a subset of user back-
ground knowledge for a resource is available in his profile toinclude particular resource
in query results. Therefore, a mechanism toreplace quantifiersof a query should be
provided as well.

Further Problems arise from the inflexible nature of the rewriting mechanism that
instantiates variables with the preferred value and leavesno room for taking the second
best choice if the available resources are for example not inthe preferred language, the
user does not have all but most of the required competencies or the competencies of the
user are not the same but very similar to the required ones. Wewill come back to these
examples when we discuss our solution to the problem.

4.3 Rewriting RDF Queries

We propose an approach for query rewriting based on Event-Condition-Action (ECA)
rules (see e.g. [80]) to solve the problem of over-constraint queries. This rewriting relaxes
the over-constraint query based on rules and in order definedby events and conditions.
This has an advantage that we start with the strongest possible query that is supposed to
return the “best” answers satisfying most of the conditions. If the returned result set is

KWEB/2005/D2.1.2.2.v1/1.0 Jan 30, 2006 35



Realizing practical approximate and distributed reasoning IST Project IST-2004-507482

either empty or contains unsatisfactory results, the queryis modified either by replacing
or deleting parts of the query, or in other words relaxed. Therelaxation should be a
continuous step by step, (semi-)automatic process, to provide a user with possibility to
interrupt further relaxations. Before we investigate concrete relaxation strategies in the
context of our example domain, we first give a general definition of the framework for
re-writing an RDF query.

Each resource is annotated with an RDF description which can be seen as a set of
triples [44]. A query over these resources is formulated as triple patterns and a set of
conditions that restrict the possible variables bindings in the patterns. Each triple pattern
represents a set of triples. The corresponding abstract definition of a query focuses the
essential features of queries over RDF; several concrete query languages are founded on
these ideas including SeRQL which we use in our examples in figures 4.1 and 4.2.

Definition 4 (RDF Query) Let T be a set of terms,V a set of variables,RN a set of
relation names, andPN a set of predicate names. The set of possible triple patternsT R
is defined asT R ⊆ 2(T ∪V)×(RN∪V)×(T ∪V). A queryQ is defined as the tuple〈TRQ, PQ〉
with TRQ ∈ T R andPQ ⊆ P whereP is the set of predicates with namePN , defined
overT , andV.

The triple patternsTRQ in a queryQ determine those ground triples where a substi-
tution τ exists. Formally a substitutionτ is a list of pairs(Xi, Ti) where each pair tells
which variableXi has to be replaced byTi ∈ T ∪ V. Applied to a query, the substitution
τ replaces variables inTRQ with appropriate terms. Ifτ(TRQ) is equal to some ground
triples then the substitution is valid. All valid substitutions constitute answers to the query.
The predicatesPQ restrict these substitutions additionally because only those bindings are
valid answers where the predicates, i.e.τ(PQ), are also satisfied. The predicates define ad-
ditional constraints for the selection of appropriate triples. Using this abstract definition,
the query in figure 4.1 would be represented as

TRQ = ({(Resource, subject, Subject),

(Resource, title, T itle)

(Resource, description,Description)},

PQ = {like(Subject, “inferenceengines”)}

whereResource, Subject, T itle,Description ∈ V, as well assubject, title, description,

“inferenceengines′′ ∈ T and like ∈ PN . Alternatively, we could use variables as
placeholders for the relations and assign the concrete relation names to them as condi-
tions that use the equality predicate. The corresponding definition of the example query
would be

36 Jan 30, 2006 KWEB/2005/D2.1.2.2.v1/1.0



4. ROBUST QUERY PROCESSING FOR PERSONALIZED INFORMATION ACCESS

TRQ = {(Resource,R1, Subject),

(Resource,R2, T itle)

(Resource,R3, Description)},

PQ = {R1 = subject, R2 = title, R3 = description,

like(Subject, “inferenceengines”)}

whereResource, Subject, T itle,Description,R1, R2, R3 ∈ V, subject, title, descrip-
tion, ”inferenceengines” ∈ T andlike, =∈ PN . This later representation can be seen
as a normal form for queries that makes it easier to formulatere-writings in a general way.
For sake of readability we will refer in the following to the original form instead of the
normal form.

Based on the abstract definition of an RDF query, we can now definethe notion of a
rewriting rule and rewriting process as such. We define rewriting in terms of rewriting
rules that take parts of a query, in particular triple patterns and conditions, as input and
replace them by different elements.

Here we employ the principle of ECA-rules (event-condition-action rules) [18, 79] for
continuous relaxation of user queries. A rewriting rule formally consists of three parts:
a pattern, a replacementand someconditions. The pattern corresponds to the event,
i.e. in our case an occurrence of particular triple patternsor predicates in a query. The
replacement contains the terms which will substitute the matched pattern in a query; the
replacement can be seen as the action in the ECA principle. Conditions constrain the
rewriting and determine when particular rule can be fired because the rewriting rule can
only be applied if the conditions are satisfied. These conditions can be used to define
certain relaxation strategies. In particular, we will see later that conditions can be based
on user preferences or background knowledge about the domain.

Definition 5 (Rewriting Rule) A rewriting ruleR is a 3-tuple〈PA,RE,CN〉wherePA

andRE are RDF queries according to Definition 1 andCN is a set of predicates.

For conditions the same constructs as for queries are used where the possible results
are also constrained by predicates. Patterns and replacements formally have the same
structure like queries. They also consist of a set of triplesand predicates. But patterns
normally do not address complete queries but only a subpart of a query. Using this defin-
ition we can specify a rewriting rule that extends the simplequery in figure 4.1 with the
language preference of the user 42.

KWEB/2005/D2.1.2.2.v1/1.0 Jan 30, 2006 37



Realizing practical approximate and distributed reasoning IST Project IST-2004-507482

PA = ({(Resource, title, Subject)}, ∅)

RE = ({(Resource, title, Subject),

(Resource, language, Language)},

{Language = X})

CN = {languagePrefernce(User,X)}

wherelanguagePrefernce is a predicate which looks in his user profile for the language
preference ofUser who is in our case user 42.

While this example contained a rule for refining a query, we will see later that we can
use the same mechanism for defining relaxations on a query.

In general a rewriting rules is applicable to all queries which contain the pattern at least
as a part. The pattern does not have to cover the whole query. Normally it addresses some
triples as well as some predicates in the query. In order to write more generic rewriting
rules the pattern must be instantiated which is done by an substitution.

Definition 6 (Pattern Matching) A patternPA of a rewriting ruleR is applicable to a
queryQ = 〈TRQ, PQ〉 if there exists two subsetsTR′

Q ⊆ TRQ and P ′
Q ⊆ PQ and a

substitutionθ with 〈TR′
Q, P ′

Q〉 = θ(PA).

In contrast to term rewriting systems [5] the definition of a query as two sets of triples
and predicates simplifies the pattern matching, i.e. the identification of the right subpart
of the query for the pattern match. A subset of both sets has tobe determined which must
be syntactically equal to the instantiated pattern. Pleasenote that due to set semantics, the
triples and predicates in the pattern may be distributed over the query.

Now we will define how the new rewritten query is constructed with the help of the
rewriting rule and pattern matching.

Definition 7 (Query Rewriting) If a rewriting ruleR = 〈PA,RE,CN〉

• is applicable to a queryQ = 〈TRQ, PQ〉 with subsetsTR′
Q ⊆ TRQ andP ′

Q ⊆ PQ

and substitutionθ and

• θ(CN) is satisfied,

then the rewritten queryQR = 〈TRR
Q, PR

Q 〉 can be constructed withTRR
Q = TRQ\TR′

Q∪
θ(TRRE) andPR

Q = PQ \ P ′
Q ∪ θ(PRE) with RE = 〈TRRE, PRE〉.

Informally spoken, if the pattern match to a query and the conditions are satisfied then
the matched pattern is substituted by the replacement. Applied the above rewriting rule
for to the basic query we get the following refined rule:

Please note that the language preference of user 42 is “de” which means German.

38 Jan 30, 2006 KWEB/2005/D2.1.2.2.v1/1.0



4. ROBUST QUERY PROCESSING FOR PERSONALIZED INFORMATION ACCESS

4.4 Domain-Dependent Relaxation for Personalized Ac-
cess

The formal apparatus introduced in the previous section provides us with a general mech-
anism for refining and relaxing RDF queries based on certain patterns and conditions.
We have developed a specialized rule language that implements this mechanism which
we will discuss in this section. In order to successfully usethis language to relax over-
constraint queries, we need a strategy for successively applying relaxations in such a way
that we find answers that match the interests of the user as closely as possible and im-
plement it in terms of query rewriting rules. The main problem with this approach and
with query relaxation in general, is the fact that it is almost impossible to find generic
relaxation strategies that work well across different applications. A good strategy rather
depends on many factors including the nature of the information and the goals of the user.
A solution for this problem is to employ explicit knowledge to drive the relaxation of a
query. Corresponding to the factors that influence the usefulness of a strategy, there are
two sources of knowledge we use for relaxation:

• Domain and Application knowledge;

• Knowledge about the user and user preferences.

The former represents a domain knowledge about dependencies between predicates
and ordering according to their importance for queries within a domain. The second type
of knowledge concerns the interests of the users and his profile. For example, to correctly
determine the content of a resource in e-learning domain, weshould first look into the
subject, then the title, and finally the description in its metadata. This information can be
used to constrain rewriting rules for the subject of the target resource in the title of the
resource and the rule that looks for it in the description, ina way that the rewriting for title
is performed before the rewriting for the description. Therefore, the order of importance
between predicates in a domain serves as an order in which therewriting rules should be
applied. We will show later how this approach can be implemented using our rewriting
approach. Another example relates to the structuring of thedomain. If for example the
language of a learning resource is not mentioned in the metadata, we can for example
look at other learning resources that are part of the same course.

The second type of knowledge concerns the interests of the users. These interests
are hard to determine automatically as they are influenced bymany factors. A common
approach is to use an explicit model of user preferences in terms of a user model. In the
context of e-learning, this user model contains information about topics of user’s inter-
est, previous knowledge and preferences with respect to thetype and format of learning
resources, and so on.

As described in previous section, the rewriting rules are provided in terms of patterns
(events), conditions, and replacements (actions). Figure4.3 depicts a high level archi-

KWEB/2005/D2.1.2.2.v1/1.0 Jan 30, 2006 39



Realizing practical approximate and distributed reasoning IST Project IST-2004-507482

Environment
Preferences

Environment

preferences on classes
preferences on predicates

preferences on values

User Profile (e.g. Learning
Performance)

Domain
Knowledge

Conditions

ordering

ordering

ordering

Patterns
Replacements

(Actions)Queries

constraint constraint

eventoccurrence

change

Figure 4.3: An architectural view on the components used within the rewriting process

tectural view on our rewriting system. We employed the Unified Modeling Language
(UML) [39] package diagram. The boxes represent packages and the relations represent
dependencies between the packages. We assume a generic application environment where
presentation elements which are depicted at a user interface are characterized by an ontol-
ogy described in RDF/RDFS. This includes for example fill in input boxes to type search
terms, column descriptions in result sets, and so on. Each object of the user environ-
ment can be then described as an abstract environment concept which instantiates class,
predicates, or values from domain ontology used in an application. This is represented as
Environmentpackage in the figure 4.3. Such an approach to represent environment allow
us to express user preferences on the environment concepts by pointing to the environment
concepts, predicates and values. This is represented by anEnvironment Preferencespack-
age and corresponding dependencies to theEnvironmentpackage. User preferences can
be ordered by an importance relation. Thisordering together with the ordering derived
from other parts of user profile (User Profilepackage) and ordering inDomain Knowl-
edgeis used to generate conditions determining the order of relaxation steps (Conditions
package). The conditions constrain the query rewriting rules which consist ofPatterns

40 Jan 30, 2006 KWEB/2005/D2.1.2.2.v1/1.0



4. ROBUST QUERY PROCESSING FOR PERSONALIZED INFORMATION ACCESS

EnvironmentConcept

EnvironmentProperty

SubjectPredicate Instance rdf:Property

isa

EnvironmentClass

SubjectTerm Instance rdfs:Class

isa

EnvironmentPredicateLiteralValue

SubjectLiteral Any

isa

EnvironmentPredicateConceptValue

isa isa

Figure 4.4: A Schema for Generic Environment

andReplacements. The set of generated queries is represented as aQueriespackage in
figure 4.3. Theoccurrenceof a pattern in a query is a triggeringeventfor theReplace-
mentsactions. The set ofQueriesis dependent on the triggeredReplacements; i.e. the
replacementschangethe Queriespackage. Note that just a query which was produced
as a last one is considered in each step of rewriting process.The details of the packages
from the figure 4.3 are described in the following sections.

4.4.1 Environment and Preferences

In order to include knowledge about the domain of interest and the preferences of the user
into the query relaxation process, we have designed a general scheme for representing
relevant knowledge independent of a concrete application.This general scheme exploits
the meta-modeling capabilities of RDF to define aspects of theworld we can take into
account in the rewriting process (compare fig. 4.4).

The schema follows an idea, that each environment can be generated according to
an application domain schema used by the application. Ratherthan directly representing
domain knowledge or user preferences it provides metaclasses that can be instantiated
by existing representation schemes for information resources such as Learning Object
Metadata (LOM) [75] as well as metadata schemas like the Dublin Core standard [23], and
taxonomies and ontologies used for predicate values in the information resource schemas
such as ACM computing classification system [77].

Environment concept can be for example linked to a field on a user interface form
where the user can type a search term or it can be filled in with aclass from a taxonomy.
Such a generic environment schema provides us with a flexibility to describe any user
environment which is based on schemas. For example, an environment concept can model
a field on an entry form which is used to enter a subject term a user is searching for in the
metadata. Such a field will be an instance ofEnvironmentProperty class pointing

KWEB/2005/D2.1.2.2.v1/1.0 Jan 30, 2006 41



Realizing practical approximate and distributed reasoning IST Project IST-2004-507482

environmentpreferences:MeasuredEnvironme...

preferences:MeaseredPreference

preferences:PreferenceRankingMetricInstance preferences:Metric

preferences:PreferenceRankingValue Any

isa

environmentpreferences:EnvironmentPrefer...

environmentpreferences:EnvironmentItemInstance environment:EnvironmentConcept

isa

preferences:UserPreference

preferences:hasImportanceOverInstance* preferences:UserPreference

isaisa

preferences:hasImportanceOver*

environmentpreferences:LanguagePreferenc...

environmentpreferences:EnvironmentItemInstance environmentpreferences:LanguagePredicateLanguageConcept

isa

isa

Figure 4.5: A Schema for Environment User Preferences

to a dc:subject predicate of the Dublin core schema. An example of combined class and
predicate instance of an environment would be a predicate dc:subject with a class from a
taxonomy like ACM CCS as its value.

Another advantage of such a generic environment schema is that we can refer to en-
vironment concepts from user preferences. Figure 4.5 depicts a schema for environment
user preferences. Each user can express his level of preference for any environment con-
cept. This is reflected by theEnvironmentItem property of theEnvironmentUser-
Preference class. Classes for environment preferences are further specialized ac-
cording to which environment concept class is used to describe them. The level of a
user preference can be expressed as a value from a metric. This is modeled by the
MesuredPreference as a subclass of a user preference. The values from preference
measures can be used to order them, i.e. to deduce the ordering relations between prefer-
ence instances which is modeled byhasImportanceOver relation of user preference.
Besides the user preferences, we also consider schema of a user background. This is rep-
resented as a learning performance and skills gained by performing learning. We use our
schema for such a learner’s learning performance [22] wherethe learning performance is
described by a relation to learning competence, portfolioscreated and certificates gained
during/from learning activities which have been connectedto the learning performance.

To show a concrete instance of the environment preferences of a user, let us now
consider a situation where a user John prefers a German language. In addition, he has
attended two lectures, one on predicate logic and one on modal logic. An instance re-
flecting this situation described according to the environment user preference schemas is
depicted in figure 4.6. John has a profile User1. His profile points to two performance
objects: User1P1, and User1P2. The User1P1 is a performancerecord from the predi-
cate logic lecture where user learned about inference engines (I.2.3.2 of ACM CCS) and
backtracking (I.2.8.0 of ACM CCS). The User1P2 is a performancerecord from modal
logic lecture where user learner about the modal logic concepts (I.2.4.1 of ACM CCS).

42 Jan 30, 2006 KWEB/2005/D2.1.2.2.v1/1.0



4. ROBUST QUERY PROCESSING FOR PERSONALIZED INFORMATION ACCESS

User1LPDe

environmentpreferences:EnvironmentItem =EIdcLanguageDe

User1

hasPerformance =
User1P2

User1P1

hasIdentification = User1Id1

hasPreference = User1LPDe

hasPreference

EIdcLanguageDe

environment:SubjectPredicate =dc:language

environment:SubjectTerm = lang:de

environmentpreferences:EnvironmentItem

User1P1

papi_rdfs:learning_competency =
acmccs:I.2.3.2

acmccs:I.2.8.0

papi_rdfs:learning_experience_identifier =kbs:praedikatenlogik.pdf

hasPerformance

User1P2

papi_rdfs:learning_competency =acmccs:I.2.4.1

hasPerformance

User1Id1

UserName = JohnLearner

LastName = Learner

FirstName = John

hasIdentification

Figure 4.6: An Excerpt of Instance Examples for EnvironmentUser Preferences

The User1 profile also points to one preference object: User1LPDe. This is a language
preference referring to a German language (lang:de).

This explicit representation of user preferences based on elements from the domain
can be used to drive our rewriting process as it connects elements from the domain that
occur in query expressions with user preferences. Using thehasImportanceOver relation,
we can now decide which parts of an over-constrained query torelax first. By encod-
ing this connection in RDF, we can use RDF queries to determine these preferences and
specify the rewriting rules accordingly. In the following,we describe how preference
knowledge about the domain and user can be used to relax over-constrained queries in
our e-learning example.

4.4.2 Domain Knowledge and Relaxation

In general the rewriting is a very powerful approach in orderto manipulate the overcon-
strained query. With replacing parts of a query we can realize five types of actions:

• Making Triples/Predicates optional— this provides a query which considers a situ-
ation that some of the triples/predicates do not have to appear in metadata. A query

KWEB/2005/D2.1.2.2.v1/1.0 Jan 30, 2006 43



Realizing practical approximate and distributed reasoning IST Project IST-2004-507482

then gives also results where particular predicate relaxedto an optional predicate
does not occur;

• Replacing Value— this provides a query where particular predicate value is re-
placed with another value. Taxonomies may be used to providesiblings, more
general terms, and so on;

• Replacing quantifiers and operators— this provides a query where quantifiers (like
forall and exists) are replaced for each other. It also includes operators replacement
like AND for OR, equal for a range, and so on;

• Replacing Triples/Predicate— this provides a query where particular triple resp.
predicate in restrictions is replaced by another triple resp. predicate. A domain
knowledge is employed for this purposes. For example, if a subject query is not
satisfied, it may be replaced by title query with similarity measures;

• Deleting Triple/Predicate— this provides a query where particular predicate is
deleted from a query completely.

As such, these operations are independent of the application domain and the user
preference. A connection to the knowledge described above is made through the elements
of the query that are affected by the corresponding operation. In most cases, we can
identify a certain property that is affected. For example, in the learning environment a
user searches a resource with a specific subject. But if there is no resource with that
subject then we would like to relax the query that the subjectterm can also appear in
the title of a resource description. This strategy can be derived from an environment
preference stating that the ”subject” relation has the highest priority as it can be assumed
to most precisely reflect the content of a resource followed by the ”title” and finally the
”description” relation. In the environment preference model, this order is described in
terms of the hasImportanceOver relation. For the actual relaxation process each of these
relations is implemented by a rewriting rule. The fist rewriting rule for that relaxation is
specified in Figure 4.7.

Obviously, PATTERNdefines the pattern, theREPLACE-BYthe replacement, and
WITH the conditions for the rewriting. The pattern contains one triple and one predicate.
The triple{Resource } subject {Subject } looks for any resourceResource
with subjectSubject . The predicateSubject Like Value ˆˆ xsd:string con-
strains the variableSubject to the user’s term (Value of type string), i.e. the subject
the user is looking for. If a query contains such an triple andsuch an predicate then the
rewriting rule is applicable.

The replacement part of the rule defines how the matched triple and predicate has to
be replaced. The triple is extended by the second triple{Resouce } title {Title }.
The second triple now allows to refer to the title of a resource. The first triple about
the subject of the resource is not removed because there may be some other triples or

44 Jan 30, 2006 KWEB/2005/D2.1.2.2.v1/1.0



4. ROBUST QUERY PROCESSING FOR PERSONALIZED INFORMATION ACCESS

PATTERN
{Resource} subject {Subject}
WHERE
Subject Like Valueˆˆxsd:string,

REPLACE-BY
{Resource} subject {Subject},
{Resource} title {TMPTitle}
WHERE
TMPTitle Like NEWTitle

WITH
NEWTitle = concat(" * ",concat(Value," * "))

Figure 4.7: Simple rewriting rule

predicates in the query which may refer to the subject of the resource. But the predicate
is no longer needed and is completely substituted by the predicateTMPTitle Like
NEWTitle , which now try to constrain the title of the resource insteadof the subject. The
variableNEWTitle is determined in the conditions. With the build-in functionconcat
the value is prefixed and finished with a star which means that the title must only contain
the subject the user is looking for.

The rewriting rule from figure 4.7 can be applied to the query in Figure 4.2. The result
is shown in Figure 4.8. Note that now the query refer twice to the title of a resource. The
second reference was introduced by the rewriting.

SELECT * FROM
{Resource} subject {Subject},
{Resource} title {TMPTitle},

{Resource} title {Title},
{Resource} description {Description},
{Resource} language {Language},
{Resource} requires {} subject {Prerequisite},
{User} hasPerformance {} learning_competency {Competence}

WHERE
TMPTitle Like " * inference engines * ",
Prerequisite = Competence,
Language = de,
User = user42

Figure 4.8: Relaxed query extended with user preferences

KWEB/2005/D2.1.2.2.v1/1.0 Jan 30, 2006 45



Realizing practical approximate and distributed reasoning IST Project IST-2004-507482

4.4.3 User Preferences and Relaxation

Another kind of relaxation is the rewriting the overconstrained query according to the
knowledge about the user. In the learning scenario the user might prefer learning resources
in German but Dutch may also be okay. This knowledge is used torefine the query, i.e.
looking for resources in German. However if there is no resources in German then the
query can be relaxed according to user’s second preference.

As described above, our environment preference model allows user to specify an im-
portance order between predicates. In contract to the domain preferences mentioned in
the last section that can be specified inside the application, these preferences can be dif-
ferent for each user. As a consequence we have to provide an interface where each user
can specify his or her personal preferences that can then be stored in the user profile
(compare figure 4.6). A user interface for that is very simple, a slider is provided next to
each item at a user interface for specifying an importance ofthe predicate for a user. The
default slider positions are provided according to a default domain knowledge (compare
figure 4.10). Using our general environment model, these preferences can be used in the
same way as domain preferences once they have been entered bythe user. In particu-
lar, the hasImportanceOver relation then defines conditions which are satisfied just when
particular predicate is on its turn to rewrite it.

4.4.4 Conditions for User-constrained Relaxation.

Conditions play a crucial part for rewriting queries according to user’s preferences. They
can control when particular rewriting rule can applied.

Formally, conditions can be predicates where variables which are used in the pattern
and the replacement are set together with some built-in functions for manipulating strings
or numbers. The condition in the simple rewriting rule of Figure 4.7 is such an example;
the used predicate is equality. But a condition can also be a query which should return at
least one result in order to be satisfied and to bind variablesto the values returned by the
query. In this case, a query behaves like a normal predicate.But only the first result will
be used during the rewriting; further results will be ignored. We use such queries to refer
to users profile and user preferences.

An example is given in Figure 4.9. The rule try to relax user’sfirst language prefer-
ence to his second reference as stored in his profile. The condition of that rewriting rule
starts from the root of his profile (User ) to find his two preferencesPreference and
Preference2 whereas the first preference is preferred to the second preference (rela-
tion hasImportanceOver ). Both preferences refer to an environment item of type
EnvironmentPredi-
cateConceptValue with subjectTerm language . Their values are addressed in
the pattern resp. replacement. The value of the first preference is replaced by the value
of the second preference. The above rewriting rule can easily be generalized to a rewriting

46 Jan 30, 2006 KWEB/2005/D2.1.2.2.v1/1.0



4. ROBUST QUERY PROCESSING FOR PERSONALIZED INFORMATION ACCESS

PATTERN
{Resource} language {Language}
WHERE
Language = L,
User = UserID

REPLACE-BY
{Resource} language {Language}
WHERE
Language = L2,
User = UserID

WITH
SELECT * FROM

{User} hasPreference {Preference},
[{User} hasPreference {Preference2}],
{Preference} hasImportanceOver {Preference2},

{Preference} EnvironmentItem {Item},
{Item} type {EnvironmentPredicateConceptValue},
{Item} subjectPredicate {language},
{Item} subjectTerm {L},

{Preference2} EnvironmentItem {Item2},
{Item2} type {EnvironmentPredicateConceptValue},
{Item2} subjectPredicate {language},
{Item2} subjectTerm {L2}

WHERE
true

Figure 4.9: Rewriting rule for language preferences

for any value preference which the user related with the relationhasImportanceOver .
The condition then would be that the environment items of such preferences must not refer
to the subject predicatelanguage but only to the same predicate (which is represented
as a variable). So a variable instead of the literallanguage in the condition yields into
a general rewriting rule for value preferences.

4.4.5 Ordering different rewriting rules

Conditions help to control the application of rewriting rules because they can implement a
user-suggested ranking over the application of rewriting rules. For example, the rewriting
rules will first replace a value of predicate dc:language originally comparing to “German”
for value “Dutch” and then for value “English” for user preferring resources in German

KWEB/2005/D2.1.2.2.v1/1.0 Jan 30, 2006 47



Realizing practical approximate and distributed reasoning IST Project IST-2004-507482

before Dutch and Dutch before English.

However, there might be the problem that several rewriting rules are applicable to the
same query. This situation might happen for example if the user specifies just preference
order between values but does not specify an order between predicates. For example, he
can give an order between the languages and formats of resources but between predicates
for language or format. In that case, rewriting rules for relaxing the language and format
requirements are applicable at the same which can cause overrelaxation.

A second problem which is related to the ordering is termination of relaxation. An
interactive solution to these problems is letting the user decide which kind of relaxation
he prefers in particular situation. The rewriting rules show him his possibilities. For
example, [73] allows the user to select directions of relaxation and thus to indicate which
relaxed answers may be of interest.

A näıve but automated strategy may be controlled by the number ofreturned answers.
The number of results are counted globally; i.e. each relaxation step adds the number of
results to the global counter. If the number of answers reaches a threshold, the relaxation
is stopped. If any of the relaxation reaches the number of results greater then threshold
further relaxations are not considered.

More promising approaches uses top-k [27, 40, 16] or skylining [64, 62]. Top-k needs
a function which associates a ranking number with each answer. The k best answers then
are returned. Obviously, the function should operate independently from the relaxation
in order to select answers from different relaxations. Skylining assume several different
dimensions. It tries to return the best answers according toeach dimension. In this context
the dimensions are the different possibilities of relaxations. Skylined relaxation returns
the best answer from each possible relaxation.

4.5 Implementation Notes

We have implemented the rewriting approach as an extension of personalized search ser-
vice of personal learning assistant [21]. The prototype combines user preference elicita-
tion with user query formulation dialog. The original version of the personalized search
had just a query formulation for restrictions of subject of resources. We have extended the
user interface with generating environment based on the environment schema, a default
environment for novice users, and a user preference elicitation. A user interface of such a
personalization search environment is depicted in fig. 4.10.

The default environment consists of items for specifying subject concepts, title, de-
scription, and language as query literals. Each of the attributes on the user interface have
a preference elicitation slider. The slider is used to specify a value measuring an im-
portance of a preference of particular attribute to a user. These values are then used to
derive an order in which the attributes will be processed in the query rewriting; i.e. the or-
der of preference importance. In addition, user can specifyvalue preferences for attributes

48 Jan 30, 2006 KWEB/2005/D2.1.2.2.v1/1.0



4. ROBUST QUERY PROCESSING FOR PERSONALIZED INFORMATION ACCESS

Figure 4.10: A user interface for personalized search basedon user preferences

where a taxonomy of values is used. This is the case for example for language and subject
preferences. A button for opening a dialog where a user can specify the value preferences
and their order is provided where it is appropriate (e.g.Subject Values Preferencesbutton
or Language Preferencesbutton). The source of values for subject preferences is in our
case the ACM CCS taxonomy, used also for selecting concepts on the user dialogs. We
use standard set of language identifiers as a source for values for language preferences.
The value preference dialog displays a tree, a graph or a set of concepts with value labels
determining the importance of the preference. When a user points to a concept, a slide
bar is drilled down to change the preference importance value. If user needs to extend her
restrictions, he can do that by selecting from other schema attributes which are offered
when he pressesAdd Attributesbutton. The attributes which a user filled in on the user
interface are used to construct the restriction part of queries.

The query results interface is organized into sub views. Each step in query rewriting
results in separate html table with rows from the query result set. The most restricted
query results are on top following step by step the queries created by query rewriting
component.

The query results user interface is described using our environment ontology as well.
The environment contains the attributes which should be displayed on the user interface
for query results. These attributes are used in the projection part of the query (select
part). The recommendation strategy on results is kept, i.e.a user gets a recommendation
also based on the results according to her background knowledge as it was in the original

KWEB/2005/D2.1.2.2.v1/1.0 Jan 30, 2006 49



Realizing practical approximate and distributed reasoning IST Project IST-2004-507482

prototype. This is indicated by traffic light metaphor — recommended resources are
green, may be recommended resources are yellow, and not recommended resources are
red (see [21] for details).

User
Metadata

Personal Learning
Assistant ServicesLink Generation

Services

Recommendation
Services

Annotation
Services

Resource
Metadata

User
Interaction
Component

Resource
provider
database

Ontology Services

Learner

Repository Services

Query
Service

Query Rewriting
Services

Modification
Service

Figure 4.11: An architecture for personalized search basedon query rewriting adopted
from ([21])

Due to flexible architecture adopted from [21] (fig. 4.11), wehave just replaced the
components for query rewriting and repository access. The query rewriting component
is written in prolog, which understands the rewriting strategies written in the language
we have proposed here. In addition, the rewriting components take user preferences as
an input. The preferences are used to dynamically build the conditions determining the
order of the events to be fired; i.e. the order in which the rewriting rules are applied. We
have used Sesame RDF database as a repository service. We haveexperimented with two
metadata sets: the EU/IST Knowledge Web REASE (http://rease.semanticweb.org/ubp)
and metadata from ULI project (http://www.uli-campus.de/). We have imported metadata
from both repositories to the SESAME RDF database.

4.6 Related Work

Query relaxation have been studied in the context of cooperative query answering where
information systems explicitly attempt to cooperate with their users [28]. Relaxation is a
form of generalization where the scope of a query is extendedthrough rewriting so that
more information can be gathered in the answers. A query rewriting approach in deductive

50 Jan 30, 2006 KWEB/2005/D2.1.2.2.v1/1.0



4. ROBUST QUERY PROCESSING FOR PERSONALIZED INFORMATION ACCESS

databases with a help of specialized clauses is presented in[29]; if the head appears in
a query then the head is replaced by the body of the specialized clause. A variant is
presented in [30, 31] where users preferences are directly annotated to the logical atoms.

The work presented here shares the principle of query relaxation but proposes a frame-
work for the semantic web meta data. As we described in Section 4.2, the semantic web
environment differs from the databases in its less strict way of annotating the resources
and heterogeneity. Therefore, more dimensions of knowledge about where to find the
missing information have to be considered in a relaxation framework. Furthermore, our
approach is more expressive due to the fact that the pattern of a rewriting rule can refer to
more than one item [29] and use the more intuitive matching than unification.

Our approach also relates to term rewriting systems (see e.g. [5]) and graph transfor-
mation (see e.g. [82]) Our approach assumes the RDF queries where the set semantics of
triple patterns and the conditions simplify considerably the rewriting process.

Furthermore, query relaxation approaches based on query rewriting (and many term
rewriting approaches) proposed so far lack on conditionals. In our approach, we are able
to define conditions which guard rewriting that it can take place just when the condi-
tions are met. This allows us control the rewriting process.Moreover, with the help of
conditions in the rewriting rules we are able to incorporateuser profiles and user prefer-
ences which is separated from the data itself; annotating the RDF data of each distributed
resource directly with all user preferences as proposed by [29] is not applicable for the
semantic web.

Preference models have been studied in the fields of databases and artificial intelli-
gence. A foundation on preference models in database systems has been given in [61]. A
model for numerical and lexicographical preferences is given. An algebra which defines
modification operators for such preferences is given as well. The preference model we
have defined considers the partial order between several preferences similarly. We also
allow for the numerical preferences ratings which is storeddirectly from a position of
slider at the user interface. Contrary, we distinguish the predicate or schema preferences
from the value preferences and their order. This allows us toorder the relaxation steps in
a way given by the order of preferences.

A query relaxation approach for discovering web services matching user goals has
been proposed in [8]. They define preference model as a domainontology, similarly to
our approach. The approach differs in an algorithm for computing relaxation order. The
main difference is that the preference model does not deal with ordering between predi-
cates and values separately. It assumes them as bound together. Furthermore, it does not
consider any ordering relations between the predicates. The order of relaxation is then
computed according to combinations provided as levels. Thelevels are computed accord-
ing to siblings in preference ontologies which are considered in several query predicates.
As oppose, in our approach we consider order between the predicates and values sepa-
rately. This gives us more informed strategy for computing order of relaxation steps.

Our environment and preference ontology relates to the workon CP-NETs [14] and

KWEB/2005/D2.1.2.2.v1/1.0 Jan 30, 2006 51



Realizing practical approximate and distributed reasoning IST Project IST-2004-507482

TCP-NETs [15] in artificial intelligence. The formalism allows to specify importance
over variables and values as in our approach. This means thatthe model for environment
preferences using semantic web formalism is transformableto the TCP-NETs. This al-
lows to employ a reasoning about ceteris paribus used in preference models based on the
TCP-NETs. In our approach, we have used the preference model for query approximation
based event-condition-action and term rewriting system.

4.7 Conclusions and Further Work

In this chapter, we have proposed a framework for query relaxation to provide personal-
ized information access to resources on the semantic web. The framework is based on
the event-condition-action (ECA) paradigm where events arematching patterns, condi-
tions are based on ordering between concepts of common sensedomain knowledge and
user preferences, and actions are the replacements for relaxing a query. The relaxation
is based on the term rewriting principles enhanced with conditions provided by the ECA
paradigm. This integration is a contribution to the term rewriting domain. The relaxation
is controlled by conditions from domain and user preferenceontology. The order is given
by importance of predicates and values in the ontology for environment preferences, user
profile, and common sense domain knowledge. This makes the approach very well suit-
able for the access to metadata on the semantic web as the domain knowledge helps to
overcome the fact of heterogeneity and differences in how the metadata are authored on
the semantic web.

In our further work, we would like to concentrate on orderingof the different rewrit-
ing possibilities and the algorithms for determining termination of relaxation. We have
considered several strategies in this chapter but it requires further studies to give a recom-
mendation how to decide among them. We also would like to experiment with different
user preference models and how they contribute to the relaxation process. Last but not
least, user preference elicitation methods and techniquesneeds to be studied to get as ac-
curate user preferences as possible to support personalized access to information on the
semantic web.

52 Jan 30, 2006 KWEB/2005/D2.1.2.2.v1/1.0



Chapter 5

DRAGO - Scalable Distributed
Reasoning and Applications

by LUCIANO SERAFINI & ANDREI TAMILIN

In this chapter, we overview the theoretical and practical basis of distributed reasoning
platform DRAGO (Distributed Reasoning Architecture for a Galaxy of Ontologies)1 for
dealing with multiple distributed ontologies interrelated by semantic links.

In particular:

• we start with a motivation of DRAGO for the semantic web and introduce its high
level architectural vision;

• we recall major definitions of Distributed Description Logics framework (DDLs)
[10, 87]. This framework forms a theoretical foundation forcapturing the case of
multiple ontologies interrelated by semantic links;

• we describe the intuitions and formal algorithms for performing distributed reason-
ing and simple distributed instance retrieval in DDLs;

• we describe the design and implementation principles of DRAGO reasoning plat-
form which implements the distributed reasoning and querying algorithms for the
case when ontologies are expressed in OWL [9] and interrelated by semantic links
in C-OWL [11, 12];

• we give a simple working scenario describing the use of DRAGOin a step-by-step
manner;

• we enumerate several applications of DRAGO for the semanticweb;

• and finally we conclude and highlight the future directionsto be taken.

1http://trinity.dit.unitn.it/drago

53



Realizing practical approximate and distributed reasoning IST Project IST-2004-507482

5.1 Motivation and Vision

Ontologies have been advocated as the basic tools to supportinteroperability between dis-
tributed applications and web services [2]. The basic idea is that different autonomously
developed applications can meaningfully communicate by using a common repository of
meaning, i.e., a shared ontology. The optimal solution obviously lies in having a unique
worldwide shared ontology describing all possible domains. Unfortunately, this is non
achievable in practice. The actual situation on the web is characterized by a prolifera-
tion of different ontologies. Each ontology describes a specific domain from different
perspectives and at different level of granularity so that.This fact inevitably leads to a
heterogeneitybetween ontologies describing even the very same domain. Asa conse-
quence, the initial problem of application interoperability passes to the level of ontology
interoperability. Although the semantic standardizationis far to be reached, the syn-
tactic standardization is almost there, as it is widely accepted that ontologies should be
expressed in OWL language, which is a variation of a descriptive language [9].

The common approach for enabling ontology interoperation is based on the definition
of semantic relations between entities belonging to different ontologies, called asemantic
mapping. A simple example of semantic mapping is the one stating thatthe conceptStu-
dent in one ontology is more specific than the conceptPerson of another ontology. So far,
several proposals of languages for expressing semantic mappings have been done. Some
of them have a well-defined formal semantics, for example C-OWL[11], E-connected
OWL [36]. Examples of less formally grounded proposals are RDFTransformation [78]
and MAFRA Semantic Bridge Ontology [69].

Given this situation, one of the challenges on the semantic web is of being able to deal
with a large number of overlapping and heterogeneouslocal ontologies. We use the term
“local” to stress the fact that each ontology describes a domain of interest from a local
and subjective perspective. One of the most crucial aspectsof ontology management on
the semantic web is the capability of providing reasoning and querying services. Due
to that fact, the problem ofreasoningwithin and queryingover a web of distributed,
heterogeneous, and overlapping local ontologies interrelated by semantic mappings is of
significant importance for enabling the practical semanticweb.

Most of state of the art formalizations of that problem are based on the notion of a
global ontologythat allows to uniformly represent a set of local ontologiesand seman-
tic relations between them. In these approaches, reasoningin a set of local ontologies is
rephrased into a problem of reasoning in the global ontologyusing state of the art reason-
ers [43, 51, 34].

The approaches based on the global ontology, however, present several main draw-
backs. First, from a computational complexity point of viewit is more convenient to keep
the reasoning as much local as possible, exploiting the structure provided by semantic
relations for the propagation of reasoning through the local ontologies. Some intuition
in this direction can be found in the computational complexity results for satisfiability in
Multi-Context Systems described in [88]. Second, the reasoning procedure that has to be

54 Jan 30, 2006 KWEB/2005/D2.1.2.2.v1/1.0



5. DRAGO - SCALABLE DISTRIBUTED REASONING AND APPLICATIONS

Reasoning

Peer


Reasoning

Peer


Reasoning

Peer


- ontology
 - semantic mapping

 
 


Figure 5.1: DRAGO reasoning architecture for the semantic web

implemented in the global ontology should be capable of dealing with the most general
local language, whereas having a some distributed approachwould allow to apply to every
local ontology the specific local reasoner, optimized for the local language.

To overcome the pointed out disadvantages of global reasoning approach we pursue an
alternative technique, which is based on thedistributed contextual reasoning paradigm.
Namely, the reasoning with multiple ontologies is proposedto be accomplished through
a suitable combination, via semantic mappings, of local reasoning chunks, internally ex-
ecuted in each distinct ontology.

For enabling the distributed reasoning we propose an architecture called DRAGO
(Distributed Reasoning Architecture for a Galaxy of Ontologies). From the architectural
point of view, our vision is inspired by general peer-to-peer paradigm and particular dis-
tributed knowledge management architectures, such as the ones proposed in SWAP [24]
and Edamok [71] projects, and by C-OWL language [11].

As depicted on Figure 5.1, DRAGO envisages a web of ontologiesbeing distributed
amongst a peer-to-peer network ofDRAGO Reasoning Peers(hereafter, DRP). The role of
a DRP is to provide reasoning and querying services for ontologies registered to it, as well
as to request reasoning and querying services of other semantically related peers. The key
difference of DRP from standard ontology reasoners (non distributed) is that it registers
not just a stand alone ontology, but an ontology coupled witha set of semantic mappings.
The reasoning and querying services provided by a DRAGO peer can be subdivided into
two groups: (1)local, when semantic mappings are ignored, and (2)distributed, when
behind a local ontology the semantically related ontologies are considered.

KWEB/2005/D2.1.2.2.v1/1.0 Jan 30, 2006 55



Realizing practical approximate and distributed reasoning IST Project IST-2004-507482

5.2 Distributed Description Logics Framework

Distributed Description Logics (DDLs) is a framework designed to formalize the case of
multiple ontologies interconnected by semantic mappings.In this section, we recall the
definitions of DDLs as given in [10, 87].

5.2.1 Syntax and Semantics of DDLs

Given a setI of indeces enumerating ontologies, a DDL is a collection of description
logics {DLi}i∈I corresponding to each ontology. We will denote a T-box ofDLi asTi

and an A-box asAi. The semantic mapping between ontologies are expressed as “bridge
rules” between pairs of connects belonging to different ontologies.

A bridge rule fromi to j is an expression of the following two forms:

i : x
⊑
−→ j : y – aninto-bridge rule

i : x
⊒
−→ j : y – anonto-bridge rule

wherex, y are concepts or individuals belonging toDLi andDLj respectively. The de-
rived bridge rulei : x

≡
−→ j : y can be defined as a conjunction of the corresponding

into- and onto-bridge rule.

Despite this general form allowing for unrestricted mix of concepts with individuals,
e.g., nominals (classes with a singleton extension), in this chapter, we restrict the bridge
rules to be expressions connecting only pairs of concepts. Therefore, bridge rules are
allowed to connect only terminological parts of two DLs (ontologies). Moreover, we
will prohibit the use of nominals in component logicsDLi of DDLs. This restriction is
motivated by the hardness of dealing with nominals even in case of standard Description
Logics [98, 99].

Bridge rules fromi to j express relations betweeni andj viewed from thesubjective

point of view of thej-th ontology. For example, the into-bridge rulei : C
⊑
−→ j :

D intuitively says that, from thej-th point of view, the individuals in conceptC in i

correspond (via an approximation introduced by an implicitsemantic domain relation) to
a subset of the individuals in its local conceptD.

A distributed T-box (DTBox)T = 〈{Ti}i∈I ,B〉 consists of a collection of T-boxes
{Ti}i∈I and a collection of bridge rulesB = {Bij}i6=j∈I between pairs of corresponding
T-boxes.

A bridge graphGT of a DTBoxT is a directed graph with an arc fromi to j exactly
when the set of bridge rulesBij is non-empty.

In order to express correspondences between semantically related heterogeneous in-
dividuals between A-boxes, we follow the approach of introducing the individual-level
equivalent of bridge rules:

i : x 7→ j : y – anindividual correspondence

56 Jan 30, 2006 KWEB/2005/D2.1.2.2.v1/1.0



5. DRAGO - SCALABLE DISTRIBUTED REASONING AND APPLICATIONS

i
 j


T
-
box
i
 T
-
box
j

ß
ij


r
ij


A-
box
i
 A
-
box
j
C
ij


 
 


Figure 5.2: Graphical intuition of Distributed Description Logics framework

wherex, y are individuals ofAi andAj respectively.

Similarly to bridge rules, individual correspondences from i to j reflect a subjective
point of view of thej-th ontology. For example, the correspondencei : a 7→ j : b

intuitively expresses that according toj-th point of view, the individualb is one of the
possible translations of the foreign individuala in the local domain ofj. Notice, that this
definition admits multiple translations of foreign individuals, i.e., one can simultaneously
havei : a 7→ j : b andi : a 7→ j : b′.

A distributed A-box (DAbox)A = 〈{Ai}i∈I ,C〉 consists of a collection of A-boxes
{Ai}i∈I and a collection of individual correspondencesC = {Cij}i6=j∈I between pairs of
corresponding A-boxes.

A distributed knowledge base (DKB)K = 〈T,A〉 is then a pair containing a distributed
T-box and a distributed A-box.

The semantics of DDLs, graphically depicted on Figure 5.2, locally interprets each
ontology by a standard Description Logics interpretation on its local domain. Since local
domains∆i may be heterogeneous, the semantic correspondences between heterogeneous
domains are modeled using so called domain relationrij from ∆i to ∆j and defined as a
subset of∆i ×∆j. For instance, if∆1 and∆2 are the representation of time as Rationals
and as Naturals,r12 could be the round off function, or some other approximationrelation.

A distributed interpretationI = 〈{Ii}i∈I , {rij}i6=j∈I〉 of a DKBK = 〈T,A〉 a consists
of local interpretationsIi for eachDLi on local domains∆Ii and a family of domain
relationsrij between these local domains.

KWEB/2005/D2.1.2.2.v1/1.0 Jan 30, 2006 57



Realizing practical approximate and distributed reasoning IST Project IST-2004-507482

To deal with possible inconsistencies, DDLs utilizes the notion of a special non-
classical interpretationIǫ, called a hole (see [87] for details), that interprets everyconcept
or role in the empty set. The hole satisfies any statement of knowledge base, even classi-
cally unsatisfiable (inconsistent). To highlight that distributed interpretationI can contain
holes, we will subscript the inferences w.r.t.I with a symbol “ǫ”.

A distributed interpretationI is said to satisfy (writtenI |=ǫ) the elements of distrib-
uted T-boxT if

• Ii |=ǫ A ⊑ B for all A ⊑ B in Ti

• I |=ǫ i : A
⊒
−→ j : G, if rij(A

Ii) ⊇ GIj (A,G are concepts ofTi, Tj)

• I |=ǫ i : B
⊑
−→ j : H, if rij(B

Ii) ⊆ HIj (B,H are concepts ofTi, Tj)

• I |=ǫ T, if for every i, j ∈ I, I |=ǫ Ti andI |=ǫ Bij

Finally, T |=ǫ i : C ⊑ D if for every I, I |=ǫ T impliesI |=ǫ i : C ⊑ D. We say
thatT is satisfiableif there exists aI such thatI |=ǫ T. Concepti : C is satisfiablewith
respect toT if there is aI such thatI |=ǫ T andCIi 6= ∅.

Concerning the assertional part, a distributed interpretation I is said to satisfy the
elements of distributed A-boxA if

• Ii |=ǫ C(a), Ii |=ǫ R(a, b) for all assertionsC(a), R(a, b) in Ai

• I |=ǫ i : a 7→ j : b, if
〈

aIi , bIj
〉

∈ rij (a, b are individuals ofAi,Aj)

• I |=ǫ A, if for every i, j ∈ I, I |=ǫ Ai andI |=ǫ Cij

Finally,A |=ǫ i : C(a) (A |=ǫ i : R(a, b)) if for everyI, I |=ǫ A impliesI |=ǫ i : C(a)
(I |=ǫ i : R(a, b)). We say thatA is consistentif there exists aI such thatI |=ǫ A.

A statementα is entailed by the distributed knowledge baseK = 〈T,A〉 (written
K |=ǫ) iff for every distributed interpretationI, if I |=ǫ T andI |=ǫ A, thenK |=ǫ α.

5.2.2 Properties of DDLs

In the following, we intuitively recall paradigmatic properties of DDLs that are desirable
for multi-ontology environments. For the formal description of properties we refer an
interested reader to [10, 87].

Knowledge propagation Bridge rules from a source ontologyi to a target ontologyj
constitute asemantic channelfrom i to j which allows ontologyj to access and
import knowledge from ontologyi. In particular, bridge rulespropagateacross

58 Jan 30, 2006 KWEB/2005/D2.1.2.2.v1/1.0



5. DRAGO - SCALABLE DISTRIBUTED REASONING AND APPLICATIONS

ontologies a terminological knowledge in form ofsubsumption axioms. Also, a
combination of bridge rules with individual correspondences propagate across on-
tologies an assertional knowledge in form ofconcept membership assertions.

Directionality Bridge rules fromi to j support knowledge propagationonly in such a
direction fromi towardsj.

Isolation If there are no bridge rules that go fromi towardsj, thenj is not affected by
i. This says that an ontology without incoming bridge rules isnot affected by other
ontologies. Vice versa, an ontology without outgoing bridge rules does not affect
the other ontologies.

Localized inconsistencyThe inconsistency of one ontology, or some subgroup of con-
nected ontologies, does not automatically render theentiremulti-ontology environ-
ment inconsistent.

5.3 Distributed Reasoning in DDLs

Reasoning is the fundamental process of discovering facts entailed by knowledge base.
Although both in DLs and DDLs the fundamental reasoning tasklays in a verification
of concepts subsumption, in DDLs, besides the ontology itself, the subsumption depends
also on other ontologies that affect it through the semanticmappings. In this section, we
describe a decision procedure that computes DDLs subsumption and a distributed tableau
reasoning algorithm for determining whetherT |=ǫ i : A ⊑ B.

5.3.1 Subsumption Propagation Mechanism

Before turning to the description of decision procedure, letus first recall a DDLs sub-
sumption propagation mechanism that constitutes the main reasoning step in DDLs. The
basic idea is that a combination of onto- and into-bridge rules allows for directional prop-
agating the terminological knowledge across ontologies inform of DL subsumption ax-
ioms.

Formally this reasoning pattern is formulated according tothe following proposition:

Given a distributed T-boxT = 〈{Ti}i∈I , {Bij}i6=j∈I〉, if Bij containsi : A
⊒
−→ j : G and

i : Bk
⊑
−→ j : Hk for 1 ≤ k ≤ n andn ≥ 0, then:

T |=ǫ i : A ⊑
n

⊔

k=1

Bk =⇒ T |=ǫ j : G ⊑
n

⊔

k=1

Hk (5.1)

where
⊔0

k=1 Dk denotes⊥. Figure 5.3 depicts this result for the case of simple distributed
T-boxT12 = 〈{T1, T2},B12〉 when a single pair of into-onto-bridge rules specified.

KWEB/2005/D2.1.2.2.v1/1.0 Jan 30, 2006 59



Realizing practical approximate and distributed reasoning IST Project IST-2004-507482

1:A


  1:B


2:G


2:H


isA
 isA


T
-box 1
 T
-box 2


 
 


Figure 5.3: Example of subsumption propagation in DDLs (inferred subsumption is
dashed)

Taking this reasoning pattern allows to define abridge operatorwhich encapsulates
the subsumption axioms that has propagated via bridge rules.

Given a set of bridge rulesB12 fromDL1 toDL2, thebridge operatorB12(·), taking
as input a T-box inDL1 and producing a T-box inDL2, is defined as follows:

B12(T1) =















G ⊑
n

⊔

k=1

Hk

∣

∣

∣

∣

∣

∣

∣

∣

T1 |= A ⊑
⊔n

k=1 Bk,

1 : A
⊒
−→ 2 : G ∈ B12,

1 : Bk
⊑
−→ 2 : Hk ∈ B12,

for 1 ≤ k ≤ n, n ≥ 0















Notationally,
⊔0

k=1 Dk expresses⊥. It is also remarkable that these are essentially
all the inferences that one can get according to the semantics ofDDLs with holes. Thus,
given a distributed T-boxT12 = 〈T1, T2,B12〉 we have thatT12 |=ǫ 2 : X ⊑ Y if and only
if T2 ∪B12(T1) |= X ⊑ Y .

For arbitrary familyB = {Bij}i,j∈I of bridge rules, we can then compose a combined
new operatorB on a family of T-boxes as follows:

B({Ti}i∈I) =

{

Ti ∪
⋃

j 6=i

Bji(Tj)

}

i∈I

If I is finite and eachBij is finite, then there is a positive integerb such that for every
family of T-boxesT, Bb(T) = Bb+1(T). Let us then defineB∗(T) asBb(T), whereb is
the first positive integer such thatBb(T) = Bb+1(T). Furthermore letBb+1(T)i, be the
i-th T-box inBb+1(T).

Finalizing description of subsumption propagation, we canstate the correctness and
completeness of the defined operator. Formally, for anyT = 〈T,B〉, T |=ǫ j : X ⊑ Y if
and only if thej-th T-box ofB∗(T) entailsX ⊑ Y .

60 Jan 30, 2006 KWEB/2005/D2.1.2.2.v1/1.0



5. DRAGO - SCALABLE DISTRIBUTED REASONING AND APPLICATIONS

5.3.2 Distributed Tableaux Algorithm for DDLs

To simplify the description, we suppose that local ontologies are expressed in (a subset
of) theSHIQ language — one of the most widely known DLs. Also, we will assume
that the consequences of bridge rules are atomic names. Thislast condition can easily
be achieved by introducing, through definitions, names for the consequent concepts. We
need the usual notion of axiom internalization, as in [53]: given a T-boxTi, the concept
CTi

is defined asCTi
=

d
E⊑D∈Ti

¬E ⊔D; also, the role hierarchyRTi
contains the role

axioms ofTi, plus additional axiomsP ⊑ U , for each roleP of Ti, with U some fresh
role.

The algorithm for testingj-satisfiability of a concept expressionX (i.e., checking
T 6|=ǫ j : X ⊑ ⊥) builds, as usual, a finite representation of a distributed interpretationI,
by running localautonomousSHIQ tableaux procedures to find each local interpretation
Ii of I.

For eachj ∈ I, the functionDTabj takes as input a concept expressionX and tries to
build a representation ofIj with XIj 6= ∅ (called acompletion tree[53]) for the concept
X ⊓ CTj

⊓ ∀U.CTj
, using theSHIQ expansion rules, w.r.t. the role hierarchyRTj

, plus
the following additional “bridge” expansion rules:

Unsat-Bij-rule

if 1. G ∈ L(x), i : A
⊒
−→ j : G ∈ Bij, and

2. IsSati(A ⊓ ¬
⊔

B
′) = False, for someH′ 6⊆ L(x),

then L(x) −→ L(x) ∪ {
⊔

H
′}

New-Bij-rule

if 1. G ∈ L(x), i : A
⊒
−→ j : G ∈ Bij, and

2. B ⊆ {B|i : B
⊑
−→ j : H ∈ Bij}, and

3. for noB
′ ⊆ B is IsSati(A ⊓ ¬

⊔

B
′) = False, and

4. for noB
′ ⊇ B is IsSati(A ⊓ ¬

⊔

B
′) = True, then

if DTabi(A ⊓ ¬
⊔

B) = Satisfiable
thenIsSati(A ⊓ ¬

⊔

B) = True
elseIsSati(A ⊓ ¬

⊔

B) = False

The idea, inspired by bridge operatorBij(·), is that wheneverDTabj encounters a
nodex that contains a labelG which is a consequence of an onto-bridge rule, then if
G ⊑ ⊔H is entailed by the bridge rules, the label

⊔

H, is added tox. To determine if
G ⊑ ⊔H is entailed by bridge rulesBij, DTabj invokesDTabi on the satisfiability of the
conceptA ⊓ ¬(⊔B). DTabi will build (independently fromDTabj) an interpretationIi,
as illustrated in Figure 5.4. To avoid redundant calls,DTabj caches the calls toDTabi

in a data structureIsSati, which caches the subsumption propagations that have been

KWEB/2005/D2.1.2.2.v1/1.0 Jan 30, 2006 61



Realizing practical approximate and distributed reasoning IST Project IST-2004-507482

x
 L
(
x
) = {
X
}


SHIQ
expansion rules


y
 L
(
y
) = {
G
, 
…

H
1
 H
2
}


DTab
j
(
X
)
DTab
i
(
A
 (
B
1
 B
2
))


B
ij


L
(
z
) = {
A
 (
B
1
 B
2
)}
 z


}

Clash
 L
(
y
) = {
G
, 
…
,


Figure 5.4: Illustrative step of the distributed tableaux algorithm: subsumption propaga-

tion forced by bridge rulesi : A
⊒
−→ j : G, i : B1

⊑
−→ j : H1 and i : B2

⊑
−→ j : H2

computed so far. Specifically, for everyC, IsSati(C) will be set toTrue/Falsewhenever
T 6|=ǫ i : C ⊑ ⊥ is determined.

Note, that the construction of the distributed interpretation can be parallelized, as
each local tableau procedure can run independently from theothers, without checking for
standard blocking conditions with nodes generated by the other local tableau.

The proposed distributed tableaux algorithm can be easily generalized for the case of
arbitrary distributed T-boxes. To prevent infinite loopingdue to the cycles in the bridge
graph, the satisfiability requests are named with anid. Later on, the sameid is used for
naming all initiated satisfiability subqueries. Doing so allows to distinguish that a certain
satisfiability requestj : X1 is a consequence of initial satisfiability requestj : X and thus
needs to be properly handled, e.g., blocked. This later means that a satisfiability request
should never generate itself.

What does it mean that a certain satisfiability request “returned back” through the
cyclical bridge rules? – It means that the request couldn’t be closed locally in none of the
local tableaux and bridge rules do not propagate any contradiction.

Every tableaux procedureDTabj, therefore, is extended to take as input parameters
a concept expressionX and an identifieridX , i.e., DTabj(X, idX). Before applying
tableaux rules described above,DTabj checks whetherX has been already asked and
if so returns immediatelySatisfiable. Otherwise the tableaux rules are applied and when-
ever necessaryDTabi(. . . , idX) is invoked with the same identifier.

It worth stressing out that a localized inconsistency property of DDLs (see Section
5.2.2) is automatically reflected by the specified distributed tableaux. Indeed, the dis-
tributed tableaux procedure, sayDTabj, takes into account only thoseDTabi that return

62 Jan 30, 2006 KWEB/2005/D2.1.2.2.v1/1.0



5. DRAGO - SCALABLE DISTRIBUTED REASONING AND APPLICATIONS

Unsatisfiable, whereas a reasoner for an inconsistent ontology will always replySatisfi-
ableand thus will have no effect.

5.4 Distributed Query Answering in DDLs

The query answering is a second crucial requirement to ontology technology on the se-
mantic web. One of the simple ontological queries defined in standard Description Logics
is aninstance retrieval, i.e., finding all instances of a particular concept. Intuitively for the
case of multi-ontology environments, to guarantee the completeness of instance retrieval,
besides locally retrieved instances one should also retrieve instances of other semantically
related ontologies.

To clarify the idea of distributed instance retrieval, let us consider a simple scenario.
The human resource offices of a university and one of its department utilize ontologies
for describing research staff. The university exploits ontologyOUni, while the department
usesODept. The obvious overlap of the domains of interest in both ontologies occurs
since every person that works in the department belongs to the university. However, let
us additionally suppose thatOUni instantiates its conceptPersonContact in the domain
of personal e-mails, whileODept, respectively, instantiates its conceptPersonContact in
the domain of world wide web personal homepages.

When the ontology of the university is asked for all personal contacts, to guarantee a
complete answer, this query should be propagated to the departmental ontology expanding
the result set. However, since instantiations of semantically related concepts are expressed
using different “formats”, one needs a mechanism of semantic preserving instance trans-
formation. In our example, when retrieving instances ofPersonContact in OUni, i.e.,
contacts of the university staff, besides locally found e-mails one should also augment
the response by retrieving the instances ofPersonContact in ODept, i.e., personal home-
pages, and further project them into domain ofODept, i.e., “visit” every homepage found
and extract, if any, personal e-mails from the pages.

In this section, we analyze the semantics of bridge rules andindividual correspon-
dences in order to understand their operational behavior w.r.t. propagating the assertional
knowledge. Later on, this will allow us to define the distributed instance retrieval algo-
rithm.

5.4.1 Assertional Propagation Mechanism

As we could see in Section 5.3, bridge rules constitute the channel for propagating across
ontologies the knowledge in form of subsumption axioms. In order to get the intuition of
the affect Let us now investigate the consequence of bridge rules and individual correspon-
dences in order to understand their affect on assertional part of knowledge in distributed
knowledge base. We visualize on Figure 5.5 the semantics given to bridge rules in DDLs:

KWEB/2005/D2.1.2.2.v1/1.0 Jan 30, 2006 63



Realizing practical approximate and distributed reasoning IST Project IST-2004-507482

i:
A
 j
:G


r
ij

A
 G


I
i
 I
j


i
 j


 
 


(a) Onto-bridge rule

i
 j


r
ij
B


H


i:B
 j
:H


I
i


I
j


 
 


(b) Into-bridge rulêA

Figure 5.5: Visualized semantics of bridge rules in DDLs

1:B
 2:H

T
-box 1
 T
-box 2


A
-box 1
 A
-box 2


isInstanceOf
 isInstanceOf

r
12


1:b
 2:h

 
 


Figure 5.6: Concept membership propagation in DDLs (inferred assertion is dashed)

The special role of into-bridge rules can be intuitively grasped from these visualiza-
tions. Indeed, the semantics of into-bridge rule depicted on Figure 5.5(b) says: if in on-
tology i a conceptB has an instanceb then in ontologyj there should exist such instance
h of H that a pair

〈

bIi , hIj
〉

belongs to the domain relationrij.

Formally this intuition can be stated as an assertional propagation pattern: Given a

distributed knowledge baseK = 〈T,A〉, if Bij containsi : B
⊑
−→ j : H andCij contains

i : b 7→ j : h, then:

K |=ǫ i : B(b) =⇒ K |=ǫ j : H(h) (5.2)

The result of applying the pattern (5.2) to DDLs describing two populated ontologies
can be depicted graphically as given on Figure 5.6.

According to the semantics of individual correspondence,i : b 7→ j : h means that
the pair of individuals

〈

bIi , hIj
〉

belongs to the domain relationrij. On one hand, to
have a complete set of individual correspondences a knowledge engineer should take all
individualsx of ontologyi, find all semantically corresponding individualsy in ontology
j, and explicitly specify thati : x 7→ j : y (extensional approach). On the other hand,

64 Jan 30, 2006 KWEB/2005/D2.1.2.2.v1/1.0



5. DRAGO - SCALABLE DISTRIBUTED REASONING AND APPLICATIONS

one can imagine a more compact definition, when an engineer specifies a transformation
relationfij that allows to transform a set of individuals fromi to individuals ofj such that
their interpretations respect the semantics of domain relation rij. In this later option, we
can reformulate the pattern (5.2):

Given a distributed knowledge baseK = 〈T,A〉 and a set of transformation relations

fij, if Bij contains an into-bridge rulei : B
⊑
−→ j : H, then:

K |=ǫ i : B(b) =⇒ K |=ǫ j : H(fij(b)) (5.3)

Consequently, we can give another reading to Figure 5.6. I.e., instanceh was injected
into A-boxA2 with an assertion2 : H(h) as a result of propagation via transformation of

assertion1 : B(b) fromA1 along the into-bridge rulei : B
⊑
−→ j : H.

It should be stressed again that a transformation relationfij plays a similar role on the
level of individuals in A-boxes that the domain relationrij plays on the level of interpreta-
tion domains. However, since DL interpretation function maps individuals into elements
of domain we can roughly think of the transformation relation as of a partial specification
of the domain relation.

5.4.2 Distributed Instance Retrieval in DDLs

Given a distributed knowledge baseK = 〈T,A〉, a distributed retrieval of instancesof
a conceptD in ontology i is a task of finding all individualsx that instantiateD, i.e.,
K |=ǫ i : D(x). For the sake of simplicity, we will consider only the possibility to retrieve
instances of named concepts, leaving for the future work dealing with instance retrieval
of complex concept expressions.

Our proposal consists in building an instance retrieving mechanism for DDLs on top of
standard DLs instance retrieval algorithms. We will describe the intuition of the algorithm
for the case of distributed knowledge base with only two constituent ontologies, i.e., when
K = 〈T,A〉 = 〈〈{T1, T2},B12〉 , 〈{A1,A2},C12〉〉. Due to the direction of bridge rules
from 1 to 2, we will denote ontology〈T1,A1〉 as asourceontology, and〈T2,A2〉 as a
targetontology.

We will also put some restrictions on a structure of A-boxesA1,A2 admitting only
those logics that enjoy the property of reduction reasoningwith instances to a pure ter-
minological reasoning (see [97, 96, 50] for more details). This will allow us to complete
the part of local instance retrieval with simple sound and complete instance retrieval al-
gorithms defined for these logics.

The terminological propagation results in refining a concept taxonomy of target on-
tology according to the pattern (5.1). Hereafter, we will refer to a taxonomy built with
respect to the terminological propagation as adistributed taxonomyand a reasoner capa-
ble of that functionality as adistributed terminological reasoner.

KWEB/2005/D2.1.2.2.v1/1.0 Jan 30, 2006 65



Realizing practical approximate and distributed reasoning IST Project IST-2004-507482

The assertional propagation reveals in either (a) asserting new concept membership
for existing individuals of target ontology when a pattern (5.2) is used, or (b) injecting
new individuals to target ontology in accordance with pattern (5.3) and further asserting
their concept membership similarly to (a). In both cases, wewill refer to such concept
membership assertions asdistributed concept membership.

The consequence of both propagational aspects affects distributed instance retrieval.
The resulting instances can be naturally subdivided into two groups: ones that were ex-
plicitly defined in the target ontology A-box, and the othersthat were injected as trans-
formation of instances of source ontology. Therefore, the distributed retrieval problem
should be approached in a 3-step manner: (1) retrieve all local instances with respect to
the distributed taxonomy of the target ontology, (2) retrieve all relevant instances of the
source ontology and apply transformation to them, and finally (3) merge the results of two
previous steps.

Algorithmically, the process of distributed retrieving the instances of named concept
D in ontology〈T2,A2〉 w.r.t. a distributed knowledge baseK can be sketched as follows:

dRetrive2(D)

1. compute a distributed taxonomy ofT2

2. create a setD↓T2
of named concepts inT2 that are subsumed by a conceptC w.r.t.

a distributed T-boxT (these are equivalents and descendants ofC in Tj computed
w.r.t. T)

3. retrieve a setSlocal of individuals inA2 using a standard DL instance retrieval algo-
rithm with respect to the computed distributed taxonomy ofT2

4. for every conceptH ∈ D↓T2
connected via an into-bridge rulei : B

⊑
−→ i : H

(a) retrieve a setSB of instances ofB in ontology 1 invoking ofdRetrive1(B)

(b) apply to elements ofSB a transformation functionf12 and collect transformed
instances in a setSH

(c) Sdist ← Sdist ∪ SH

5. returnSlocal ∪ Sdist

The described algorithm can be generalized to a case of distributed knowledge bases
with acyclical bridge graphs. Dealing with cycles opens additional questions, e.g., when
to stop application of transformation for transformed individuals.

66 Jan 30, 2006 KWEB/2005/D2.1.2.2.v1/1.0



5. DRAGO - SCALABLE DISTRIBUTED REASONING AND APPLICATIONS

5.5 DRAGO Peer-To-Peer Reasoning Platform

In this section we will describe a design and implementationprinciples that lay in the
base of DRAGO (Distributed Reasoning Architecture for a Galaxy of Ontologies), the
platform for reasoning with multiple ontologies connectedby semantic mappings.2

As depicted in Figure 5.1, DRAGO envisages a Web of ontologiesbeing distributed
amongst a peer-to-peer network ofDRAGO Reasoning Peers(DRP). The role of a DRP is
to provide reasoning services for ontologies registered toit, as well as to request reason-
ing services of other DRPs when this is required for fulfillment of distributed reasoning
algorithm. The key issue of the DRP is that it provides possibility to register not just a
stand alone ontology, but an ontology coupled with a set of semantic mappings.

In order to register an ontology to a DRP, the users specify a logical identifier for
it, a Unified Resource Identificator (URI), and give a physical location of ontology on
the Web, a Unified Resource Locator (URL). Besides that, it is possible to assign to an
ontology a set of semantic mappings, providing in the same manner their location on the
Web. As we discussed in the previous sections, attaching mappings to ontology enriches
its knowledge due to the subsumption propagation mechanism. To prevent the possibility
of attaching malicious mappings that can obstruct or falsify reasoning services, only the
user that registered the ontology is allowed to add mappingsto it.

Similarly to the process of attaching mappings to ontology,a DRP allows for attach-
ing instance transformation relations, so that during the distributed instance retrieval the
individuals from heterogeneous domains could be correctlytransformed.

When users or applications want to perform reasoning/querying with a one of regis-
tered ontologies, they refer to the corresponding DRP and invoke its reasoning/querying
services giving the URI of the desired ontology.

5.5.1 Architecture

A DRP constitutes the basic element of DRAGO. The major components of a DRP are
depicted in Figure 5.7.

A DRP has two interfaces which can be invoked by users or applications:

• A Registration Serviceinterface is meant for creating/modifying/deleting of regis-
trations of ontologies and mappings assigned to them.

• A Reasoning/Querying Servicesinterface enables the calls of reasoning and query-
ing services for registered ontologies. Among the reasoning services can be a pos-
sibility to check ontology consistency, build classification, verify concepts satisfia-
bility, and etc. The querying services are limited to handleinstance retrieval queries

2http://trinity.dit.unitn.it/drago

KWEB/2005/D2.1.2.2.v1/1.0 Jan 30, 2006 67



Realizing practical approximate and distributed reasoning IST Project IST-2004-507482

DRAGO
 Reasoning Peer

(
DRP
)


Reasoning/Querying

Propagator


R
ea

so
ni

ng
/


Q
ue

ry
in

g

S

er
vi

ce
s


R
eg

is
tra

tio
n


S
er

vi
ce




Reasoning/

Querying

Manager


 Registration

  Storage


Registration

Manager


Distributed reasoner


Bridge

Expansion


Rule


Control flow


User/

Application


User/

Application/


DRP


Service calls


Parser

Ontology Parser


Mapping Parser


DRP


DRP


DRP


DRP


Instance

Transformations


Parser


Distributed

Instance

Retrieval


DL Tableau Algorithm


 
 


Figure 5.7: DRAGO architecture.

from defined (atomic) concepts.

All reasoning/querying services are divided into to groups: local and distributed.
Local services are handled by a standard tableau reasoner, while distributed, by a
distributed tableaux.

All accessibility information about registered ontologies and mappings is stored by a
DRP in its localRegistration Storage.

In order to register an ontology with a collection of semantic mappings attached to
it (both available on the Web) a user or application invokes the Registration Service of a
DRP and sends to it the following registration information:

• URI to which the ontology will be bound

• URLs of ontology and semantic mappings attached to it, if any

• if the semantic mappings connect this ontology with ontologies registered to ex-
ternal DRPs then additionally the URLs of these DRPs should be specified. This
requirement is explained by the necessity to know who is responsible for reasoning
with these ontologies.

• when dealing with heterogeneous individuals, a DRP should be also provided with
instance transformation specification.

68 Jan 30, 2006 KWEB/2005/D2.1.2.2.v1/1.0



5. DRAGO - SCALABLE DISTRIBUTED REASONING AND APPLICATIONS

The Registration Service interface is implemented by theRegistration Manager. When
the Manager receives a registration request, it (i) consults the Registration Storage and
verifies if the URI has not occupied yet, (ii) if not it accessesontologies and assigned
mappings from their URLs, (iii) asks Parser component to process them, (iv) initializes
the Distributed Reasoner with the parsed data, and (v) finallyadds a new record to the
Registration Storage.

TheParsercomponent translates ontologies, mappings and instance transformations
source files to the internal format used by the Distributed Reasoner. For doing so, the
Parser consist from two sub components: the ontology parser, tailored on ontology lan-
guage formats (for example, OWL [9]), the mapping parser, tailored on mapping formats
(for example, C-OWL [11]), and parser of instance transformations (in XML format, see
Figure 5.9 for a sample code).

The Reasoning/Querying Managercomponent implements the Reasoning Services
and Querying interfaces. When users, applications or other DRPs invoke this interface
sending the URI of requested ontology, the Manager verifies with the Registration Storage
whether the URI is registered to the DRP and, if yes, asks the Distributed Reasoner to
execute corresponding reasoning/querying task for that ontology.

TheDistributed Reasonerrepresents a brain of a DRP. It realizes the distributed rea-
soning and querying algorithms sketched in this chapter andreasons on ontologies with at-
tached mappings and instance transformations that are registered to the DRP. The Distrib-
uted Reasoner is built on top of standard tableau reasoner whose algorithm was extended
with the additional Bridge Expansion Rule in accordance with the distributed tableau al-
gorithm. Distributed tableaux was also extended to handle instance retrieval requests in
accordance with the distributed instance retrieval algorithm. When the Bridge Expansion
Rule is applied it analyzes semantic mappings and possibly generates reasoning subtasks
that are required to be executed in the ontologies participating in the mappings. Similarly,
the querying subtasks can be possibly generated.

To dispatch the reasoning/querying subtasks generated by aDistributed Reasoner to
the responsible reasoners, theReasoning/Querying Propagatorcomponent refers to the
Reasoning Manager and either dispatches reasoning to the local Distributed Reasoner or
sends out a request of reasoning service to the corresponding external DRP.

5.5.2 Implementation

The described DRAGO architecture has been implemented for the case of OWL [9] ontol-
ogy space. For expressing semantic mappings between OWL ontologies we use a C-OWL
[11, 12]. According to C-OWL, mapping consists of references to the source and target
ontologies and a series of bridge rules relating classes between these ontologies (see Fig-
ure 5.8 for a sample extract). Among the possible C-OWL bridge rule types DRAGO
supports the use of≡,⊑,⊒ rules connecting defined(atomic) concepts.

KWEB/2005/D2.1.2.2.v1/1.0 Jan 30, 2006 69



Realizing practical approximate and distributed reasoning IST Project IST-2004-507482

A Distributed Reasoner was implemented as an extension to an open source OWL
reasoner Pellet [34]. Originally, Pellet parses OWL ontology to a Knowledge Base (T-
box/A-box). To satisfy the needs of DRAGO we extended a Pellet’s Knowledge Base
with an M-box containing parsed C-OWL mappings. Other extensions of Pellet were done
by adding a Bridge Expansion Rule to the core tableau algorithmin order to transform
it to the distributed tableau and extending core instance retrieval mechanism of Pellet
reasoner. The Bridge Expansion Rule rule is called for every node created by the core
tableau algorithm and consist in finding such bridge rules inthe M-box that are capable
of importing new subsumptions from mapping-related ontologies.

DRAGO is implemented in java and consist of two core packages:(1) a reasoning
peer, DRP, and (2) a client, called DRPConnector. Both applications have opened API so
that external java-applications can easily invoke (start/stop/reason/query) DRAGO func-
tionality.

DRP plays a role of reasoning server. Being started, it opens a socket on a specified
port and listens for incoming reasoning/querying requests. Requests are send/received
over the TCP/IP network in accordance with a simple text-based protocol. DRP is a
multi-threaded application, thus it can service multiple simultaneous requests from users.
To simplify the communication with DRP and “hide” from a user unnecessary awareness
of the communication protocol we have developed the DRPConnector application, which
serves as a middleware between user and a certain reasoning server. Moreover, a DRP
itself utilizes DRPConnector functionality in a Reasoning/Querying propagator block.

Starting multiple DRPs on different hosts forms a DRAGO network of distributed
reasoning peers.

5.5.3 Working example

Let us step-by-step “run” a working example to get the impression of using DRAGO.
Consider again the illustrative scenario that we have given in the beginning of Section
5.4. Two human resource offices, of a university and of one of its department, utilize
ontologies for describing research staff, the university usesOUni, while the department
ODept. The idea is that the university wants to re-use knowledge that exists in the depart-
ment.

To run this idea, we associate to the university human resource office a reasoning peer
DRPUni, and to a department office aDRPDept. Further, the following steps need to be
performed:

• assign ontologyODept to DRPDept

• define semantic mappingMDept−Uni between overlapping concepts of ontologies
ODept andOUni utilizing C-OWL format (see a sample extract on Figure 5.8). For
example, we can have the statement that

70 Jan 30, 2006 KWEB/2005/D2.1.2.2.v1/1.0



5. DRAGO - SCALABLE DISTRIBUTED REASONING AND APPLICATIONS

ODept : PersonContact
⊑
−→ OUni : PersonContact

ODept : Article
⊒
−→ OUni : ConferencePaper

ODept : PhDThesis
≡
−→ OUni : DoctoralThesis

• define individual level transformationsfDept−Uni (see a sample extract on Figure
5.9). For example, we can have the statement that

<domain-relation sourceOntology=" ODept" >

<instance-transformation
sourceConcept=" ODept : PersonContact"
value="$ {function.JavaEmailExtractor }"

whereJavaEmailExtractor is a function in java class that is capable of down-
loading the web pages, parsing the text and extracting from it e-mail addresses.

• assign ontologyOUni with mappingMDept−Uni and instance transformationfDept−Uni

to DRPUni

• notify theDRPUni that ontologyODept in MDept−Uni andfDept−Uni is supported
by DRPDept

• start the peersOUni andODept.

From that moment, both of the reasoning peers are ready to respond to reasoning and
querying questions (see a sample extract of DRAGO API invocation in java on Figure
5.10).

As we have described in Section 5.5, every DRP is capable of providing local and dis-
tributed reasoning and querying services. Local services “ignore” semantic mappings (if
any) and consider only local axioms of ontology. In turn, thedistributed services depend
on axioms that propagate via mappings and instances that propagate via combination of
mappings with the specified instance transformations. To distinguish these services we
will use letters “L” to denote local, and “D” to denote distributed reasoning and querying
services. In particular, you can see the sample invocation of several services on Figure
5.10, such asgetLSubClasses, getDSubClasses, getLTaxonomy, getDTaxonomy, getLIn-
stances, getDInstancesand etc.

5.6 Applications

The main application domain of proposed in DRAGO peer-to-peer reasoning and query-
ing paradigm comes out from its seamless integration with semantic matching techniques

KWEB/2005/D2.1.2.2.v1/1.0 Jan 30, 2006 71



Realizing practical approximate and distributed reasoning IST Project IST-2004-507482

[13, 76, 35, 33]. Indeed, the goal of semantic matchers is to produce semantic relations
between heterogeneous ontologies, whereas the goal of DRAGOis to exploit these map-
pings for enabling distributed reasoning and querying. Having combined semantic match-
ing techniques with distributed reasoning and querying techniques will allow to create a
full-fledged platform for resolving ontological heterogeneity problems on the semantic
web.

In this section, we describe several intuitive applications of DRAGO. In particular, we
sketch the problems of modular ontology reasoning, verification of semantic mappings,
deriving new mappings, and finally, assisting ontology development.

5.6.1 Modular Ontology Reasoning and Querying

The semantic web can be rationally assumed to contain multiple distributed ontologies,
modules, and the modularization, therefore, can be seen as amechanism for assembling
some of these modules into a coherent network that can be referred to as a single entity,
a modular ontology. Utilizing semantic mappings as glue forconnecting autonomous
ontological modules and then applying DRAGO to such a setting, we get the possibility
of composing a modular ontology.

5.6.2 Reasoning about Mappings

As we have already seen, semantic mappings are very important for enabling reasoning
and querying over heterogeneous ontologies. However, the mappings used should be
of good quality. This can be achieved in certain cases when mappings are established
manually by a knowledge engineer. However, automatic matchers suffer from mapping
imperfectness. To improve the quality of mappings one needsa mechanism of reasoning
over mappings themselves. In [92] authors make a first step towards shedding the light
on this problem grounding their approach on top of Distributed Description Logics and
implementing it on top of DRAGO.

5.6.3 Semantic Mappings Verification

The problem of mapping verification can be roughly considered as giving response on the
question how good is certain mapping produced by any semantic matcher. Following a
simple idea that of applying to that mapping a distributed reasoning technique and fur-
ther checking which concepts due to the mappings become unsatisfiable allows to built a
mechanism of detecting defective mapping.

72 Jan 30, 2006 KWEB/2005/D2.1.2.2.v1/1.0



5. DRAGO - SCALABLE DISTRIBUTED REASONING AND APPLICATIONS

5.6.4 Ontology Development Assistance

Ontology development process is difficult and time consuming task. Due to that the OWL
language proposed a mechanism of “importing” already existent ontologies allowing to
reuse previously defined knowledge. However, the import mechanism allows for only
importing the whole ontology, whereas in many situations one would like to selectively
import specific knowledge. For that reason, we envisage the following ontology devel-
opment scenario. A knowledge engineer defines (enumerates)key concepts of ontology
he needs to create. Afterwards, running some (semi-)automatic matcher he establishes
semantic links to different preferred ontologies which describe the similar problem do-
main. Applying then to that setting DRAGO reasoning technique allows reifying initial
enumeration of key concepts into, for example, a hierarchically ordered taxonomy.

5.7 Conclusions and Future Directions

In this chapter, we described the main theoretical and practical issues of distributed rea-
soning on the semantic web. First, we did an overview of Distributed Description Logics
framework (DDLs) that is capable of representing multiple heterogeneous ontologies. Af-
terwards we clarified the propagational driving forces (patterns) of reasoning and query-
ing in DDLs. Having the propagational patterns allowed us then to define distributed
algorithms for basic reasoning and query answering services, such as checking concepts
satisfiability and retrieving the set of individuals that instantiate a certain concept. We
finalized the discourse with describing the architectural and implementation aspects of
DRAGO distributed reasoning platform and highlighted several possible applications of
DRAGO to different problems on the semantic web.

As a future work, we plan to extend the DDLs framework with a reason-able ability
to support complex mappings involving nominals, and to enable distributed answering
not just instance retrieval queries over defined concepts but over arbitrary concept expres-
sions. From the practical side, we will pursue the implementation in DRAGO of the ideas
identified in the Application section, in particular integration with semantic matchers,
performing mappings verification and reasoning about mappings.

KWEB/2005/D2.1.2.2.v1/1.0 Jan 30, 2006 73



Realizing practical approximate and distributed reasoning IST Project IST-2004-507482

<r d f :RDF
xmlns : r d f =” h t t p : / / www. w3 . org /1999/02/22− rd f−syn tax−ns #”
xmlns : r d f s =” h t t p : / / www. w3 . org / 2 0 0 0 / 0 1 / rd f−schema #”
xmlns : owl =” h t t p : / / www. w3 . org / 2 0 0 2 / 0 7 / owl #”
xmlns : cowl =” h t t p : / / www. i t c . i t / cowl #”
xmlns =” h t t p : / / example #” xml : base =” h t t p : / / example”>

<cowl : Mapping>

<cowl : sourceOntology>
<owl : Onto logy r d f : abou t =” h t t p : / / dep t . owl ”/>

</ cowl : sourceOntology>
<cowl : ta rge tOnto logy>

<owl : Onto logy r d f : abou t =” h t t p : / / un i . owl ”/>
</ cowl : ta rge tOnto logy>

<cowl : b r i dgeRu le>
<cowl : Into >

<cowl : source>
<owl : C l as s r d f : abou t =” h t t p : / / dep t # P e r s o n C o n t a c t ”/>

</ cowl : source>
<cowl : t a r g e t>

<owl : C l as s r d f : abou t =” h t t p : / / un i # P e r s o n C o n t a c t ”/>

</ cowl : t a r g e t>
</ cowl : Into >

</ cowl : b r i dgeRu le>
<cowl : b r i dgeRu le>

<cowl : Onto>

<cowl : source>
<owl : C l as s r d f : abou t =” h t t p : / / dep t # A r t i c l e ”/>

</ cowl : source>
<cowl : t a r g e t>

<owl : C l as s r d f : abou t =” h t t p : / / un i # Con fe rencePaper ”/>

</ cowl : t a r g e t>
</ cowl : Onto>

</ cowl : b r i dgeRu le>
<cowl : b r i dgeRu le>

<cowl : Equiva lent>
<cowl : source>

<owl : C l as s r d f : abou t =” h t t p : / / dep t # PhDThesis ”/>

</ cowl : source>
<cowl : t a r g e t>

<owl : C l as s r d f : abou t =” h t t p : / / un i # D o c t o r a l T h e s i s ”/>

</ cowl : t a r g e t>
</ cowl : Equiva lent>

</ cowl : b r i dgeRu le>
. . .

</ cowl : Mapping>

</ r d f :RDF>

Figure 5.8: Extract of sample mapping in C-OWL format

74 Jan 30, 2006 KWEB/2005/D2.1.2.2.v1/1.0



5. DRAGO - SCALABLE DISTRIBUTED REASONING AND APPLICATIONS

<?xml v e r s i o n =”1.0”?>
<drago−dr−con f i g>

<domain−r e l a t i o n s>
<domain− r e l a t i o n sourceOnto logy=” h t t p : / / dep t . owl”>

< l o c a l−f u n c t i o n s>
< f u n c t i o n

name=” J a v a E m a i l E x t r a c t o r ”
c l s =” i t . u n i t n . d rago . J a v a E m a i l E x t r a c t o r . c l a s s ”

>

<params>
<param type =” S t r i n g ”/>

</params>
</ f u n c t i o n>

< i n s t a n c e−t r a n s f o r m a t i o n s>
< i n s t a n c e−t r a n s f o r m a t i o n

sourceConcept=” h t t p : / / dep t # P e r s o n C o n t a c t ”
va l ue =”function.reverseString{param . s o u r c e I n s t a n c e}”
d e s c r i p t i o n =” E x t r a c t e−mai l v i s i t www homepage ”/>

. . .

</ i n s t a n c e−t r a n s f o r m a t i o n s>
</domain−r e l a t i o n>

</domain−r e l a t i o n s>
</ drago−dr−con f i g>

Figure 5.9: Extract of instance transformations specification in XML format

KWEB/2005/D2.1.2.2.v1/1.0 Jan 30, 2006 75



Realizing practical approximate and distributed reasoning IST Project IST-2004-507482

/ / starting DRP for source ontology
DRP drpSource = newDRP( 4 4 4 4 ) ;
d rpSource . s e t O n t o l o g y ( ” h t t p :/ / dept . owl ” , ” onto / dept . owl ” ) ;
drpSource . l oad ( ) ; d rpSource . s ta r tDRP ( ) ;

/ / starting DRP for target ontology + mapping
DRP d r p T a r g e t = newDRP( 5 5 5 5 ) ;
d r p T a r g e t . s e t O n t o l o g y ( ” h t t p :/ / uni . owl ” , ” uni . owl ” ) ;
d r p T a r g e t . se tMapping ( ” h t t p :/ / dept−uni . cowl ” , ” onto / dept−uni . cowl ” ) ;
d r p T a r g e t . se tSuppo r tedBy ( ” h t t p :/ / uni . owl ” , ” l oca lhos t :4444” ) ;
drp5555 . s e t I n s t a n c e T r a n s f o r m a t i o n s ( ” on to / dept−un i . d r ” ) ;
d r p T a r g e t . l oad ( ) ; d r p T a r g e t . s ta r tDRP ( ) ;

/ / starting Client to access reasoning services for target ontology
DRPConnector c l i e n t = new DRPConnector( ) ;
c l i e n t . connec t ( ” l o c a l h o s t : 5 5 5 5 ” ) ;
/ / check local consistency of target ontology
c l i e n t . i s L C o n s i s t e n t ( ) ) ;
/ / check distributed consistency of target ontology
c l i e n t . i s D C o n s i s t e n t ( ) ) ;

/ / get all local subclasses of Article concept
c l i e n t . ge tLSubC lasses ( ” h t t p :/ / uni# Ar t i c l e ” ) ) ;
/ / get all distributed subclasses of Article concept
c l i e n t . ge tDSubClasses ( ” h t t p :/ / uni# Ar t i c l e ” ) ) ;

/ / get all local superclasses of Employee concept
c l i e n t . g e t L S u p e r C l a s s e s ( ” h t t p :/ / uni#Employee ” ) ) ;
/ / get all distributed superclasses of Employee concept
c l i e n t . ge tDSupe rC lasses ( ” h t t p :/ / uni#Employee ” ) ) ;

/ / compute local concept hierarchy (use only local axioms)
c l i e n t . getLTaxonomy ( ) ) ;
/ / compute distributed concept hierarchy (+ propagated axioms)
c l i e n t . getDTaxonomy ( ) ) ;

/ / retrive local instances (use only local axioms)
c l i e n t . g e t L I n s t a n c e s ( ” h t t p :/ / uni#PersonContact ” )
/ / retrive distributed instances (+ propagated axioms + transformed instances)
c l i e n t . g e t D I n s t a n c e s ( ” h t t p :/ / uni#PersonContact ” )

. . .
c l i e n t . d i s c o n n e c t ( ) ;

/ / Stop reasoning peers
d r p T a r g e t . stopDRP ( ) ;
d rpSource . stopDRP ( ) ;

Figure 5.10: Extract of sample java code of DRAGO API usage

76 Jan 30, 2006 KWEB/2005/D2.1.2.2.v1/1.0



Chapter 6

Efficient Distributed Information
Retrieval based on Classification and
Content

by WOLF SIBERSKI

6.1 Introduction

In this chapter, we treat the integration of Ontology-basedquerying and classic infor-
mation retrieval methods1. In practical Semantic Web applications, resources such as
Web pages often have associated document metadata (resource descriptions), according
to some ontology,and some document content which is not available through reason-
ing approaches. In case of text-based content, informationretrieval provides proven and
reliable algorithms for identification of relevant documents, given user-specified search
terms. Of course, in the Semantic Web we need an approach which provides search capa-
bilities in a network of information sources.

Peer to peer systems are a powerful paradigm to address some of these problems.
Not relying on central coordination federations of information sources are formed dy-
namically by independent nodes. At any time new sources can join the network and
disseminate their documents in a more timely way than the crawling of central servers
can ascertain. File sharing applications, where media filesare retrieved based on simple
meta-data annotations like file formats or names, have become increasingly popular due
to their ease of use. Also digital library collections can benefit from the advantages of
P2P infrastructures, since much of their content (like embedded images) can be annotated
by meta-data.

1Part of this work has been presented at the International Semantic Web Conference 2004 [74], the
International Conference on Data Engineering 2005 [7], andthe European Conference on Research and
Advanced Technology for Digital Libraries 2005 [6]

77



Realizing practical approximate and distributed reasoning IST Project IST-2004-507482

However, flexible search based on classification and contentis a challenge in a P2P
environment. On one hand this is because queries have to be evaluated over the network
at search time, which in basic file sharing applications is usually done by flooding queries
through the complete network (or at least within a certain radius). On the other hand
almost all effective textual measures for information retrieval not only rely on statistics
about the single documents, but also integrate statistics on the entire collection of all
documents, e.g. how well individual keywords discriminatebetween documents with
respect to the entire collection (inverted document frequencies). This so-called collection
wide information cannot be derived locally.

To improve query efficiency techniques one way are central indexes and distributed
hash tables (DHTs)[91, 81, 1]. Besides the speed up above naive query flooding an ad-
ditional advantage is that by such a structure also collection wide information can be
provided for subsequent querying. A major drawback is that such indexes use up a lot of
the available bandwidth by the necessary administrative message exchange for upkeep,
because every change in the federated document collection (e.g. content changes within
some peer) has to be registered in the index. A contrasting way of gaining query effi-
ciency are local routing indexes that avoid the overhead of constant index upkeep, but due
to their local nature face problems with acquiring the necessary collection-wide informa-
tion. Besides having to be efficient, querying schemes will also have to take into account
that the information in digital libraries often is pre-structured. Libraries usually catego-
rize documents following some standardized taxonomies, such that documents on similar
topics might be distinguished e.g. by rather taking an economical or sociological point of
view, etc. This structure is also used to sometimes resolve ambiguities of keywords.

In this chapter we investigate the querying of federated information sources over a
peer-to-peer network. But in contrast to central indexing schemes, our aim is to create
a local indexing scheme that allows effective indexing witha minimum of management
message overhead and even efficiently use collection-wide information. Moreover, we
will exploit taxonomies to structure the individual collections and investigate how this
pre-structuring interacts with the effectiveness of our local indexing scheme and how to
deal with the trade-off between the total number of documents in each category and our
respective index size. We have measured the necessary message traffic, the quality of
result sets (as opposed to the perfect results using a central index), and a number of other
characteristics of our novel approach. For our work, we assume a strong cooperation
between peers, e.g. in order to ensure consistency of ranking results, score values have to
be calculated uniformly by all peers.

We motivate our approach with the example of federated news collections. News
items can also be compound documents and are usually categorized within certain topics
like politics or sports. Since we want to focus on the textualretrieval, we use a collection
of LA Times news articles from the TREC-5 collection for our evaluations. By assuming
periodic changes of user interests we can also experiment with the arrival or removal of
complete corpora from our federation. Since queries in suchpractical applications usually
form a Zipf distribution (i.e. considering the total set of queries very little queries are

78 Jan 30, 2006 KWEB/2005/D2.1.2.2.v1/1.0



6. EFFICIENT DISTRIBUTED IR BASED ON CLASSIFICATION AND CONTENT

posed very often, whereas most queries are posed only once ina while), we will present
extensive experiments for such a distribution. Given our innovative results, peer-to-peer
networks are on the verge of forming efficient infrastructures for federations of digital
libraries utilizing even collection-wide information without the communication overhead
of central indexes.

6.2 Information Retrieval in a Distributed Environment

In large document collections information retrieval techniques are mandatory for efficient
retrieval. Over centralized repositories these techniques have been investigated since the
70ies and work quite effective, e.g. using inverted file indexes for subsequent retrieval
[63]. Maintaining these indexes, however, is a major problem in distributed systems,
especially peer-to-peer networks that often share vast numbers of documents and have a
high volatility with respect to peers joining and leaving the network. In contrast to static
document collections every peer joining or leaving the network registers its document
collection or removes it, thus indexes have to be updated very often.

For local query evaluation schemes a particular problem arises when collection wide
information is an integral part of the query processing technique. For instance in the case
of TFxIDF [107] the term frequency may be locally evaluated for each specific document,
however, for the document frequency a snapshot of the entirecurrent content of all active
peers needs to be evaluated. Of course this would immediately annihilate any benefits
gained by sophisticated local querying schemes.

Consider a simple example to show how local scorings fail, if collection-wide infor-
mation has to be considered in the retrieval process. Assumethe case that we have just
two peers that should return their best matches with respectto the most popular infor-
mation retrieval measure TFxIDF. This measure is a combination or two parts, the term
frequency (TF, measures how often a query term is contained in a certain document), and
the inverted document frequency (IDF, inverse of how often aquery term occurs in the
document collection). This measure needs to integrate collection-wide information and
cannot be determined locally.

As an instance take a simple conjunctive queryQ for the terms ’a’ and ’b’ posed to two
peersP1 andP2 that has to be evaluated locally at each peer. Let’s assume thatP1 contains
three documentsD1, D2 andD3, andP2 also contains three documentsD4, D5 andD6.
For simplicity of our example let us further assume that inD1toD6, our two keyword
occur mutually exclusive in the documents:D1, D2 and D6 contain the keyword ’a’,
whereasD3, D4 andD5 contain the keyword ’b’. Moreover, assume that all documents
are of the same length and the keywords occur in the same number in all documents, such
that the respective term frequency is the same for all documents. Evaluating our queryQ
locally we have now to rank the documents in each peer. Since the keywords are mutually
exclusive in our document base and the TFs are equal for each document, the ranking is

KWEB/2005/D2.1.2.2.v1/1.0 Jan 30, 2006 79



Realizing practical approximate and distributed reasoning IST Project IST-2004-507482

only determined by the weighting factor of the occurring term in the IDF.

In peerP1 we have two documents out of three containing term ’a’, i.e. an IDF of
3
2

= 1.5, and only one document containing ’b’, i.e. an IDF of3
1

= 3. That means
that with respect toQ P1 ranksD3 as better thanD1 andD2. SymmetricallyP2 ranks
D6 higher thanD4 andD5, because here ’b’ occurs in two documents and ’a’ only in
one. Integrating the results fromP1 andP2 we get a higher ranking ofD3 andD6 than
of the four other documents. In contrast, performing queryQ over a central collection
containing all six documentsD1 to D6, we find that both query terms ’a’ and ’b’ occur in
three of the six documents, i.e. have an IDF6

3
= 2. Since the TF is still the same, all six

documents will be correctly assigned the same score.

As shown, collection-wide information is essential to provide proper document scores.
But the index holding this information does not necessarily need to be completely up-to-
date; obviously there is a trade-off between index information that is ’still current enough’
given the network volatility and the accuracy of the query results. Research on what dis-
semination level is required in Web IR applications to allowfor efficient retrieval showed
that a complete dissemination with immediate updates is usually unnecessary, even if new
documents are included into the collection [102]. Moreover, the required level was found
to be dependent on the document allocation throughout the network [101]: random allo-
cation calls for low dissemination, whereas higher dissemination is needed if documents
are allocated based on content. Thus a lazy dissemination usually has comparable effec-
tiveness as a centralized approach for general queries, butif only parts of the networks
containing most promising documents with similar content are queried, the collection-
wide information has to be disseminated and regularly updated.

6.3 Approach

As shown in the previous section, we need collection-wide information at each peer to do
a correct score computation. The challenges are

• how to compute this information

• where to store it, and

• how to distribute it in the network.

The key to success is the observation that we don’t need a complete inverted index to
process a query. For example, to calculate the correct scores, peersP1 andP2 need only
IDFs for termsa andb, but not for all terms occurring in their documents.

Storage To store this information, we use a super-peer network approach: in a P2P-
network peers often vary widely in bandwidth and computing power. As discussed in

80 Jan 30, 2006 KWEB/2005/D2.1.2.2.v1/1.0



6. EFFICIENT DISTRIBUTED IR BASED ON CLASSIFICATION AND CONTENT

[108] exploiting these different capabilities can lead to an efficient network architecture,
where a small subset of peers, called super-peers, takes over specific responsibilities. In
our case, we assign the index management responsibility to the super-peers. The super-
peers form the network backbone, and each document providerpeer is directly connected
to one of them.

Distribution A query consists of a category of the taxonomy which should besearched
and a conjunction of keywords that are searched in the content of the documents. Before
distributing such a query, a super-peer adds the necessary collection-wide information
from its index to it. If it isn’t yet in the index, an estimation is provided.

The category in the query is used as a filter for two purposes: First to reduce the
number of peers (and thus documents) which must be searched and ranked. Second the
user can use the category to avoid ambiguities. If a user is interested in the local sport-
team called ’Jaguars’, the appropriate category will avoidhits Jaguar-cars and the animal
Jaguar. The keywords which are specified in the query will only be used for the documents
which are in the named category.

Computation Responding peers do not only deliver matching documents, butalso each
add local data necessary to compute the collection-wide information (for TFxIDF this is
the document frequency for each query term and the document count). On the way back
to the originating super-peer, this data is aggregated. Thus, the originating super-peer gets
everything it needs to compute the complete aggregate, and can store the computed result
in its index.

The next subsections discuss in detail how this approach is applied to the digital library
network context.

6.3.1 Query Processing

Query distribution at super-peer Each super-peer maintains an IDF index containing
IDF values for the keywords. This is done separately for eachcategory, not for all doc-
uments in all categories. Thus, the key for this index is built from a category and one
keyword. As mentioned above a query contains the IDF values for the query-terms. The
IDFs are taken from the IDF index, or estimated if a keyword isnot yet in the index. In
the latter case, the average IDF is used as estimation.

Query processing at peer At each peer, first only documents in the specified category
are taken into account. The top-k documents are determined using the TFxIDF algo-
rithm, but based on the IDF values from the query. If this getsenough (=k) results in
the queried category, these are sent to the super-peer. If the number of documents match-
ing the query is smaller thank, the query is relaxed, first to subcategories and then to

KWEB/2005/D2.1.2.2.v1/1.0 Jan 30, 2006 81



Realizing practical approximate and distributed reasoning IST Project IST-2004-507482

the super-categories. This process is repeated until the peer hask results or the root of
the taxonomy is reached. The entries found in all newly searched categories are sorted
by their similarity to the originating category using the following measure (from Li et
al. [65]):

sim(c1, c2) = e−αl · eβh−e−βh

eβh+e−βh

where l is the shortest path between the topics in the taxonomy tree and h is the depth
level of the direct common subsumer.α andβ are parameters to optimize the similarity
measurement (best setting is usuallyα = 0.2 andβ = 0.6).

The super-peer then gets the top-k of the peer or a numbern < k of documents
matching. This query-relaxation is shown in the following code:

Initialize a ResultSet results;

Set searchRoot := Category from query

do
Initialize a new set searchCategories
Add searchRoot to searchCategories
while (number of results < k and searchCategories is not empt y
begin

Initialize new set allChildren
for all cat in searchCategories do
begin

// retrieve hits matching category exact
Initialize ordered list matchingDocuments
for all doc in documents
begin

if (document-category = cat
AND document contains terms from query
AND number of matching documents < k
OR doc.score(query.terms) > matchingDocuments.getLastD oc.score))
then add document to matchingDocuments

end
results.addHits(retrieveExact(cat, query))
allChildren.add(cat.children);

end

searchCategories = allChildren; // go one level down in cate gory tree
removesearchRoot from searchCategories; //do not to trave rse subtree twice

end

searchRoot := parent of searchRoot // go one level up in categ ory tree
while(not k results AND searchRoot != nil);

trim results to k // in case we collected more than k entries

return results;

Result merging at super-peer A super-peer retrieves max.k hits from each of its peers
and combines them to the top-k. As described above it is possible that peers also send
results which are coming from another category as requested. In this case, the super-peer
first takes all hits which match the queried category. If thisresults in a set smaller thank it

82 Jan 30, 2006 KWEB/2005/D2.1.2.2.v1/1.0



6. EFFICIENT DISTRIBUTED IR BASED ON CLASSIFICATION AND CONTENT

takes the next best-matching hits from each peer and combines them using the described
sorting.

IDF index update The IDF index can be updated in two ways:

1. By summing up document frequencies and document counts delivered from con-
nected peers and super-peers, the super-peer where the query originated computes
IDFs for each query term and updates its IDF index. If the difference between com-
puted IDF and estimated IDF value exceeds a threshold, the query is redistributed,
this time using the computed IDF values.

2. if a super-peer receives a query it checks, if the IDFs contained are marked as
estimated. If this is not the case, these values are used to update the IDF index.

6.3.2 IDF index entry expiration

Viles and French have shown that in a large document collection IDF values change
slowly [102]. In our context, this is not strictly applicable, because there are two kinds of
changes that may influence our collection-wide informationsignificantly:

1. New documents with similar content: new peers join the network.
Imagine a large federation of library servers which offer articles from different
newspapers. Let’s assume we already have a newspaper like the NY Times in the
collection. What can happen if peers join the network offering a new newspaper,
i.e. the LA Times? In this case we can be sure that the articlesusually will be on
nearly similar topics except a few local news. Thus, we do notreally have to update
our IDFs since the words in the articles are distributed the same way as before.

2. New documents or new corpora: New library servers join the federation or new
documents are included in existing collections, whose content is very different from
existing articles and thus shifts IDFs and changes the discriminators.
Let’s look at an example: Assume there is an election e.g. in France and people use
our P2P-news-network to search for news regarding this election. This normally
will be done using queries like ‘election France’ and results in a list of news that
contain these words. In this case there would be a lot of news containing France,
thus ’election’ is the discriminator, and the IDFs will giveus the correct results.
Now think of another election taking place in the US in parallel. The term ’elec-
tion’ will no longer be the best discriminator, but the term ’France’ then gets more
important.

In these cases we have to solve the problem that entries in theIDF index become
outdated over time. We can handle both cases in the same way: Each IDF value gets a

KWEB/2005/D2.1.2.2.v1/1.0 Jan 30, 2006 83



Realizing practical approximate and distributed reasoning IST Project IST-2004-507482

timestamp when the term appears for the first time and the term/IDF-pair is stored. After a
specific expiration period (depending on the network-volatility) the item becomes invalid
and the entry gets deleted. In this way we force IDF recomputation if the term occurs
again in a query. By adjusting the expiration period we can trade off accuracy against
performance. We reduce the expiration period for terms occurring more frequently, thus
ensuring higher accuracy for more popular queries.

6.3.3 Query Routing Indexes

So far, we still distribute all queries to all peers. We can avoid broadcasting by introducing
additional routing indices which are used as destination filters:

• For each category in our taxonomy thecategory indexcontains a set of all peers
which have documents for this category. It is not relevant ifthis peers did contribute
to queries in the past.

• In thequery indexfor each posed query the set of those peers which contributedto
the top-k for the query are stored.

Query Distribution The super-peer first checks if all query terms are in the IDF index.
If this is not the case the query has to be broadcast to permit IDF aggregation. We also
broadcast the query if none of the routing indexes contain applicable entries.

If an entry for query exists in the query-index, it is sent to the peers in this entry only,
since no other have contributed to the top-k result for the current query.

Otherwise, if the query category is in the category index, the query is sent to all peers
to the corresponding category entry.

Index Update For each delivered result set, a query index entry is created, containing
all peers and super-peers which contributed to the result.

For the category index, we need to know all peers holding documents of the speci-
fied category, even if they didn’t contribute to the result set. Therefore, we collect this
information as part of the result set, too, and use it to create category index entries.

As with the IDF index, the network volatility causes our routing indexes to become
incorrect over time. We use the index entry expiration approach here as well to delete
outdated entries.

84 Jan 30, 2006 KWEB/2005/D2.1.2.2.v1/1.0



6. EFFICIENT DISTRIBUTED IR BASED ON CLASSIFICATION AND CONTENT

IDF Index Size

1

10

100

1000

10000

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00

10
00

0

# of processed queries

# 
o

f i
n

de
xe

d 
te

rm
s

Indexed Queries

0%

10%

20%
30%

40%

50%

60%

70%
80%

90%

100%

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00

10
00

0

# of processed queries

in
d

ex
 r

at
io

 (
fl

o
at

in
g

 a
vg

)

Fig. 1. Index size Fig. 2. Coverage of query index

6.4 Evaluation

6.4.1 Simulation Environment

We use the TREC document collection volume 5 consisting of LA Times articles for our
experiments. The articles are already categorized according to the section they appeared
in, and we use this information as base for our document classification. To simulate
a network of document providers, these articles are distributed among the peers in the
network. The simulated network consists of 2000 peers, eachproviding articles from
three categories on average (with a standard deviation of 2.0).

The simulation is based on the framework described in [89]. The super-peers are
arranged in a HyperCuP topology [85]. The TFxIDF calculationbased on inverse indexes
was done using the (slightly modified) search engine JakartaLucene2.

We assume a Zipf-distribution for query frequencies with skew of -0.0. News articles
are popular only for a short time period, and the request frequency changes correspond-
ingly. With respect to the Zipf-distribution this means that the query rank decreases over
time. Query terms were selected randomly from the underlying documents. In our simu-
lation, we generate 200 new most popular queries every 2000 queries which supersede the
current ones and adjust query frequencies accordingly. This shift may be unrealistically
high, but serves well to analyze how our algorithm reacts to such popularity changes.

6.4.2 Results

Index size Figure 1 shows how the IDF index at each super-peer grows overtime. After
10000 queries it has grown to a size of 2015, only a small fraction of all terms occuring in
the document collection. A global inverted index we would have had contained 148867
terms. This underlines that much effort can be saved when only indexing terms which are
actually appearing in queries.

2http://jakarta.apache.org/lucene/docs/index.html

KWEB/2005/D2.1.2.2.v1/1.0 Jan 30, 2006 85



Realizing practical approximate and distributed reasoning IST Project IST-2004-507482

Index effectivity Both category and query index become quite effective. After nearly
2000 queries, the query index achieves a coverage of 80%. Figure 2 shows how each
popularity shift causes a coverage reduction from which thequery index recovers after
about 1000 queries. This shows that a change in query popularity over time is coped with
after a very short while.

As there are only about 120 different categories, after lessthen 1000 queries the index
contains nearly all of them (Figure 3). We assume that news provider specialized on some
topics change these topics only very infrequently. Therefore, peers do not shift their topics
during the simulation. Thus, the category index serves to reduce the number of contacted
peers continuouosly, also after popularity shifts.

Figure 4 shows how many peers had to be contacted to compute the result. The in-
fluence of popularity shifts on the whole outcome can also be seen clearly. The cate-
gory index takes care that the peaks caused by popularity shifts don’t become too high.
Summarized, the combination of both indexes yields a high decrease of contacted peers
compared to broadcasting.

Indexed Categories

0%

10%

20%

30%

40%

50%
60%

70%

80%

90%

100%

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00

10
00

0

# of processed queries

in
d

ex
 r

at
io

 (
fl

o
at

in
g

 a
vg

)

Contacted Peers / Query

0

100

200

300

400

500

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00

10
00

0

# of processed queries

# 
o

f 
co

n
ta

ct
ed

 p
ee

rs
 (

fl
o

at
in

g
 

av
g

)

Fig. 3. Coverage of category index Fig. 4. Contacted peers per query

In the experiments described here we didn’t introduce dynamics regarding the peers
contents. Therefore, our algorithm yields exactly the sameresults as a complete index.
In [7] (where we didn’t take categories into account), we show that if 20% of the peers
contents during a simulation run, the error ratio is about 3.5%.

6.5 Related Work

Since the concepts of the highly distributed P2P networks and the rather centralized IR
engines are hard to integrate, previous work in the area is focusing on efficient dissem-
ination of this information. There is a challenging trade-off between reduced network
traffic by lazy dissemination however leading to less effective retrieval, and a large net-
work traffic overhead by eager dissemination facilitating very effective retrieval. What
is needed is ”just the right” level of dissemination to maintain a ”suitable” retrieval ef-
fectiveness. Thus previous approaches to disseminate collection-wide information rely

86 Jan 30, 2006 KWEB/2005/D2.1.2.2.v1/1.0



6. EFFICIENT DISTRIBUTED IR BASED ON CLASSIFICATION AND CONTENT

on different techniques. We will briefly review the techniques from peer-to-peer systems,
from distributed IR and Web Search engines and compare them to our approach.

For peer-to-peer systems there are different approaches. The PlanetP system [19]
does not use collection-wide information like e.g. the inverted document frequency of
query terms directly, but circumnavigates the problem by using a so-called inverted peer
frequency estimating for all query terms, which peers are interesting contributors to a cer-
tain query. Summarizations of the content in the form of Bloomfilters are used to decide
what content a peer can offer, which are eagerly disseminated throughout the network by
gossiping algorithms. Thus in terms of retrieval effectiveness this scheme describes doc-
uments on the summarization level, which is a suboptimal discriminator and by gossiping
the system’s scalability is limited. The idea of PeerSearch[95] is comparable to our ap-
proach, but instead of a broadcast-topology CAN [81] is used in combination with the
vector space model (VSM) and latent semantic indexing (LSI)to create an index which is
stored in CAN using the vector representations as coordinates. Thus all collection-wide
information has to be disseminated again leading to a limited scalability. Also summariz-
ing indexes have been used to maintain global information about a set of documents like
e.g. in [106]. Here so-called cell abstract indexes are usedfor approximate queries. The
abstract of a set of documents is some statistics of all documents in the set and the ab-
stract of a peer is an abstract of the shared document set residing in the peer. An abstract
index of a P2P system then is an organization of all abstractsof peers in the system. All
peers of a system can thus be formed into an overlay network. Every joining peer will
be added to a cell that contains its abstract and subsequently queries are routed to those
cells that contain their abstract. However, also in this case indexes for all cells have to
be updated regularly leading to a high overhead of network traffic. Moreover, peers in
the end cells will just deliver all documents to the queryingpeer not removing subopti-
mal objects and again causing unnecessary network traffic. As in our approach, [67] use
super-peers (called ”‘hub”’ nodes) to manage indices and merge results. Depending on
the cooperation capability/willingness of document providers (”‘leaf”’ nodes), hub nodes
collect either complete or sampled term frequencies for each leaf peer. This information
is used to select relevant peers during query distribution.By using query sampling hubs
are able to give an estimate of relevant peers, even in case ofuncooperative peers. As
with the other systems, indices are built in advance, thus causing possibly unnecessary
management messages.

From the perspective of information retrieval the problem of disseminating collection-
wide information first occurred when IR moved beyond centralized indexing schemes
over collections like e.g. given by TREC, and had to deal with vast distributed document
collections like the WWW. Here due to the random-like distribution of content over the
WWW, research on effective retrieval in Web IR applications showed that a complete
dissemination with immediate updates is usually unnecessary, thus allowing for a little
volatility [102], The required level of dissemination, however, was found to be depen-
dent on the document allocation throughout the network [101]: random allocation calls
for low dissemination, whereas higher dissemination is needed if documents are allocated

KWEB/2005/D2.1.2.2.v1/1.0 Jan 30, 2006 87



Realizing practical approximate and distributed reasoning IST Project IST-2004-507482

based on content. In peer-to-peer networks this random-like distribution does usually not
hold. We have argued in our news scenario, that in practical applications peers often will
not carry a random portion of the entire document collection. Though some newspapers
like the New York Times will cover a wide area of topics, specialized newspapers like
the Financial Times will limit the range and some publications can even provide corpora
that essentially differ in the topics and keywords contained. Moreover, though a lazy dis-
semination in terms of effectiveness usually is comparableto the centralized approach for
general queries, our indexing scheme focuses only on parts of the networks containing
most promising documents, thus the collection-wide information has to be disseminated
and (at least) regularly updated. Hence, classical Web search engines like Google crawl
the Web and individually index the sites, but then all indexing information is transferred
over the network and managed in a vast centralized repository for subsequent retrieval.
Novel approaches to distribute Web search engines like Google desktop will have to deal
with the same problem of dissemination this information efficiently. Therefore, though
designed for peer-to-peer infrastructures, our work here can be assumed to have an inter-
esting impact on future developments in distributed Web search engines.

6.6 Summary

In this chapter we have discussed the important problem of efficiently querying federated
information sources using peer-to-peer infrastructures especially if collection-wide infor-
mation is needed. We have described a practical use-case scenario for the problem and
have presented an innovative local indexing scheme which flexibly includes collection-
wide information. Our novel indexes are not created in advance, but are maintained
query-driven, i.e. we do not index any information which is never asked for. This al-
lows our algorithm to scale, even in more volatile networks.Another improvement is
our introduction of a separate category index that allows toprune large portions of the
network and thus also enhances scalability.

In the next step, we plan to extend the simple classification scheme to a description
logic based annotation scheme. This will allow more complexconstraints on the metadata
part of a query, and thus result in improved query expressivity.

88 Jan 30, 2006 KWEB/2005/D2.1.2.2.v1/1.0



Chapter 7

Conclusion

This deliverable reports on new methods for achieving scalability, as proposed by work
package 2.1, especially on how to do practical approximations and distributed reasoning
for ontologies. In the beginning, the focus is, as in the firstversion of this deliverable, on
approximation methods and their applications and results of experiments. In the end we
concentrate on distributed reasoning methods and the improvements that they offer.

In the beginning of this deliverable, two major solutions were given to the well known
problem of Description Logic reasoners that don’t seem to react well for A-Box reasoning
when the number of instances of an ontology becomes larger. In Chapter 2 we gave an
overview over such two approximation methods and describedhow they can be applied
to the problem of instance retrieval. We also presented the results of experiments done
with these methods applied to the above stated problem, using Gene Ontology. The ex-
periments focus on the problem of whether the approximationmethods can lead to any
reductions in complexity and if the costs for doing this are worthy or not. These exper-
iments and evaluations against benchmarking sets were alsoconducted with the purpose
of improving the instance retrieval methods from the point of view of scalability of such
ontologies with a large number of instances.

In Chapter 3, we described the new SCREECH system for approximateA-Box rea-
soning, which is based on a language weakening transformation of OWL DL into Datalog.
The method has polynomial time complexity and is complete but unsound with respect
to OWL DL semantics. A performance evaluation showed, however, that SCREECH
achieves improvements in run-time while delivering only very few wrong answers.

Starting from the observation that users don’t manage to successfully formulate their
own queries over extensive amounts of data, in Chapter 4 we described how we devel-
oped a specialized rule language which implements query rewriting of RDF rules in or-
der to provide personalized information access to distributed resources (on the semantic
web). This approach was created as a personalized search service of a personal learning
assistant, which combines user preferences and user query formulation dialogue. By im-
plementing query relaxation and query refinement, the application in this framework has

89



Realizing practical approximate and distributed reasoning IST Project IST-2004-507482

also been tested on two metadata sets. It proved how RDF queries can be reformulated in
order to give good answers, even if the user didn’t manage to formulate them accurately.

The architecture of DRAGO, clearly based on a peer-to-peer structure and distributed
knowledge management systems, showed in Chapter 5 how instance retrieval and distrib-
uted reasoning can be accomplished. It makes use of the distributed contextual reasoning
and querying paradigm, which is based among others on semantic mappings and local
reasoning. This is a very clear example about how we can benefit from the advantages of
distributed reasoning and querying algorithms over (large) OWL ontologies, interrelated
by semantic links.

The last contribution in this deliverable described the problem of efficiently querying
distributed sources using peer-to-peer structures, especially if collection-wide informa-
tion is needed. Experiments have been done on a TREC document collection volume
consisting of LA Times articles categorized according to the sections they appeared in.
They proved that the proposed algorithm scales, even in morevolatile networks. Another
important improvement is the fact that by adding a separate category index, it allows to
cut back on large portions of the network, thus enhancing scalability even more.

Besides the value of the deliverable itself, several solutions to the scalability problem
have been presented, specifically in the area of approximateand distributed reasoning
for ontologies. Without doubt, we must mention here that these results emerged from
fruitful cooperation between different partners, leadingto very good ideas. The theoret-
ical solutions were also followed by implementations and thorough test cases to support
their novelty and contributions, outlining the effective problem present in the semantic
web, that of continuously expanding ontologies and data sets, and the need for improved
solutions.

90 Jan 30, 2006 KWEB/2005/D2.1.2.2.v1/1.0



Bibliography

[1] Karl Aberer. P-grid: A self-organizing access structure for p2p information sys-
tems. In In Proceedings of the Sixth International Conference on Cooperative
Information Systems (CoopIS), Trento, Italy, 2001.

[2] G. Antoniou and F. van Harmelen.Handbook on Ontologies in Information Sys-
tems, chapter Web Ontology Language: OWL, pages 67–92. Springer Verlag,
2004.

[3] Krzysztof R. Apt, Howard A. Blair, and Adrian Walker. Towards a theory of declar-
ative knowledge. In Jack Minker, editor,Foundations of Deductive Databases and
Logic Programming, pages 89–148. Morgan Kaufmann, Los Altos, CA, 1988.

[4] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P F.Patel-Schneider.
The Description Logic Handbook - Theory, Implementation and Applications.
Cambridge University Press, 2003.

[5] Franz Baader and Tobias Nipkow.Term rewriting and all that. Cambridge Univer-
sity Press, New York, NY, USA, 1998.

[6] Wolf-Tilo Balke, Wolfgang Nejdl, Wolf Siberski, and Uwe Thaden. DL meets P2P
– distributed document retrieval based on classification and content. InProceedings
of the 9th European Conference on Research and Advanced Technology for Digital
Libraries (ECDL2005), 2005.

[7] Wolf-Tilo Balke, Wolfgang Nejld, Wolf Siberski, and Uwe Thaden. Progressive
distributed top-k retrieval in peer-to-peer networks. InProceedings of the 21st
International Conference on Data Engineering (ICDE 2005), 2005.

[8] Wolf-Tilo Balke and Matthias Wagner. Through different eyes: assessing multiple
conceptual views for querying web services. In Stuart I. Feldman, Mike Uret-
sky, Marc Najork, and Craig E. Wills, editors,WWW (Alternate Track Papers &
Posters), pages 196–205. ACM, 2004.

[9] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D.L. McGuinness, P.F.
Patel-Schneider, and L. Andrea Stein. OWL Web Ontology Language Reference.
W3C Recommendation, February 2004.www.w3.org/TR/owl-ref .

91



Realizing practical approximate and distributed reasoning IST Project IST-2004-507482

[10] A. Borgida and L. Serafini. Distributed Description Logics: Assimilating Informa-
tion from Peer Sources.Journal of Data Semantics, 1:153–184, 2003.

[11] P. Bouquet, F. Giunchiglia, F. van Harmelen, L. Serafini,and H. Stuckenschmidt.
C-OWL: Contextualizing Ontologies. InProceedings of the 2d International Se-
mantic Web Conference (ISWC 2003), pages 164–179, 2003.

[12] P. Bouquet, F. Giunchiglia, F. van Harmelen, L. Serafini,and H. Stuckenschmidt.
Contextualizing Ontologies.Journal on Web Semantics, 1(4):325–343, 2004.

[13] P. Bouquet, L. Serafini, and S. Zanobini. Semantic Coordination: A New Approach
and an Application. InProceedings of the Sencond Internatinal Semantic Web
Conference (ISWC 2003), volume 2870 ofLecture Notes in Computer Science,
pages 130–145. Springer Verlag, 2003.

[14] Craig Boutilier, Ronen I. Brafman, Holger H. Hoos, and DavidPoole. Reasoning
with conditional ceteris paribus preference statements. In Kathryn B. Laskey and
Henri Prade, editors,UAI, pages 71–80. Morgan Kaufmann, 1999.

[15] Ronen I. Brafman, Carmel Domshlak, Solomon E. Shimony, andYael Silver. Tcp-
nets for preferences over sets. InWS on Advances in Preference Handling, 2005.

[16] Nicolas Bruno, Luis Gravano, and Amélie Marian. Evaluating top-k queries over
web-accessible databases. InProceedings of the 18th International Conference on
Data EngineeringE, pages 369–. IEEE Computer Society, 2002.

[17] Marco Cadoli and Francesco Scarcello. Semantical and computational aspects of
Horn approximations.Artificial Intelligence, 119(1), may 2000.

[18] Stefano Ceri. A declarative approach to active databases. In Forouzan Golshani,
editor,ICDE, pages 452–456. IEEE Computer Society, 1992.

[19] Francisco Matias Cuenca-Acuna, Christopher Peery, Richard P. Martin, and Thu D.
Nguyen. PlanetP: Using Gossiping to Build Content Addressable Peer-to-Peer
Information Sharing Communities. InTwelfth IEEE International Symposium on
High Performance Distributed Computing (HPDC-12). IEEE Press, June 2003.

[20] Mukesh Dalal. Anytime clausal reasoning.Annals of Mathematics and Artificial
Intelligence, 22(3–4):297–318, 1998.

[21] Peter Dolog, Nicola Henze, Wolfgang Nejdl, and MichaelSintek. Personalization
in distributed e-learning environments. InProc. of WWW2004 — The Thirteen
International World Wide Web Conference, New Yourk, May 2004. ACM Press.

[22] Peter Dolog and Michael Schäfer. A framework for browsing, manipulating and
maintaining interoperable learner profiles. In Liliana Ardissono, Paul Brna, and

92 Jan 30, 2006 KWEB/2005/D2.1.2.2.v1/1.0



BIBLIOGRAPHY

Antonija Mitrović, editors,Proc. User Modeling 2005: 10th International Con-
ference, UM 2005, volume 3538 ofLNAI, Edinburgh, Scotland, UK, July 2005.
Springer.

[23] The dublin core metadata initiative. http://dublincore.org/.

[24] M. Ehrig, Ch. Tempich, J. Broekstra, F. van Harmelen, M. Sabou, R. Siebes,
S. Staab, and H. Stuckenschmidt. A Metadata Model for Semantics-Based Peer-
to-Peer Systems. InProceedings of the 2d Konferenz Professionelles Wissensman-
agement, 2003.

[25] Thomas Eiter, Nicola Leone, Christinel Mateis, Gerald Pfeifer, and Francesco Scar-
cello. A deductive system for nonmonotonic reasoning. In Jürgen Dix and et al,
editors,Proceedings of the 4th International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR’97), volume 1265 ofLecture Notes in Ar-
tificial Intelligence. Springer, Berlin, 1997.

[26] François Fages. Consistency of Clark’s completion and existence of stable models.
Journal of Methods of Logic in Computer Science, 1:51–60, 1994.

[27] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algorithms for
middleware. InPODS ’01: Proceedings of the twentieth ACM SIGMOD- SIGACT-
SIGART symposium on Principles of database systems, pages 102–113, New York,
NY, USA, 2001. ACM Press.

[28] Terry Gaasterland, Parke Godfrey, and Jack Minker. An overview of cooperative
answering.Journal of Intelligent Information Systems, 1(2):123–157, 1992.

[29] Terry Gaasterland, Parke Godfrey, and Jack Minker. Relaxation as a platform for
cooperative answering.Journal of Intelligent Information Systems, 1(3/4):293–
321, 1992.

[30] Terry Gaasterland and Jorge Lobo. Qualified answers that reflect user needs and
preferences. InProceedings of 20th International Conference on Very Large Data
Bases (VLDB94), pages 309–320, 1994.

[31] Terry Gaasterland and Jorge Lobo. Qualifying answers according to user needs
and preferences.Fundamenta Informaticae, 32(2):121–137, 1997.

[32] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and
disjunctive databases.New Generation Computing, 9:365–385, 1991.

[33] F. Giunchiglia, P. Shvaiko, and M. Yatskevich. Semantic Matching. InFirst Euro-
pean Semantic Web Symposium (ESWS 2004), pages 61–75, 2004.

[34] B. Cuenca Grau, B. Parsia, and E. Sirin. Pellet: An OWL DL Reasoner. InPro-
ceedings of the Third International Semantic Web Conference(ISWC 2004), 2004.
http://www.mindswap.org/2003/pellet/index.shtml .

KWEB/2005/D2.1.2.2.v1/1.0 Jan 30, 2006 93



Realizing practical approximate and distributed reasoning IST Project IST-2004-507482

[35] B. Cuenca Grau, B. Parsia, and E. Sirin. QOM: Quick OntologyMapping. In
Proceedings of the Third International Semantic Web Conference (ISWC 2004),
2004.

[36] B. Cuenca Grau, B. Parsia, and E. Sirin. Working with Multiple Ontologies on the
Semantic Web. In S. A. McIlraith, D. Plexousakis, and F. van Harmelen, editors,
Proceedings of the Third International Semantic Web Conference (ISWC 2004),
volume 3298 ofLecture Notes in Computer Science, pages 620–634. Springer Ver-
lag, 2004.

[37] P. Groot, A. ten Teije, and F. van Harmelen. Towards a structured analysis of
approximate problem solving: a case study in classification. In Proceedings of the
Ninth International Conference on Principles of Knowledge Representation and
Reasoning (KR’04), Whistler, Colorado, June 2004.

[38] Perry Groot, Heiner Stuckenschmidt, and Holger Wache.Approximating descrip-
tion logic classification for semantic web reasoning. In Asunción Gómez-Ṕerez
and J́erôme Euzenat, editors,The Semantic Web: Research and Applications, Sec-
ond European Semantic Web Conference, ESWC 2005, Heraklion,Crete, Greece,
May 29 - June 1, 2005, Proceedings, volume 3532 ofLecture Notes in Computer
Science, pages 318–332. Springer, 2005.

[39] Object Management Group. OMG unified modelling language specification, ver-
sion 1.3, March 2000. Available at http://www.omg.org/. Accessed on June 1,
2001.

[40] Ulrich Güntzer, Wolf-Tilo Balke, and Werner Kießling. Optimizing multi-feature
queries for image databases. In Amr El Abbadi, Michael L. Brodie, Sharma
Chakravarthy, Umeshwar Dayal, Nabil Kamel, Gunter Schlageter, and Kyu-Young
Whang, editors,VLDB 2000, Proceedings of 26th International Conference on
Very Large Data Bases, September 10-14, 2000, Cairo, Egypt, pages 419–428.
Morgan Kaufmann, 2000.

[41] V. Haarslev and R. M̈oller. RACE system description. InProceedings of the 1999
DL Workshop, CEUR Electronic Workshop Proceedings, pages 130–132, 1999.

[42] V. Haarslev and R. M̈oller. High performance reasoning with very large knowledge
bases: A practical case study. InIJCAI’2001, pages 161–168, 2001.

[43] V. Haarslev and R. M̈oller. RACER system description. InIJCAR’2001, volume
2083 ofLNAI, pages 701–705. Springer, 2001.

[44] Pat Hayes. Rdf semantics. Recommendation, W3C, 2004.

[45] P. Hitzler. Towards a systematic account of different semantics for logic programs.
Journal of Logic and Computation, 15(3):391–404, 2005.

94 Jan 30, 2006 KWEB/2005/D2.1.2.2.v1/1.0



BIBLIOGRAPHY

[46] Pascal Hitzler and Matthias Knorr. Towards a unified theory of logic program-
ming semantics: Level mapping characterizations of disjunctive stable mod-
els. Technical report, AIFB, University of Karlsruhe, 2005.Available from
http://www.aifb.uni-karlsruhe.de/WBS/phi.

[47] Pascal Hitzler and Matthias Wendt. A uniform approach to logic programming
semantics.Theory and Practice of Logic Programming, 5(1–2):123–159, 2005.

[48] I. Horrocks. The FaCT System. InTABLEAUX’98, volume 1397 ofLNAI, pages
307–312. Springer, 1998.

[49] I. Horrocks. Using an Expressive Description Logic: FaCT or Fiction? InKR’98,
pages 636–647. Morgan Kaufmann, 1998.

[50] I. Horrocks, L. Li, D. Turi, and S. Bechhofer. The InstanceStore: DL Reasoning
with Large Numbers of Individuals. InProceedings of the International Workshop
on Description Logics (DL 2004), pages 31–40, 2004.

[51] I. Horrocks and P. F. Patel-Schneider. FaCT and DLP. InProceedings of the
Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX
1998), pages 27–30, 1998.

[52] I. Horrocks and P. F. Patel-Schneider. A Proposal for anOWL Rules Language. In
Proc. of the Thirteenth Int’l World Wide Web Conf.(WWW 2004). ACM, 2004.

[53] I. Horrocks, U. Sattler, and S. Tobies. A Description Logic with Transitive and
Converse Roles, Role Hierarchies and Qualifying Number Restriction. Technical
Report 99-08, Technische Universität Dresden, LTCS, 1999.

[54] I. Horrocks, U. Sattler, and S. Tobies. Practical Reasoning for Very Expressive
Description Logics.Logic Journal of the IGPL, 8(3):239–263, 2000.

[55] I. Horrocks and S. Tessaris. A Conjunctive Query Language for Description Logic
Aboxes. InAAAI, pages 399–404, 2000.

[56] Ian Horrocks, Lei Li, Daniele Turi, and Sean Bechhofer. The Instance Store: DL
reasoning with large numbers of individuals. InProceedings of the International
Workshop on Description Logics, DL2004, Whistler, Canada, pages 31–40, 2004.

[57] U. Hustadt, B. Motik, and U. Sattler. Reasoning for Description Logics around
SHIQ in a Resolution Framework. Technical Report 3-8-04/04, FZI, Karlsruhe,
Germany, April 2004. http://www.fzi.de/wim/publikationen.php?id=1172.

[58] U. Hustadt, B. Motik, and U. Sattler. ReducingSHIQ− Description Logic to
Disjunctive Datalog Programs. InProc. of the 9th Conference on Knowledge Rep-
resentation and Reasoning (KR2004). AAAI Press, June 2004.

KWEB/2005/D2.1.2.2.v1/1.0 Jan 30, 2006 95



Realizing practical approximate and distributed reasoning IST Project IST-2004-507482

[59] U. Hustadt, B. Motik, and U. Sattler. Data complexity of reasoning in very expres-
sive description logics. In Leslie Pack Kaelbling and Alessandro Saffiotti, editors,
Proceedings of the Nineteenth International Joint Conference on Artificial Intelli-
gence, Edinburgh, Scotland, pages 466–471, 2005.

[60] Ullrich Hustadt, Boris Motik, and Ulrike Sattler. Reasoning in description log-
ics with a concrete domain in the framework of resolution. InRamon Ĺopez
de Mántaras and Lorenza Saitta, editors,Proceedings of the 16th Eureopean Con-
ference on Artificial Intelligence, ECAI’2004, including Prestigious Applicants of
Intelligent Systems, PAIS 2004, Valencia, Spain, August 22-27, 2004, pages 353–
357. IOS Press, 2004.

[61] Werner Kießling. Foundations of preferences in database systems. InVLDB, pages
311–322, 2002.

[62] Werner Kießling and Gerhard K̈ostler. Preference sql - design, implementation,
experiences. InProceedings of 28th International Conference on Very Large Data
Bases (VLDB02), pages 990–1001, 2002.

[63] R. Korfhage.Information Storage and Retrieval. John Wiley, New York, 1997.

[64] M. Lacroix and Pierre Lavency. Preferences; putting more knowledge into queries.
In Peter M. Stocker, William Kent, and Peter Hammersley, editors,Proceedings of
13th International Conference on Very Large Data Bases (VLDB87), pages 217–
225. Morgan Kaufmann, 1987.

[65] Yuhua Li, Zuhair A. Bandar, and David McLean. An approachfor measuring se-
mantic similarity between words using multiple information sources.IEEE Trans-
actions on Knwoledge and Data Engineering, 15(4), 2003.

[66] John W. Lloyd.Foundations of Logic Programming. Springer, Berlin, 1988.

[67] Jie Lu and Jamie Callan. Federated search of text-based digital libraries in hier-
archical peer-to-peer networks. InEuropean Colloquium on IR Research (ECIR
2005), 2005.

[68] C. Lutz. Description Logics with Concrete Domains — A Survey. InAdvances in
Modal Logics, volume 4. King’s College Publications, 2003.

[69] A. Maedche, B. Motik, N. Silva, and R. Volz. MAFRA - a MappingFramework
for Distributed Ontologies. InProc. of Knowledge Engineering and Knowledge
Management (EKAW-02), volume 2473 ofLecture Notes in Computer Science.
Springer, 2002.

[70] David Makinson. Bridges from Classical to Nonmonotonic Logic, volume 5 of
Texts in Computing. King’s College Publications, London, 2005.

96 Jan 30, 2006 KWEB/2005/D2.1.2.2.v1/1.0



BIBLIOGRAPHY

[71] M.Bonifacio, P.Bouquet, and P.Traverso. Enabling Distributed Knowledge Man-
agement. Managerial and Technological Implications.Novatica and Informatik/In-
formatique, III(1), 2002.

[72] Boris Motik, Ulrike Sattler, and Rudi Studer. Query answering for OWL-DL
with rules. In Proceedings of the 3rd International Semantic Web Conference
(ISWC2004), Hiroshima, Japan, November 2004, 2004. To appear.

[73] A. Motro. Flexx: A tolerant and cooperative user interface to database.IEEE
Transactions on Knowledge and Data Engineering, 2(2):231–245, 1990.

[74] Wolfgang Nejld, Wolf Siberski, Uwe Thaden, and Wolf-Tilo Balke. Top-k query
evaluation for schema-based peer-to-peer networks. InProceedings of 3rd Inter-
national Semantic Web Conference (ISWC 2004), 2004.

[75] M. Nilsson. Ims metadata rdf binding guide.
http://kmr.nada.kth.se/el/ims/metadata.html, May 2001.

[76] N. F. Noy and M. A. Mussen. The PROMPT Suite : InteractiveTools for Ontol-
ogy Merging and Mapping.International Journal of Human-Computer Studies,
56(6):983–1024, 2003.

[77] Assosiation of Computing machinery. The acm computer classification system.
http://www.acm.org/class/1998/, 2002.

[78] B. Omelayenko. RDFT: A Mapping Meta-Ontology for BusinessIntegration. In
Proc. of the Workshop on Knowledge Transformation for the Semantic Web at the
15th European Conference on Artificial Intelligence (KTSW2002), pages 77–84,
2002.

[79] George Papamarkos, Alexandra Poulovassilis, and Peter T. Wood. Event-
condition-action rule languages for the semantic web. In Isabel F. Cruz, Vipul
Kashyap, Stefan Decker, and Rainer Eckstein, editors,SWDB, pages 309–327,
2003.

[80] N. Paton.Active Rules in Database Systems. Springer, 1999.

[81] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker.
A scalable content addressable network. InProceedings of the 2001 Conference on
applications, technologies, architectures, and protocols for computer communica-
tions. ACM Press, 2001.

[82] Grzegorz Rozenberg, editor.Handbook of Graph Grammars and Computing by
Graph Transformations, Volume 1: Foundations. World Scientific, 1997.

[83] C. Sakama and K. Inoue. An alternative approach to the semantics of disjunctive
logic programs and deductive databases.Journal of Automated Reasoning, 13:145–
172, 1994.

KWEB/2005/D2.1.2.2.v1/1.0 Jan 30, 2006 97



Realizing practical approximate and distributed reasoning IST Project IST-2004-507482

[84] Marco Schaerf and Marco Cadoli. Tractable reasoning viaapproximation.Artifi-
cial Intelligence, 74:249–310, 1995.

[85] Mario Schlosser, Michael Sintek, Stefan Decker, and Wolfgang Nejdl.
HyperCuP—Hypercubes, Ontologies and Efficient Search on P2PNetworks. In
International Workshop on Agents and Peer-to-Peer Computing, Bologna, Italy,
July 2002.

[86] B. Selman and H. A. Kautz. Knowledge compilation using Horn approximations.
In Proceedings of the Ninth National Conference on Artificial Intelligence (AAAI-
91), pages 904–909, 1991.

[87] L. Serafini, A. Borgida, and A. Tamilin. Aspects of Distributed and Modular On-
tology Reasoning. InProceedings of the Nineteenth International Joint Conference
on Artificial Intelligence (IJCAI 2005), 2005.

[88] L. Serafini and F. Roelofsen. Satisfiability for Propositional Contexts. InProceed-
ings of the Principles of Knowledge Representation and Reasoning (KR 2004),
2004. Accepted for publication.

[89] Wolf Siberski and Uwe Thaden. A simulation framework for schema-based query
routing in P2P-networks. In1st International Workshop on Peer-to-Peer Comput-
ing & DataBases(P2P& DB 2004, 2004.

[90] Patrik Simons, Ilkka Niemelä, and Timo Soininen. Extending and implementing
the stable model semantics.Artificial Intelligence, 138(1–2):181–234, 2002.

[91] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrish-
nan. Chord: A scalable peer-to-peer lookup service for internet applications. In
Proceedings of the 2001 Conference on applications, technologies, architectures,
and protocols for computer communications. ACM Press, 2001.

[92] H. Stuckenschmidt, L. Serafini, and H. Wache. Reasoning about Ontology Map-
pings. Technical report, ITC-IRST, Trento, 2005.

[93] H. Stuckenschmidt and F. van Harmelen. Approximating terminological queries.
In Proceedings of the Fifth International Conference on Flexible Query Answering
Systems FQAS 2002, Lecture Notes in Artificial Intelligence, Copenhagen, Den-
mark, 2002. Springer Verlag.

[94] Heiner Stuckenschmidt, Anita de Waard, Ravinder Bhogal,Christiaan Fluit, Ar-
john Kampman, Jan van Buel, Erik van Mulligen, Jeen Broekstra,Ian Crowlesmith,
Frank van Harmelen, and Tony Scerri. Exploring large document repositories with
rdf technology - the dope project.IEEE Intelligent Systems, 2004. to appear.

98 Jan 30, 2006 KWEB/2005/D2.1.2.2.v1/1.0



BIBLIOGRAPHY

[95] C. Tang, Z. Xu, and M. Mahalingam. PeerSearch: Efficient information retrieval
in peer-peer networks. Technical Report HPL-2002-198, Hewlett-Packard Labs,
2002.

[96] S. Tessaris. Questions and Answers: Reasoning and Querying in Description
Logic. PhD thesis, Department of Computer Science, University of Manchester,
UK, 2001.

[97] S. Tessaris and I. Horrocks. Abox Satisfiability Reducedto Terminological Rea-
soning in Expressive Description Logics. InProceedings of the Nineth Interna-
tional Conference on Logic for Programming, Artificial Intelligence and Reasoning
(LPAR 2002), volume 2514 ofLecture Notes in Computer Science, pages 435–449.
Springer Verlag, 2002.

[98] S. Tobies. The Complexity of Reasoning with Cardinality Restrictions and Nom-
inals in Expressive Description Logics.Artificial Intelligence Research, 12:199–
217, 2000.

[99] S. Tobies.Complexity Results and Practical Algorithms for Logics in Knowledge
Representation. PhD thesis, LuFG Theoretical Computer Science, RWTH-Aachen,
Germany, 2001.

[100] F. van Harmelen and A. ten Teije. Describing problem solving methods using
anytime performance profiles. InProceedings of ECAI’00, pages 181–186, Berlin,
August 2000.

[101] Charles L. Viles and James C. French. Dissemination of collection wide infor-
mation in a distributed information retrieval system. InProceedings of the 18th
Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval., pages 12–20. ACM Press, 1995.

[102] Charles L. Viles and James C. French. On the update of termweights in dynamic
information retrieval systems. InProceedings of the 1995 International Conference
on Information and Knowledge Management (CIKM), pages 167–174. ACM, 1995.

[103] Raphael Volz.Web Ontology Reasoning with Logic Databases. PhD thesis, AIFB,
University of Karlsruhe, 2004.

[104] W3C. Web ontology language (OWL). www.w3.org/2004/OWL/,2004.

[105] Holger Wache, Perry Groot, and Heiner Stuckenschmit.Scalable instance retrieval
for the semantic web by approximation. InProceedings of the 6th International
Conference on Web Information Systems Engineering (WISE’05), 2005.

[106] Chaokun Wang, Jianzhong Li, and Shengfei Shi. Cell abstract indices for content-
based approximate query processing in structured peer-to-peer data systems. In
APWeb, volume 3007 ofLecture Notes in Computer Science. Springer, 2004.

KWEB/2005/D2.1.2.2.v1/1.0 Jan 30, 2006 99



Realizing practical approximate and distributed reasoning IST Project IST-2004-507482

[107] Ian Witten, Alistair Moffat, and Timothy Bell.Managing Gigabytes. Morgan
Kaufman, Heidelberg, 1999.

[108] Beverly Yang and Hector Garcia-Molina. Designing a super-peer network. In
Proccedings of the 19th International Conference on Data Engineering (ICDE),
2003.

100 Jan 30, 2006 KWEB/2005/D2.1.2.2.v1/1.0



Related deliverables

A number of Knowledge web deliverable are clearly related tothis one:

Project Number Title and relationship
KW D2.1.1 D2.1.1 Survey of Scalability Techniques for Reasoning with

Ontologiesgives an overview of methods for approximating the
reasoning.

KW D2.1.2 D2.1.2 Methods for Approximate Reasoningcontains earlier
reports about investigated approximation methods

KW D2.1.3.1 D2.1.3.1 Report on Modularization of Ontologiescontains ear-
lier reports about approaches for distributed reasoning

KW D2.5.2 D2.5.2 “Report on Query Language Design and Standardisa-
tion” contains experiments of InstanceStore

101


