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Abstract. Faceted search enables users to browse and discover relevant
items from a large collection such as the Web of data. Existing faceted
search solutions assume a precise information need, and thus optimise rel-
evance, interestingness, and costs of fulfilling an information need. In this
paper, we propose a complementary solution. Instead of assuming a search
scenario (i.e., a user has a precise information need), our solution targets
a browsing scenario (i.e., a user has a fuzzy need). We aim to support
users in exploring an unknown collection of items, thereby allowing them
to discover new or unfamiliar items of interest. Our approach comprises
mechanisms for grouping facets and facet values and facet ranking. Via
a task-based evaluation, we demonstrate that the proposed solution en-
ables more effective browsing compared to the state-of-the-art, given fuzzy
information needs.

1 Introduction

Recently, large amounts of structured data have been made publicly available
on the Web (e.g., RDFa1 or Linked Data2), allowing complex information needs
to be addressed. For instance, consider the following example: Susan is a novice
computer science student. She is eager to learn more about this vast research
field and wishes to find “information about work of prestigious computer scien-
tists”. With traditional Web search, Susan searches via keywords and browses via
hyperlinks to fulfil her information need. Observe the two paradigms in Susan’s
example: (1) search as a mean for goal-oriented retrieval of information (e.g., via
keyword-based lookups) and (2) browsing as a mean for iterative exploration of a
collection of items (e.g., via hyperlinks) [17, 16].

Searching Web data using structured query languages (e.g., SPARQL3) helps
to address such complex information needs (e.g., Susan’s need). However, in order
for such a goal-oriented search to be effective, users have to be familiar with the
query language. Further, users have to know the item of interest and the underly-
ing domain. Thus, the search paradigm allows for precise information needs only.
However, real-world information needs are often fuzzy. There are two dimensions
of fuzziness: (1) Users have vague knowledge about the domain. For instance, Su-
san cannot precisely describe the term “prestigious”, whereas a domain expert
(having precise knowledge) may look for researchers that won a Turing Award.

1 http://www.w3.org/TR/xhtml-rdfa-primer/
2 http://www.w3.org/DesignIssues/LinkedData.html
3 http://www.w3.org/TR/rdf-sparql-query/
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(2) Users only vaguely know the item of interest. For instance, “work” in our
example may refer to publications or projects.

The browsing paradigm is more suitable for dealing with fuzzy needs. The
paradigm does not assume users to have full knowledge regarding domain or
item of interest. Instead, browsing allows users to explore a collection of items
iteratively [17, 16]. For instance, Susan may start with a simple lookup search
(e.g., a keyword query “computer scientist”) to obtain some starting points and
then browses the remaining collection to find “prestigious” scientists.

Faceted search implements the browsing paradigm, representing a promising
approach towards exploring and addressing (possibly fuzzy) information needs [12,
5, 10]. Here, users explore a collection of items by browsing conceptual dimensions
of the items (i.e., facets) and their values (i.e., facet values) [9, 20]. During an
iterative process of selecting facets and refining the current result collection, users
may construct complex, structured queries.

State-of-the-art. Faceted search was proposed for querying documents [9, 8,
4], databases [7, 3, 2] and semantic data [18, 21, 13] (referred to as semantic faceted
search). One research direction is concerned with efficiency aspects. Existing work
includes indexes and algorithms for fast computation of facets and facet-related
data [4, 8]. In this paper, we are concerned with the effectiveness of faceted search
– efficiency aspects are orthogonal and unfortunately out of scope.

Given a large amount of facets associated with a collection of items, one major
challenge we address is facet ranking. Widely used is frequency-based ranking [7,
19, 15]. It considers the number of items that are associated with a facet (its
count). A facet is considered important, when its count is high. Based on the
same idea, set-cover ranking has been proposed [7], which aims to maximise the
number of distinct items that are accessible from the top-k facets. In [15], the
authors assume a relevance-based ordering of items and propose ranking facets
according to their likelihood of being associated with a relevant item. Further, the
notion of interestingness has been incorporated into ranking [8], suggesting that
facet relevance may be measured based on how surprising a facet is (given a certain
expectation). The interestingness of a facet is defined as the aggregation of the
interestingness of its facet values, which is based on rationales for what should be
an expected facet value. In [7], the objective is to minimise user costs for finding
a specific item of interest. Cost is defined as the time needed for reaching an item
of interest. This time is computed as an aggregation of the times for reading facet
headings, for browsing facet hierarchies and for correcting browsing mistakes. The
authors of [3] propose to use the facet hierarchy (which the user traverses), as an
approximation for the interaction time and cost, respectively. A ranking scheme is
introduced to prefer facets with a hierarchy of low height. Thus, facets are ranked
high, when they quickly lead to an item of interest [3].

For effective faceted search, besides facet ranking, facet grouping approaches
have been proposed. A facet tree (i.e., a tree-shaped facet grouping) was employed
in [7, 12, 5, 10]. Thus, users are able to browse multiple facets (forming a facet
path), in order to explore a collection of items.

Contributions. We observe that (except for the generic, frequency-based
ranking), existing ranking approaches assume a precise information need. That is,
relevance, interestingness, and user costs (for fulfilling an information need) have
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been employed for measuring facet importance. Thus, we refer to such approaches
as search-oriented. However, we propose a complementary approach, targeting
a browsing scenario. Our solution supports users in addressing fuzzy needs, by
enabling them to slowly explore an unknown collection of items. In particular,
we provide mechanisms for grouping facets and facet values (i.e., an extended
facet tree), as well as for ranking facets – both targeting an enhanced browsing
experience. The contributions can be summarised as follows:
– For browsing facets with a large number of facet values, we propose an ex-

tended facet tree, which compactly captures both facets and facet values.
– We propose a ranking scheme, which supports users, given a fuzzy information

need, in browsing a collection of items.
– We have implemented our approach and made the code4 freely available. Fur-

ther, we have conducted a task-based evaluation, showing that our approach
outperforms the state-of-the-art on fuzzy information needs.
Outline. In Section 2, we introduce the data, query and facet model. Section 3

discusses (large) facet value sets and an extended facet model for browsing such
sets. Facet ranking is discussed in Section 4. In Section 5, we present a task-based
evaluation. We conclude with Section 6.

2 Data, Query and Facet Model

Data and Query Model. As different types of structured Web data may be
represented as graphs (including RDF), we employ a general graph-structured
data model.

Definition 1 (Data Graph). Let LV and LE be finite sets of vertex and edge
labels respectively. A data graph is a tuple G = (VG, EG), where VG is a finite set
of vertices, lV : VG 7→ LV is a vertex labelling function and EG ⊆ LE × lV (VG)×
lV (VG) is a set of labelled edges. The set of vertices is conceived as the disjoint
union VG = VGE ] VGD , where VGE stands for entities and VGD are data values. We
distinguish the set of relation edges EGR = {e(vi, vj) ∈ EG|vi, vj ∈ VGE } from the
set of attribute edges EGA = {e(vi, vj) ∈ EG|vi ∈ VGE , vj ∈ VGD} and EG = EGR ]EGA .

Information needs in our setting correspond to conjunctive queries of the form
(x1, . . . , xk).∃xk+1, . . . , xm.e1∧. . .∧er, where ei are atomic formulae and x1, . . . , xk
and xk+1, . . . , xm are called distinguished and undistinguished variables, respec-
tively. We focus on conjunctive queries with atomic formulae of the form e(vi, vj),
where vi and vj are either variables or constants. Since variables of a conjunctive
query may interact in an arbitrary way, these formulae form a graph (so called
basic graph patterns, representing a core feature of SPARQL). Further, a con-

junctive query is denoted as Q = (VQ, EQ). Vertices of Q are VQ = VQV ] V
Q
C

comprising a set of variables VQV and constants VQC ⊆ VG. Edges of Q (called

query predicates) are formulae e(vi, vj), with vi ∈ VQV , vj ∈ VQ. A conjunctive
query Q is processed as a graph pattern. Specifically, a result to Q on a graph
G is a mapping from vertices of Q to vertices of G, such that the substitution of
variables (called variable bindings, denoted by VRx with x ∈ VQV ) in Q would yield

4 http://code.google.com/p/semanticfacetedsearch/
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a subgraph of G. Thus, every result represents a subgraph of G. In fact, the entire
set of results is a subgraph of G, denoted by R(VR, ER) (called result set).

Facet Model. Our conjunctive query model indicates the information needs
we aim to support. However, via faceted search, users do not directly operate
on this query model, but employ facets to construct queries [9]. With semantic
faceted search [11, 1, 18, 10], conjunctive queries may be constructed. To formalise
the ideas of semantic faceted search, we employ a facet model comprising three
components: (1) facets, (2) facet values and (3) facet operations.

Definition 2 (Facets). Let Q(VQ, EQ) be the query, R(VR, ER) be the result set
for Q and VRx ⊆ VR be the particular set of bindings obtained for the variable

x ∈ VQV . Facets F (x) (for the variable x) are labels of edges, which capture direct
connections between elements in VRx and other elements of the data graph, i.e.,
F (x) = {f |f(vi, vj) ∈ EG, vi ∈ VRx }. Facets can be associated with every variable

x ∈ VQV . The set of facets for Q is F (Q) = {F (x)|x ∈ VQV }.

Facets can seen conceived as conceptual dimensions of some particular variable
bindings. In particular, every facet f ∈ F (x) corresponds either to a relation or
an attribute edge label. Thus, values of f might be entities or data values:

Definition 3 (Facet Values). Let R(VR, ER) be the result set and VRx ⊆ VR
be the bindings for a query variable x, then the values of a facet f ∈ F (x) are
entities or data values that are directly connected to elements in VRx via f , i.e.,
FV (f) = {vj |f(vi, vj) ∈ EG, vi ∈ VRx }.

There are three operations on facets that can be used to construct queries, i.e.,
to modify the bindings of variables VRvar and thus, to modify the overall result set
R. These operations are: (1) focus selection, (2) refinement and (3) expansion.

With focus selection, users can change the focus to the variable (and thereby
the set of bindings) they wish to modify. For instance, changing focus from y
to x means to focus on facets contained in F (x) (i.e., to focus on the entity set
VRx ) instead of F (y) (the entity set VRy ). In technical terms, it means that in
faceted search, we have only one distinguished variable, which during the process,
can be changed by the user to obtain different sets of results for refinement and
modification.

Users can modify the set of bindings for the variable in focus by adding further
query predicates. In particular, a refinement operation performed on a variable x
(on the entity set VRx , respectively) means adding a new query predicate f(x, y),
with f ∈ F (x) and y as new variable. Instead of adding further query predicates,
a refinement can also be performed by modifying an existing query predicate. Let
f ∈ F (x) be a facet corresponding to the query predicate f(x, y) and let FV (f)
be its facet value set. Users can refine VRx by choosing a facet value v ∈ FV (f), in
order to obtain a subset of VRx containing only entities connected to v via f . This
refinement operation (denoted by (f : v)) replaces y in f(x, y) with a constant v.
Analogously, users may expand a result set by removing a facet (i.e., removing
a query predicate) or removing a facet value (i.e., replacing a constant with a
variable).
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3 Browsing-oriented Facet and Facet Value Spaces

In this section, we propose an extension of our facet model – the notion of a facet
tree. For a result set, the basic facet tree (FT ) compactly represents the space
of all facets [11, 1, 18, 10], while our extended facet tree (FTe) additionally also
captures the space of all facet values.

Facet Tree (FT ). First, let us define the basic facet tree. For that, we intro-
duce a browsing operation, which allows users to explore the facet (and later also
the facet value) space via navigation along facets. Analogous to the expansion
and refinement operation, browsing consists of (multiple) facet selections. How-
ever, facets selected during browsing are not evaluated, i.e., the underlying query
does not change and thus the result set is not modified. A sequence of browsing
operations allows users to navigate from the result set to associated facet values,
and via their facets, to facet values that are further away. Every such browsing
sequence establishes a facet path. All possible facet paths, which may result from
browsing, establish a tree of facets:

Definition 4 (Facet Tree). Let G(VG, EG) be the data graph and VRx ⊆ VR be

the binding set (for a query Q) for x ∈ VQV , then the facet tree FT (x) for x can
be conceived as a set of possibly overlapping paths P . Each p ∈ P is of the form
〈VRx , . . . ,VLl 〉, connecting the root node VRx with a leaf node VLl . While leaves VL
are sets of data values, every other set Vi ∈ p comprises entities. There is a path
p ∈ P if and only if we find VRx , . . . ,VLl ⊆ VG and (∃v1 ∈ VRx , . . . ,∃vl ∈ VLl ).
∃e1 ∈ EG, . . . ,∃el ∈ EG. e1(v1, v2) ∧ . . . ∧ el(vl−1, vl).

A facet tree FT is derived from vertices and edges in the data graph. In partic-
ular, FT captures all entities and data values reachable from the result set via
navigation along paths in the data graph. It can be constructed via breadth-first
search from the result set (the root) to data values (the leaves). In order to obtain
only tree-shaped structures, edges leading to cycles are simply omitted. Note, in
order to include an entity v with no outgoing edges, we add a new edge e(v, lV (v))
(i.e., an edge pointing to its label).

In Fig. 1 we illustrate an exemplary tree for a result set containing four pro-
fessors. From the professor entities, it is possible to navigate to their associated
names, their universities and the university’s age.

Note, our notion of a facet tree is slightly different from existing facet trees
and graphs. In Parallax [12] and Tabulator [5], it is possible to traverse tree-like
structures, while with gFacet [10] even graph structures can be explored. With
such systems, users can navigate from one entity set to another by changing the
focus, and refine (expand) it by adding (removing) facets. In effect, users navigate
though the data. As opposed to that, we explicitly employ a browsing operation,
allowing users to explore the data without modifying the underlying query or
changing the focus. The user does not browse through the data, but though a
compact description, the facet tree. Users only see facets (e.g., works at, age and
name) and (in the extended facet tree) labels of facet value sets (e.g., University
or [ann − paul]). Thus, browsing is based on a compact intensional description,
thereby allowing users to easily grasp the overall structure of the facet (facet value)
space. In order modify the result set via facet paths, we introduce an extension of
the refinement operation. Instead of adding one query predicate, users can now
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add a conjunction of query predicates that corresponds to a facet path 〈e1, . . . , el〉
in FT , selected by the user (e.g., 〈works at, age〉 : [70 − 300]). Analogously, we
allow an extended expansion that removes a conjunction of query predicates.

Extended Facet Tree (FTe). Through browsing along the paths of a facet
tree, users eventually will reach a set of data values. Given a large set of data
values, users might be overwhelmed. Thus, current systems choose to present only
few top-ranked facet values and cut off the rest [18, 21, 13]. However, selecting one
single value requires users to have precise needs and knowledge regarding that
facet, which is contrary to the browsing paradigm. We aim to enable users to
explore and understand the entire facet value space.
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Fig. 1. Susan’s (extended) facet tree

Therefore, we apply a divisive
hierarchical clustering technique
[14]. Using our clustering tech-
nique, a set of facet values (i.e.,
data values) FV (f) is recursively
split, resulting in a hierarchy of
data value clusters. Since clusters
at the same level do not overlap,
the clustering process amounts to
a partitioning of FV (f). In order
to decide where to split a cluster,
a measure of dissimilarity between
sets of data values is required. We
use a distance measure for captur-
ing the dissimilarity between two
data values and employ a linkage
criterion, which captures the dis-
similarity of sets as a function of the pairwise dissimilarity of data values (con-
tained in those sets). More precisely, we use the Euclidean distance for numerical
data values and the Levenshtein distance for textual data values. For computing
the dissimilarity between sets of data values, we use the single-linkage criterion,
where the distance between two sets of data values is defined as the minimum
distance of all pairs of data values from both sets [14].

Now, we employ the clusters to extend the facet tree. Leaf nodes VLi ∈ FT (x)
containing more data values than a given threshold are clustered, resulting in a
set of data value trees (DT ). The combination of facet tree and data value trees
form an extended facet tree (FTe). Note, clustering is performed only on demand
(i.e., upon users browsing behaviour). More precisely, whenever a user reaches
a facet tree leaf, associated facet values are clustered, and a data value tree is
attached to extend FT .

Fig. 1 illustrates an exemplary extended facet tree. For instance, the set of
names {ann,mary, paul} is clustered, resulting in a tree of data values with [ann−
paul] as root. At the second level of the data tree, the set [ann − paul] is split
into two sets: {ann} and [mary − paul].

Compared to the state-of-the-art, the extended facet tree allows users to
browse and explore the data based on a compact and hierarchical representation,
using both facets (contained in FT ) and facet value sets (contained in DT ).
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4 Browsing-oriented Facet Ranking

Current work on facet ranking assumes users to have precise needs (i.e., know
the domain and item of interest) and thus, relevance, interestingness, or user
costs have been employed as measures [7, 3, 8]. In this section, we present a facet
ranking scheme targeting a different scenario. We assume users to have incomplete
knowledge w.r.t. domain or item of interest (i.e., fuzzy need). Thus, such users
need support in exploring and understanding the result set. In particular, we
prefer facets that allow users to modify the result set via small and uniform facet
operations.

4.1 Intuitions and Metrics for Browsing-oriented Facet Ranking

For ranking a facet f ∈ F (x), we consider the facet and facet value space that
can be reached via f and result set modifications, which can be performed via
facet paths originating from f .

Fig. 2. Binding segments as-
sociated with facet name and
works-at

More precisely, we consider f ’s extended facet
tree: For facet f (representing the query predicate
f(x, y)) we use FTe(y) to capture the facet and
facet value space reachable via f . That is, FTe(y)
captures all facet paths that can be used to modify
VRx (VR). We will now discuss the intuitions behind
browsing-oriented facet ranking and concrete met-
rics used to measure them.
Small Steps. Users modify the result set until
reaching an item of interest. Given that the facet
paths (leading to an item of interest) are unknown
and have yet to be explored, major result modifi-
cations that quickly change the result set are likely
to lead to mistakes (i.e., lead to irrelevant results).
Via small result modifications, users get to know
the result set bit by bit. These small changes can be
comprehended more easily by users (thus, they are
less likely to choose paths that lead to irrelevant
results). We use two metrics to implement this intuition:
– Maximum Height (h). The maximum height of FTe (i.e., the maximum

edge distance between the root node and a leaf node), directly reflects the
maximum number of possible facet operations. Given the number of current
results are fixed, the higher the number of possible result modifications, the
smaller are the average changes resulting from each result modification. Thus,
the greater the height of FTe of f , the higher we rank f . In our example, the
tree associated with name has height h = 2, while works at has a tree with
h = 3. Thus, we prefer works at w.r.t. height.

– Minimum Branching Factor (b). The branching factor measures the num-
ber of nodes, which FTe has at a particular level. Trees with small branching
factor lead to smaller result modifications, as such trees tend to be higher.
Further, a small branching factor reflects a small number of possible choices
at every level in FTe. Compared to a situation with a larger number of (nec-
essarily more fine-grained) choices, this situation is easier for the user to cope
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with (as it does not require specific knowledge for making a decision). There-
fore, we prefer facets having facet trees associated with a smaller branching
factor. For instance, name and works at have the same rank in this regard
because they have the same branching factor. At every level of both trees,
Susan faces only two choices.

Uniform Steps. We consider query modifications to be non-uniform, when they
have varying impacts on the result set size. More precisely, one query modification
might strongly favour one particular segment of the result set and discriminate
other segments. However, given the lack of precise knowledge about the item
of interest, all results are a priori of equal importance. Thus, it is not possible
to prefer a query modification that leads to a smaller set of results over another
resulting in a larger set of results. Likewise, longer facet paths cannot be preferred
over shorter paths. When browsing, it is hard for users to choose between these
non-uniform query modifications. Such query modifications are rather confusing
and likely lead to irrelevant results. Consequently, trees containing uniform query
modification steps shall be preferred. We use metrics as follows:
– Height Balance (hb). FTe is perfectly height balanced, when all leaves are

of equal edge distance to the root. We define height balance as hb(FTe) =
c

(distmax(FTe)+ε)−distmin(FTe)
, with c being a constant and distmax (distmin)

as maximal (minimal) edge distance from the root to a leaf. A facet with FT ′e
associated is ranked higher than one with FT ′′e , iff hb(FT ′e) > hb(FT ′′e ). For
instance, the facet tree associated with name is less height-balanced than the
tree associated with works at.

– Facet Value Set (sbfv) and Binding Segment (sbb) Size Balance. We
measure the size balance w.r.t. facet value sets and binding set segments,
which may be reached via FTe. Note that facet value sets are captured by
leaf nodes VL of FTe. Let the leaf VLmax (VLmin) contain the largest (small-
est) number of facet values. The facet value set balance is sbfv(FTe) =

c
(|VL

max|+ε)−|VL
min|

, with c being a constant. Further, every refinement operation

(corresponding to a node Vi ∈ FTe(x)) actually leads to a binding segment
VRxi
⊆ VRx . Thus, corresponding to the facet tree, we have a tree of binding

segments. Fig. 2 illustrates the trees of binding segments corresponding to
the facet trees associated with name and works at. We consider the size of
the binding segments at leaf level. For instance, works at has four binding
segments at leaf level ({P1}, . . . , {P4}); name has {P2, P3} and {P1, P4}.
Our variable binding segment size balance is sbb(FTe) = c

(|VA
xmax

|+ε)−|VA
xmin

| ,

where c is a constant and VAxmax
(VAxmin

) is the largest (smallest) variable
binding segment (at leaf level). While the binding segment size is perfectly
balanced for works at, this is not the case for name (one segment contains
one professor, while the others contain two).

Comprehensible Result Segments. For users who are unfamiliar with a result
set, it is important that a facet operation leads to obvious and comprehensible
result modifications. Each operation should lead to a true result modification, i.e.,
an observable result refinement (expansion). Further, different operations should
lead to different result modifications. Our metrics are:
– Binding Distinguishability (d). To assess whether facets lead to an ob-

servable result modification, we use the notion of distinguishability adopted
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from [3]. A facet has a high distinguishability, when it leads to facet values
that precisely identify variable bindings. Ideally, leaves VL are associated with
binding segments consisting of exactly one element. Accordingly, our distin-

guishability metric is d(FTe) =
|VR

x |∑
Vi∈VL |VR

xi
| . For instance, facet name leads

to mary, which is associated with {P1, P4}. Paul is the name of {P2, P3}.
Both pairs of professors share the same name, so it is difficult for Susan to
distinguish them. Using the facet works at, she is able to distinguish between
all four professors, as they work for different universities. Overall, works at
has maximum distinguishability of 1, while the distinguishability for name is
0.8.

– Minimal Binding Segment Overlap (o). Binding segments with minimal
overlaps are preferred to ensure that facet operations along a tree FTe lead
to different result modifications. Binding set overlap can be computed by

considering the binding segment overlap at leaf level: o(FTe) =
|VA

x |
|
⋂

Vi∈VL VA
xi
|+ε .

In our example, the refinements (name : ann), (name : mary) and (name :
paul) split the binding set into segments that overlap on {P1} (as P1’s name
includes ann and mary). Refinements via (〈works at, age〉 : 70) etc. split the
binding set into segments with no overlaps. Thus, Susan can observe two sets
of professors, i.e., one set {P2, P4} working at older universities, while the
other set {P1,P3} is associated with younger universities.

4.2 A browsing-oriented Ranking Function

We now provide a scoring function S, which incorporates the proposed metrics.
We aim to rank a facet f ∈ F (x), where f represents f(x, y), based on its facet
tree FTe(y). We distinguish facets that correspond to attributes from facets cor-
responding to relations.

Definition 5 (Attribute-based Scoring Function). Given an attribute facet
f , its facet tree FTe, the score of f is defined as S(f) = ag(h(FTe), b(FTe), hb(FTe),
sbfv(FTe), sbb(FTe), d(FTe), o(FTe)), with ag as a monotonic aggregation func-
tion.

The set of attribute (relation) facets at level k that can be reached via the facet
tree FT is denoted by FAf (k) (FRf (k)). The score of a relation facet f at level k

is computed based on the scores of facets FRf (k + 1) and FAf (k + 1).

Definition 6 (Relation-based Scoring Function). Let f be a relation facet
at depth k = 0 and let FAf (FRf ) be the set of directly connected attribute (relation)

facets (i.e., FAf (1) and FRf (1)), kdo is the total edge distance to be considered, kdid
is the edge distance considered so far, and δ(k) is a monotonic decreasing weight
function discounting the score of facets more distant from f , then the score of f
is recursively computed using the formula (starting at kdid = 1 and kdo ≥ 1):

S(f) =

{
δ(kdid)agfa∈FA

f
S(fa) if kdo = 1

agfr∈FR
f
S(fr)kdo−1,kdid+1 + δ(kdid)agfa∈FA

f
S(fa) otherwise

In the current implementation, ag is a summation. We use kdo = 1, i.e., the score
of a relation facet is simply an aggregation of the scores of reachable attribute
facets.
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5 Evaluation

We decided to conduct a task-based evaluation, which has gained acceptance in
the IR community, especially for assessing approaches that go beyond IR-style
document retrieval. The goal is to find out whether browsing (as supported by
our approach) helps to accomplish a set of predefined tasks (effectiveness) and
how much time is needed (efficiency).

Participants. 24 participants took part in our evaluation: 6 were non-technical
users, while the remaining 18 participants had a computer science background. All
were familiar with faceted search (as used in Web search engines). The participants
were given an introduction to the system, similar to an available screencast.5

Tasks. 24 tasks were chosen by domain experts and comprised both precise
and fuzzy information needs. Tasks were followed by a series of questions to assess
the user’s understanding and exploration of the result set. A complete listing of
tasks can be found in an extended technical report.6

Data. For the evaluation, we used DBpedia, a dataset covering a large amount
of broad-ranging knowledge [6]. DBpedia allowed us to design evaluation tasks
that are not targeted at a particular domain.

System. We made use of the Information Workbench5, a system for interact-
ing with the Web of data. The proposed faceted search approach was implemented
using Oracle Berkeley DB Java Edition and Apache Lucene, based on the design
and indexes reported in [4, 8]. We employed caching strategies to speed up cluster
and rank computation and thereby guaranteed a fluent system interaction during
the evaluation. Users were provided with a keyword search interface to obtain a
starting point by typing in keywords. From the initial set of results, users contin-
ued via faceted search, i.e., via browsing, refinement and expansion operations.
Results were visualised as introduced in [22], facets and facet values were pre-
sented as in [9], (extended) facet trees were represented as trees. Due to space
reasons, we had to omit screenshots; however, they are included in our technical
report6. The backend, including the keyword and faceted search modules, was
implemented in Java 6 and the frontend is based on Ajax technologies running on
a Jetty server. Experiments were carried out in a supervised manner on a PC with
a T7300 Intel CPU and 4 GB memory, running on Microsoft Vista. We recorded
the search process for each user and task using a screencast software.

5.1 Extended Facet Tree

Tasks. We prepared four tasks (C1-C4) for investigating the effects of our data
value trees (i.e., data value clustering) on browsing. Task C3 is a precise need
that involves a specific item of interest: ’Related to Berlin, find the Berlin Phil-
harmonic orchestra’. In contrast, the remaining 3 tasks involved fuzzy needs. In
particular, tasks were fuzzy in the sense that the item of interest was specified
imprecisely. Thus, participants had to browse and explore in order to fulfil these
tasks. For instance, consider C2: ’Related to London, find all artists born some
time in November 1972’. Here, participants did not know what kind of artist or

5 http://iwb.fluidops.net/
6 http://www.aifb.kit.edu/web/Misc3004
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Fig. 3. Results of task-based evaluation

what concrete birthday to look for. The second class comprises eight complex
browsing tasks (B1-B8). They have been designed to assess the quality of brows-
ing based on the facet tree, compared to the baseline featuring a flat facet list. For
accomplishing these tasks, users had to browse several facets to find a suitable
facet path (length ≥ 2) for refinement (e.g., B1 ’Related to Paris, find all works
having an actor, who is also a writer’).

Baseline. In order to evaluate faceted search based on our extended facet
tree, we used as baseline an implementation that represents the work in [21, 1,
18]. That is, browsing was solely based on a flat list of facets that are directly
associated with the current result set. More precisely, we used two systems: (1) one
system supported browsing on a flat list of facets without data value clustering
and (2) our system that supported browsing based on the extended facet tree.
Further, both systems employed a standard frequency-based ranking [7, 19, 15].
However, note, we designed clustering (C) and browsing (B) tasks in a way, that
we were able to compare the effects of data value clustering en- or disabled and
facets grouped in lists or trees. More precisely, in order to fulfil C tasks, users
used made only use of a single facet and its associated data value tree or flat
value list. Browsing tasks were designed analogously. Thus, we could observe the
effects originating from facet trees versus lists and data value clustering versus no
clustering.

Effectiveness. We observed that, if users were provided with a precise in-
formation need, the data value tree had no effect. Fig. 3a illustrates this result
for task C3 – all participants could accomplish their assignment no matter the
system. However, the fuzzier the information need, the more users depend on
browsing the data value tree to solve their tasks (C1, C2, C4). More precisely,
given a fuzzy need such as in C4 (’Related to Hamburg, find all places having
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a name starting with [K-U] ’), we observed that without data value clustering,
some users were not able or not willing to fulfil their assignment, because of the
substantial effort needed. With clustering enabled, participants achieved a high
success rate, as shown in Fig. 3a. This result suggests that extending the facet
tree with data value trees is helpful for browsing, enabling users to handle fuzzy
needs via exploring both facets and facet values using a hierarchical structure.

Further, we observed that no participant managed to complete their browsing
tasks using the baseline (featuring a flat facet list) (Fig. 3b). A number of users
did realise that these complex tasks can solved by executing several searches
and browsing several facet lists. However, they also noticed the substantial time
required and were not willing to complete their tasks (e.g., B3: ’Related to London,
find all works, having as subsequent work a television show’ ). Using our system
(providing the facet tree for browsing), participants achieved a high overall success
rate of above 67% (Fig. 3b). This result is promising as all tasks involve complex
information needs that can only be satisfied using complex structured queries.
Participants solved them by exploring facet paths (often path length ≥ 3) and
combining them in an iterative fashion.

Efficiency. Without data value trees and given fuzzy needs, we observed that,
if participants completed their tasks, they had to use a brute-force strategy to
search through a large set of facet values. The brute-force approach led to more
system interactions and notably higher costs, when compared to our system (with
data value trees). Fig. 3c shows this effect for C1 (’Related to Paris, find all places,
having names starting with [I-K]’ ) and C2. Regarding tasks that involve precise
information needs, many participants used search (based on keyword queries)
as a strategy to complete their tasks (e.g., C3). This resulted in a performance
comparable to the use of a data value tree. In fact, we observed our approach
to be slightly more expensive in case of C3 (Fig. 3d), as the browsing operations
performed on the data value tree took more time than search.

Concerning the complex browsing tasks (B1-B8), we already pointed out that
no participant succeeded, when using the baseline (Fig. 3b).

In conclusion, the experimental results suggest that the use of a hierarchical
facet model (like our extended facet tree) improves the efficiency and effectiveness
of the task completion, concerning complex, fuzzy tasks. Search is more efficient
and equally effective, with regard to precise and simple needs only.

5.2 Browsing-oriented Ranking

Tasks. We prepared 12 tasks, which are divided into two classes: find (F) and
explore (E) tasks. Class F consists of 8 tasks (F1-F8), which involve precise and
fuzzy information needs (e.g., F8: ’Related to Seattle, find some international
Airport’). Class E (E1-E4) comprises 4 tasks, where users had to explore a result
set (fuzzy need), i.e., find outliers, interesting or strange results (e.g., E4: ’Ex-
plore interesting entities related to Seattle’). For E tasks, after a time threshold (5
minutes), users were asked a set of questions, in order to assess the users’ under-
standing of the result set. Via these questions, users judged their understanding
of the result set and rated the exploration experience and the knowledge that
they could acquire on a scale from 1 (worst) to 5 (best).
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Further, we divided the participants into two groups: For F tasks, the first
group performed the tasks via search-oriented ranking, while the second group
used browsing-oriented ranking. Thus, users solved each task only once. This is
crucial, as the knowledge acquired from solving tasks using one system would
impact on experiments with the other system. For E tasks, participants used
both strategies, so that they could compare the exploration.

Baseline. Current ranking approaches are either generic w.r.t. information
needs or assume precise needs. Our work is contrary to the latter approach
and thus we compared our browsing-oriented ranking to such search-oriented ap-
proaches. More precisely, we used the metrics h and d (Section 4) and aggregated
them to capture the intuition behind search-oriented ranking (S). Corresponding
to the main idea (i.e., users having complete knowledge and therefore wish to

minimise their search effort), S(ĥ, d̂) aims at reducing the costs for fulfilling an
information need, measured based on the number of refinement and expansion
operations [7, 3, 8]. Thus, minimal tree height h is preferred to minimise the num-
ber of required facet operations. Further, facets should be discriminative, allowing
users to quickly refine a result set. Thus, facets with high distinguishability score
d are preferred. Overall, top-ranked facets aim at enabling users to perform rapid
refinements and thereby reach an item of interest via few facet operations.

Effectiveness. For comparing the effectiveness of the two ranking strategies,
we compared the average success rate for F tasks and the average browsing expe-
rience rating for E tasks. The results are depicted in Fig. 3d and Fig. 3e.

Concerning the success rate, given fuzzy needs, we observed that via search-
oriented ranking, participants succeeded in tasks, where relatively small result
sets (result size in the order of tens) had to be explored. Here, participants chose
facets for browsing and refinement in a brute-force manner (e.g., F1 ’Related to
Karlsruhe, find some city not located in Germany’, or F3, F4 and F8). Concerning
tasks with larger results (result size in the order of hundreds) and fuzzy needs,
participants were not able to accomplish their assignments (e.g., F5 ’Related to
Barcelona, find a strange educational institution’, or F6 and F7).

Given precise needs, i.e., participants had precise background knowledge, users
could solve their tasks equally effective with both rankings (e.g., for F2 ’Related
to Karlsruhe, find a close-by airport’ some users knew that particular airport).

Browsing-oriented ranking outperforms the baseline on all tasks, especially
those with large result sets and fuzzy needs. It seemed that for solving these tasks,
users prefer general facets ranked high by the browsing-oriented strategy (e.g.,
type or genre), over fine-grained facets ranked high by the search-oriented strategy
(e.g., birthday or name). As participants often had no precise knowledge regarding
suitable values for such fine-grained facets (e.g., a specific birthday), they were not
able to use them for exploration. Further, in many cases we observed participants
using type for their initial exploration. Type helped them to get familiar with the
current result set.

Concerning E tasks, the proposed ranking also performed well (Fig. 3e). Over-
all, exploration via browsing-oriented ranking was rated between 4 and 4.5, whereas
exploration using search-oriented ranking was rated between 2 and 2.7.

Efficiency. For measuring user effort, we recorded the necessary time for all
relevant system interactions, i.e., browsing, refinement and expansion operations.
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The time span for a browsing operation is defined as the time interval from the
completion of the last facet operation, until the user browses to the next node
in the facet tree (or decides to abort browsing). The time span for a refinement
(expansion) operation is defined as the time from the last facet operation, until
the user performs the next refinement (expansion).

On average, users needed 8 seconds for a refinement, 18 seconds for an expan-
sion and 4.4 seconds for a browsing operation. The average time for each F task
is illustrated in Fig. 3f. Note, F tasks that users did not complete for one of the
systems are not shown (F5-F7).

Similar to the effectiveness study, we observed that the amount of results
affects the performance of both strategies. When having a small result set (result
size in the order of tens) and thus few facets, users solved their tasks on average
with equal or less effort via search-oriented ranking (F1-F4). In particular for
F2, users could exploit precise background knowledge (precise need), in order to
refine the results set in an efficient, goal-directed manner. For the tasks F1, F3
and F4, users had few facets and thus were successful in guessing the appropriate
facets that lead to their item of interest. Via browsing-oriented facets, on the
other hand, more refinement and browsing operations were necessary, as high-
ranked browsing-oriented facets restrict the result set in much smaller steps than
search-oriented facets.

However, given fuzzy needs, when facing larger result sets (in the order of
hundreds) and thus more facets, users were not able to guess suitable facets (F5-
F8). More time had to be invested, as facet exploration was mere brute-force.

Thus, we can conclude that while browsing-oriented ranking might not provide
the most efficient way to an item of interest, it is suitable for scenarios with no
precise need and large result sets (thus, large facet and facet value spaces) to be
explored.

6 Conclusion

Current faceted search approaches imply a precise information need and thus,
focus on the search paradigm. We target the browsing paradigm, where users
only vaguely know the domain or item of interest.

To this end, we proposed the extended facet tree, which supports browsing
based on a compact and hierarchical representation of the facet and facet value
space. Based on the extended facet tree, we designed several metrics and incor-
porated them into a ranking scheme, which allows users to browse in small and
uniform steps leading to observable and comprehensible result set modifications.

We evaluated the proposed ranking and extended facet tree based on experi-
ments with 24 tasks and 24 users. Our solution clearly outperformed the state-of-
the-art on tasks, which involve fuzzy information needs and require dealing with
large number of results.

As future work, we plan to integrate search- with browsing-oriented solutions,
allowing varying types of information needs. In particular, we will study how to
switch between search- and browsing-oriented ranking. Further, we will address
efficiency aspects of the proposed ranking and facet tree computation.
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Appendix

In this Section, we provide a full listing of our evaluation tasks. Further, we
illustrate our evaluation system using screenshots.

Evaluations Tasks

Task Group Task No. Task Description

C-Tasks

C1 Start with keyword search for ’Paris’. Find all
places, having names starting with ’Paris, I . . . ’,
’Paris, J . . . ’ or ’Paris, K . . . ’.

C2 Start with keyword search for ’London’. Find all
artists (an artist is a person), born some time in
November 1972.

C3 Start with keyword search for ’Berlin’. Find the
orchestra ’Berliner Philharmoniker’.

C4 Start with keyword search for ’Hamburg’. Find all
places, having a name starting with ’K’, ’L’, ’M’,
’N’ or ’U’.

B-Tasks

B1 Start with keyword search for ’Paris’. Find all
works, having an actor as writer.

B2 Start with keyword search for ’Paris’. Find all
things, having as genre a music genre, which has
as instrument an electric guitar.

B3 Start with keyword search for ’London’. Find all
works, having as subsequent work a television
show (episode).

B4 Start with keyword search for ’London’. Find all
works, having an artist born 1926.

B5 Start with keyword search for ’Berlin’. Find a
work, having as producer someone who is also a
musical artist.

B6 Start with keyword search for ’Berlin’. Find a
work, having as artist a band (a band is an or-
ganization), which has their hometown located in
Japan.

B7 Start with keyword search for ’Hamburg’. Find all
works, having as artist a solo-artist. Select the lat-
est of the above works.

B8 Start with keyword search for ’Hamburg’. Find
some building, owned by an organization, founded
in the early 20th century.

F-Tasks

F1 Start with keyword search ’Karlsruhe’. Find some
city not located in Germany.

F2 Start with keyword search ’Karlsruhe’. Find a
close-by airport.

Table continued on next page . . .
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Table 1 - Continued

Task Group Task No. Task Description

F3 Start with keyword search ’Heidelberg’. Find
something having to do with sports and that
doesn’t fit in.

F4 Start with keyword search ’Heidelberg’. Find an
item that’s got something to do with music.

F5 Start with keyword search ’Barcelona’. Find an ed-
ucational institution not quite fitting in.

F6 Start with keyword search ’Barcelona’. Find an
international jazz-band drummer, who played to-
gether with Louis Armstrong.

F7 Start with keyword search ’Seattle’. Find a hospi-
tal for minors.

F8 Start with keyword search ’Seattle’. Find an inter-
national Airport.

E-Tasks

E1 Start with keyword search ’Karlsruhe’. Explore the
given result set.

E2 Start with keyword search ’Heidelberg’. Explore the
given result set.

E3 Start with keyword search ’Barcelona’. Explore the
given result set.

E4 Start with keyword search ’Seattle’. Explore the
given result set.

Table 1: User tasks during evaluation

Screenshots of our Evaluation System

During our evaluation, users were presented a series of tasks. Each task started
with a precise keyword query (e.g., ’Paris’), in order to give all participants the
same starting point during the evaluation. Once the initial result set was obtained
via the keyword query, users preformed facet operations for reaching their item
of interest. Now, let us illustrate a few screenshots, depicting the user’s search
process in our system after issuing the keyword query. In particular, we focus on
the (extended) facet tree.

Consider a keyword query ’Paris’. See Fig. 4 for the initial search result for
the keyword query ’Paris’. Note, on top is the current query (and later also the
query history) displayed. Search results are shown as a ranked list of items in the
center. Facets and the (extended) facet tree is depicted on the left. Note, each
facet has (complementary to the facet tree) a keyword search interface (if a user
knows the exact facet value). Further, users were able to browse the facet tree
via the ’+’ (’-’) buttons. Facet refinement operations could be issued by clicking
directly at a facet value in the (extended) facet tree.
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Depicted in Fig. 5, please see the facet tree for the facet type. Note, edges in the
facet tree constitute subclass-of relations; edge labels were left out for simplicity.

In Fig. 6, a data value tree for the name facet is illustrated. Note, since facet
values of name are textual values, the Levenshtein distance was employed as
dissimilarity measure.

Last, see in Fig. 7 a refinement operation via the facet value combination
(name : [’Dans Paris’- ’Live In Paris’]) (i.e., the result set was refined to contain
only those items with names starting with ’D’-’L’). In particular, notice the query
history on top and the additional query predicate name(x,[’Dans Paris’- ’Live In
Paris’]).



19

Fig. 4. Initial search result for keyword query ’Paris’



20

Fig. 5. Facet tree for facet type
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Fig. 6. Data value tree for facet name
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Fig. 7. Facet refinement via (name : [’Dans Paris’- ’Live In Paris’])


