
 P
R

O
O

F

Web Semantics: Science, Services and Agents
on the World Wide Web xxx (2004) xxx–xxx

Annotation, composition and invocation of semantic web services3

Sudhir Agarwal∗, Siegfried Handschuh, Steffen Staab4

Institute of Applied Informatics and Formal Description Methods (AIFB), University of Karlsruhe (TH), D-76128 Karlsruhe, Germany5

Received 11 March 2004; received in revised form 14 July 2004; accepted 28 July 2004

6

Abstract7

The way that web services are currently being developed places them beside rather than within the existing World Wide Web.
In this paper, we present an approach that combines the strength of the World Wide Web, viz. interlinked HTML pages for
presentation and human consumption, with the strength of semantic web services, viz. support for semi-automatic composition
and invocation of web services that have semantically heterogeneous descriptions. The objective we aim at eventually is that a
human user e.g. a consultant or an administrator can seamlessly browse the existing World Wide Web and the emerging web
services and that he can easily compose and invoke Web services on the fly.

8

9

10

11

12

13

This paper presents our framework, OntoMat-Service, which trades off between having a reasonably easy to use interface
for web services and the complexity of web service workflows. It is not our objective that everybody can produce arbitrarily
complex workflows of web services with our tool, the OntoMat-Service-Browser. However, OntoMat-Service aims at a service
web, where simple service flows are easily possible—even for the persons with not much technical background, while still
allowing for difficult flows for the expert engineer.

14

15

16

17

18

©19

20

121

22

c23

c24

t25

I26

b27

t28

w29

f

ars30

ning-31

32

rate33

eb,34

is- 35

ces,36

o- 37

inte38

39

d 40

and41

as-42

ruc-43

1 1
2 d
U
N

C
O

R
R

E
C

TE
D

WEBSEM 28 1–18

2004 Published by Elsevier B.V.

. Introduction

The Stencil Group defines web services as: loosely
oupled, reusable software components that semanti-
ally encapsulate discrete functionality and are dis-
ributed and programmatically accessible over standard
nternet protocols. Though this definition captures the
road understanding of what web services are, it raises

he question, what web services have to do with the
eb. Even if HTTP is used as a communication proto-

∗ Corresponding author. Tel.: +49 721 608 6817;
ax: +49 721 693 717.

E-mail address:agarwal@aifb.uni-karlsruhe.de (S. Agarwal).

col and XML/SOAP to carry some syntax, this appe
to be a rather random decision than a deeply mea
ful design.

We believe that it makes sense to actually integ
the strengths of the conventional World Wide W
viz. lightweight access to information in a highly d
tributed setting, with the strengths of web servi
viz. execution of functionality by lightweight prot
cols in a highly distributed setting. To seamlessly
grate the two aspects we envision aservice webthat
uses XHTML/XML/RDF to transport information an
a web service framework to invoke operations
a framework, OntoMat-Service, to bind the two
pects together. OntoMat-Service offers an infrast

570-8268/$ – see front matter © 2004 Published by Elsevier B.V.
oi:10.1016/j.websem.2004.07.003

TE
D

 P
R

O
O

F

2 S. Agarwal et al. / Web Semantics: Science, Services and Agents on the World Wide Web xxx (2004) xxx–xxx

ture, OntoMat-Service-Browser, that allows44

• for seamlessly browsing conventional web pages, in-45

cluding XHTML advertisements for web services;46

• for direct, manual invocation of an advertised web47

service as a one–off use of the service;48

• for tying web service advertisements to each other49

when browsing them;50

• for tying web service advertisements to one’s own51

conceptualization of the web space when browsing52

them; and53

• for invoking such aggregated web services.54

For these objectives, we build on existing technolo-55

gies like RDF[9], ontologies[1] or WSDL[22]. To in-56

tegrate the web and web services into the service web,57

we make specific use of a new type ofsemantic anno-58

tation [5], namelydeep annotation[6].59

The paper proceeds as follows. We first describe a60

simple use case for OntoMat-Service (cf.Section 2),61

including a detailed WSDL description of a web ser-62

vice used for the running example. InSection 3, we63

describe the process that allows to turn web services64

into a service web and that lets a user browsing the65

web with OntoMat-Service-Browser exploit the very66

same tool to aggregate and invoke web services. The67

first step of this process, i.e. advertising web services68

in a form that combines presentation for human and69

machine agent consumption, is sketched inSection 4.70

The second step of this process, i.e. using browsing71

and semantic deep annotation to tie together concep-72

t73

s rvice74

fl75

fi -76

c we77

o78

279

e is80

t81

e p. To82

m em-83

p dge84

d rise.85

I ect86

o har-87

Fig. 1. Sequence diagram for the use case.

acteristics of the desired laptop like processor speed,88

disk size, etc. Further, it should be possible to close an89

insurance contract for a newly bought laptop. For this90

purpose, insurance terms from a third party have to be91

collected. Once the most reasonable laptop and the best92

insurance contract terms are determined, the employee93

purchases the laptop and closes the service contract.94

In our scenario, we assume a laptop ven-95

dor and an insurer offering web services with96

two operations each, i.e.getLaptopOffer/ 97

buyLaptop and getInsuranceTerms/ 98

closeServiceContract , respectively. The 99

sequence of operations that must be executed by the100

customer is depicted inFig. 1. 101

The laptop vendor and the insurer being web service102

providers describe their web services with WSDL103

documents. InFig. 2, we show how a conventional 104

WSDL document of the laptop vendor located at105

http://laptop-vendor.de/laptop.wsdl 106

might look like.1 107

The WSDL document describes: 108

• Data type definitionsin the XML element types. 109

They are only sketched inFig. 2as they correspond 110

to the laptop vendor’s ontology depicted in N32 in 111

Fig. 4. Thereby, we assume the definitions given in112

Fig. 3. In our running example, the WSDL document113

of the laptop vendor, we describe the class Laptop.114

ocu-
m stead
o s not
r

L
s s/
N

U
N

C
O

R
R

E
C

ual descriptions, is described inSection 5. The third
tep comprises the generation of simple web se
ows and is described inSection 6. The fourth and
nal step described inSection 7deals with the invo
ation of web service flows. Before we conclude,
verview some related work.

. Use case

A typical use case supported by OntoMat-Servic
he following (adapted from a larger scenario in[11]):
mployees in an enterprise often need a new lapto
ake the laptop purchasing process easier for the
loyees, an administrator having technical knowle
efines a process for the employees of the enterp

n order to buy a laptop, it is desired to first coll
ffers from various laptop vendors based on the c
WEBSEM 28 1–18

1 The single ideosyncrasy we have here is that the WSDL d
ent employs RDFS in order to describe the data structures in
f the more common XML schema–though actually WSDL doe
equire XML Schema and it allows RDFS.

2 Notation 3 or N3 is basically equivalent to RDF in its XM
yntax, but more compact, cf.http://www.w3.org/DesignIssue
otation3.

http://www.w3.org/designissues/notation3
http://www.w3.org/designissues/notation3

U
N

C
O

R
R

E
C

TE
D

 P
R

O
O

F

WEBSEM 28 1–18

S. Agarwal et al. / Web Semantics: Science, Services and Agents on the World Wide Web xxx (2004) xxx–xxx 3

Fig. 2. Web service description of laptop vendor.

Fig. 3. N3 shortcuts.

Fig. 4. Ontology of the laptop vendor.

C
TE

D
 P

R
O

O
F

4 S. Agarwal et al. / Web Semantics: Science, Services and Agents on the World Wide Web xxx (2004) xxx–xxx

Fig. 5. Ontology of the insurance company.

• Messagesthat a service sends and/or receives and115

that constitute the web service operations in the116

XML elementportType . For instance, our run-117

ning example specifies ‘getOffersRequest ’118

that a potential customer would send to the laptop119

vendor to solicit an offer.getOffersRequest120

must be provided with two arguments, namely pro-121

cessor speed and disk size. It returns a set of laptop122

offers with properties such as specified in the vendor123

ontology (cf. WSDL document inFig. 2and vendor124

ontology inFig. 4).125

WSDL provides a naming convention for URIs126

such that each conceptual element (e.g., types,127

portType, etc.) of a WSDL document can128

be uniquely referenced. Such a URI consists of129

a targetNamespace pointing to the location130

of the WSDL document and to element names131

of the WSDL document. For example, theURI132

http://laptop.wsdl/laptop/#part133

(getOffersRequest/diskSpace) refers to the134

second part (diskSpace) of the messagegetOf-135

fersRequest of the WSDL document inFig. 2(cf.136

[22] for further specifications).137

The web service description of the insurer looks sim-138

ilarly. We here only mention that the insurer provides139

proce

the operationsgetInsuranceTerms and close- 140

ServiceContract . getInsuranceTerms re- 141

quires a description of Laptop (according to the142

insurer’s ontology in Fig. 5) and a timePe- 143

riod, for which the contract is supposed to run.144

getInsuranceTerms returns a set of insurance terms145

available. 146

In the remainder of the paper, we assume that the147

customer has the plan depicted inFig. 1. However, in 148

our running example, we will mostly focus on the first149

two steps to illustrate our framework. 150

3. Overview of the complete process of 151

OntoMat-Service 152

Fig. 6shows the complete process of our framework,153

OntoMat-Service. First, the figure consists of process154

steps, which are illustrated by a circle representing the155

step and a person icon representing the logical role of156

the person who executes the step, viz. service provider,157

annotating Service Web browser and a user invoking158

a Web Service. The two latter roles typically coincide.159

Second, the figure comprises information that is used160

by a person or by OntoMat-Service-Browser in a pro-161

cess step.
U
N

C
O

R
R

E

Fig. 6. The complete
WEBSEM 28 1–18

ss of OntoMat-Service.

C
T

 P
R

O
O

F

S. Agarwal et al. / Web Semantics: Science, Services and Agents on the World Wide Web xxx (2004) xxx–xxx 5

The four main steps run as follows:162

Init: OntoMat-Service starts with a common WSDL163

web service description by the service provider (e.g.,164

Fig. 2). Obviously, the WSDL document is primarily165

intended for use by a machine agent or a software en-166

gineer who has experience with web services. It is not167

adequate for presenting it to a user who is ‘only’ expert168

in a domain.169

Web Service Presentation (Step 1): In the first step,170

the web service provider makes the web service pre-171

sentation readable as a nicely formatted (X)HTML172

document—possibly including advertisements, cross-173

links to other HTML pages or services, or other items174

that make the web page attractive to the potential cus-175

tomer (cf.Section 4for details).176

Thereby, it is important that the understandable, but177

informal description of the web service is implicitly178

annotated to relate the textual descriptions to their cor-179

responding semantic descriptions in their WSDL doc-180

ument.181

Step 1 is a manual step that may be supported by182

tools such asWSDL Documentation Generatorfrom183

http://www.xmlspy.com. However, we would not as-184

sume that tools likeWSDL Documentation Generator185

would be sufficient to generate an amenable presenta-186

tion, as they still produce rather rigid and technically187

oriented descriptions.188

Result 1. Human-understandable web page that ad-189

vertises the web service and embeds/refers to machine-190

u on-191

t192

-193

t age.194

O ke a195

c ce-196

B (e.g.197

t hine-198

u199

no-200

t and201

p rna-202

t ogy203

u own204

t e).205

into206

O re-207

l in208

the web page by drag‘n’dropping it onto the ontol-209

ogy loaded into OntoMat-Service-Browser. OntoMat-210

Service-Browser generates mapping rules from these211

annotations that bridge between the ontology of the ser-212

vice provider and the ontology loaded into OntoMat-213

Service-Browser (cf.Section 5for details). 214

Typically, the user will map to more than one web215

service, i.e. often he will map to different ontologies.216

Result 2. Sets of mapping rules between web service217

ontologies and pre-loaded ontology. 218

Web service planning (Step 3): At the client side, 219

a user might view the web services as well as their220

annotations that yield mapping rules. The third logical221

role here is one of a service planner and invocator (this222

logical role is shared between the third and fourth step).223

For this purpose, the user decides to select 224

• a set of web service operations he wants to use and225

• a set of mapping rules he wants to use. 226

The reader may note that very frequently the roles of227

an annotator/browser and a service invocator will just228

coincide. Hence, the two selections just mentioned will229

take place implicitly—just by the web service pages he230

has browsed and the annotations that the service invo-231

cator has performed in step 2 of the OntoMat-Service232

process. 233

Once the two selections have been performed im-234

or explicitly, a module for web service planning will235

c this236

o set237

o ces,238

p ses,239

e just240

e ap-241

p vice242

i de-243

s ibes244

w ser-245

v ser-246

v vice247

t ible,248

O d set249

o 250

eak251

t nd252

s cted253
U
N

C
O

R
R

E

nderstandable web service descriptions (WSDL +
ology).

Deep Annotation (Step 2): At a client side, a po
ential user of the web service browses the web p
ntoMat-Service-Browser shows the web page li
onventional browser. In addition, OntoMat-Servi
rowser highlights human-understandable items

ext phrases) that associate an underlying mac
nderstandable semantics.

The logical role of the user here is one of an an
ator/browser. He can decide to just view the page
roceed directly to step 4 (described below). Alte

ively, he can decide to map some of the terminol
sed in the web page of the web service to his

erminology (or to the terminology of someone els
For the latter purpose, he loads an ontology

ntoMat-Service-Browser (if it is not already p
oaded). Then, he aligns terminology mentioned
E
D

WEBSEM 28 1–18

ompute logically possible web service flows. For
bjective, web service planning may employ a rich
f knowledge: goals, pre-conditions of web servi
ost-conditions of web services, previous similar ca
tc. In the current version of OntoMat-Service we
xploit the pre- and post-conditions derived from m
ing one web service output to another web ser

nput via the customer ontology. The web service
cription in the associated WSDL document descr
hat types are required for the input of a web
ice and what types appear in the output of a web
ice. Since data that wanders from one web ser
o the next can only proceed if types are compat
ntoMat-Service-Browser can compute a restricte
f possible web service flows (cf.Section 6).

Though, in general, this model may be too w
o compute complex flows, it is quite sufficient a
traightforward to use with a small number of sele

http://www.xmlspy.com/

N
C

O
R

R
E

C
TE

D
 P

R
O

O
F

WEBSEM 28 1–18

6 S. Agarwal et al. / Web Semantics: Science, Services and Agents on the World Wide Web xxx (2004) xxx–xxx

Fig. 7. Web service description as HTML page.

and semantically aligned web services—such as an end254

user or prototype builder will use.255

Result 3. Sets of possible web service flows.256

Web Service Invocation (Step 4): The final user, i.e.257

the invocator, can select one such flow from the list or258

modify any, if none of them fits his needs. Obviously,259

he can always create a new flow on his own. Once the260

user has a flow that fulfills his current needs, he invo-261

cates the flow (cf.Section 7). During the execution, the262

transformation of the data of one ontology to another263

will happen automatically via the mapping rules. The264

user achieves his goal at the completion of the invoca-265

tion of the web service flow.266

4. Semantic web page markup for web services267

In this section, we show how a web service provider268

can semantically annotate the web pages describing his269

web services. Such a combined presentation allows for270

improved ways to find the web services (e.g., by a com-271

bined syntactic/semantic search engine) and it enables272

a user to understand the functionality of a web service273

and define mapping rules between the ontology used in274

the web service description and the client’s ontology.275

The basic idea is that a conventional HTML page276

about the web service and web service parameters is277

extended by URIs referring to conceptual elements of278

the corresponding WSDL documents. To carry these279

two pieces of information, we usewsdlLocation 280

andelementURI inside the span tags. InFig. 7, we 281

show how such a web service advertisement (HTML282

page) for the laptop vendor service might look like. 283

When such an HTML page is opened in OntoMat-284

Service-Browser, the span tags are interpreted and ele-285

ments between and are highlighted 286

to support the annotation step described in the next sec-287

tion. 288

5. Browsing and deep annotation 289

In this section, we describe the second main step290

of the OntoMat-Service process. This step consists of291

browsing web pages about web services with OntoMat-292
U

C
T

 P
R

O
O

F

S. Agarwal et al. / Web Semantics: Science, Services and Agents on the World Wide Web xxx (2004) xxx–xxx 7

Service-Browser. Thereby, the user may annotate[6]293

these web pages generating mapping rules between a294

client ontology and the ontologies referred to in the295

WSDL documents as a ‘side effect’ of annotation. We296

call this action ‘deep-annotation’ as its purpose is not to297

provide semantic annotation about the surface of what298

is being annotated, this would be the web page, but299

about the semantic structures in the background, i.e.300

the WSDL elements.3
301

Thus, this step is about web service discovery by302

browsing and using information retrieval engines like303

Google as well as about reconciling semantic hetero-304

geneity between different web services, such as de-305

scribed in the WSDL documents and the web service306

ontologies they embed or refer to.307

5.1. Service browsing308

With OntoMat-Service-Browser the user can309

browse the service web, i.e. he can browse the310

web pages of web service advertisements and311

OntoMat-Service-Browser highlights semantic anno-312

tations added by the web service provider. OntoMat-313

Service-Browser indicates semantically annotated web314

service elements, e.g. input parameters, by graphical315

icons on the web page. Thus, the user may easily iden-316

tify relevant terminology that needs to be aligned with317

his own ontology.318

As an alternative to deep annotation, the ontology319

browser in OntoMat-Service-Browser may also visual-320

i ice-321

B ser-322

v in-323

t ed324

t -325

c via326

t327

5328

an-329

n ser.330

T ping331

h tol-332

o so,333

is of
d

he could extend the web page with metadata if he has334

write access, primarily however he establishes map-335

pings between concepts, relations and attributes from336

the ontology used by the web service provider to his337

client ontology[6]. 338

In the following, we describe the deep-annotation339

of the vendor web service shown inFig. 9. The web 340

page advertising the web service describes theget- 341

LaptopOffer operation and constitutes the context342

for the usage of the vendor ontology. The aim of the343

annotator is to translate the terminology used in the de-344

scription ofgetLaptopOffer (cf. the WSDL doc- 345

ument inFig. 2and the vendor ontology inFig. 4) into 346

his client ontology (Fig. 8). 347

By drag‘n’drop, one generates a graph of instances,348

relations between instances and attribute values of in-349

stances in the browser that visualizes the client ontol-350

ogy (cf. the left pane depicted inFig. 9). 351

When performing a drag‘n’drop one will create a352

literal instance, if one drops 353

1. an instance of the vendor ontology onto a concept354

in the client ontology, or 355

2. a literal value onto a concept of the client ontology,356

or 357

3. if one drop’s an attribute value of an instance onto358

an attribute in the client ontology. 359

For instance, dropping ‘IBM’ onto the concept com-360

pany would create a corresponding literal instance in361

the client ontology, dropping ‘7 MB’ onto a size at-362

t nding363

a lient364

o 365

a366

g 367

• ent368

369

that370

c on-371

c 372

pre-373

s 374

a 375

tion-
s

U
N

C
O

R
R

E

ze the underlying service ontology. OntoMat-Serv
rowser is able to interpret the description of web
ice operations and provide a corresponding form
erface (cf.Fig. 17). The user may then directly proce
o web service invocation (Section 7) and invoke a con
rete web service operation with data he provides
his generic form interface.

.2. Deep annotation

The user selects an ontology to be used for
otation and loads it into OntoMat-Service-Brow
he user annotates the web service by drag‘n’drop
ighlighted items from the web page into the on
gy browser of OntoMat-Service-Browser. Doing

3 [6] goes into detail for using deep annotation as the bas
atabase integration.
E
D

WEBSEM 28 1–18

ribute of a selected instance creates a correspo
ttribute value for this selected instance in the c
ntology.

When performing a drag‘n’drop, one will create
eneric instance, if one drops

a concept A from the vendor ontology onto a cli
ontology concept B.

A generic instance is just a variable that states
oncept A in the vendor ontology corresponds to c
ept B in the client ontology.4

Thus, one may augment the client ontology (re
ented in RDF by a graphG) by a graphG� of new
nd different types of instances.5 Each subgraph ofG�

4 Corresponding generalizations exist for attributes and rela
hips.

5 The newly populated ontology would then beG′: = G∪ G�.

C
O

R
R

E
C

TE
D

 P
R

O
O

F

WEBSEM 28 1–18

8 S. Agarwal et al. / Web Semantics: Science, Services and Agents on the World Wide Web xxx (2004) xxx–xxx

Fig. 8. Ontology of the client.

of non-separable, newly created instances and values376

in the client ontology corresponds to a mapping rule.377

For instance, one may (i) drag‘n’drop ‘processorSpeed’378

(from vendor ontology) onto cpuSpeed (from client on-379

Fig. 9. Screenshot of OntoMat-Service-Browser annotating vendor service.

tology) that belongs to Computer (again in the client380

ontology). Thereby, (ii), a generic instance is created381

for Computer with value Laptop (as cpuSpeed belongs382

to Computer and processorSpeed belongs to Laptop).
N

U

R
R

E
C

T
 P

R
O

O
F

S. Agarwal et al. / Web Semantics: Science, Services and Agents on the World Wide Web xxx (2004) xxx–xxx 9

Fig. 10. Mapping between Client Ontology (left window) and Vendor Ontology (right window).

The corresponding interpretation in first-order logic383

is:384

FORALL X (instanceOf(X, client : Computer) AND client : cpuSpeed(X, Y))385

← (instanceOf(X, vendor : Laptop) AND vendor : processorSpeed(X, Y)).386

387

One may trace the later drag‘n’drop action in388

Fig. 9, where action 1 picks up ‘Processor Speed’389

with its underlying web service parameterpro-390

cessorSpeed (cf. the markup elemen-391

tURI=‘‘http://laptop.wsdl/laptop/#part392

(getLaptopOfferRequest/processorSpeed)”393

in Fig. 7). It is dropped onto the attribute that comes394

closest in his client ontology, viz. the aforementioned395

cpuSpeed, and generates the consequences just men396

tioned. Similarly, the second text item “Disk Space”397

being annotated with the input parameter diskSpace is398

handled in action 2. This time, however, the annotator399

must also create ahasHDD relationship between the400

generic instancehardisk1 and the generic instance401

of computer1 to build a larger graph representing402

a mapping rule with two generic attribute values403

(on cpuSpeed and diskSpace). Finally, the404

annotator maps the output parameters in action 3 (cf.405

Fig. 9).406

5.3. Investigating and modifying mapping rules407

The results of deep annotation are mapping rules408

b ntol-

409

ogy. The annotator may publish the client ontology410

and the mapping rules derived from annotations. This411

enables third parties (in particular logical roles that fol-412

low in the OntoMat-Service process) to execute the ser-413

vices on the basis of the semantics defined in the client414

ontology. 415

We use F-Logic to define the mapping rules. F-logic416

is a deductive, object-oriented database language that417

combines the declarative semantics and expressiveness418

o mod-419

e del420

[e F-421

l the422

O 423

w 424

s like425

w ap426

(ny427

o om428

t r 429

t y is430

d 431

lary
m rder
l ually
c nother
s

U
N

C
Oetween the client ontology and each service o
E
D

WEBSEM 28 1–18

-

f deductive database languages with the rich data
lling capabilities supported by object-oriented mo

7].6 However, the annotator does not have to writ
ogic rules. They are generated automatically by
ntoMat-Service-Browser.
Figs. 10 and 11give the reader an intuition of ho

uch automatically generated mapping rules look
hen visualized with the OntoEdit plugins OntoM

cf., [6]). Fig. 10shows the mapping from the compa
ntology to the vendor ontology which is a result fr

he annotation effort indicated inFig. 9. The result fo
he corresponding mapping of the insurer’s ontolog
epicted inFig. 11.

6 Thus, in our implementation, the aforementioned examp
apping rule looks slightly different than the depicted first-o

ogic formulation. Since the first-order presentation is concept
lose enough, we have decided not to detract the reader by a
yntax.

R
R

E
C

TE
D

 P
R

O
O

F

10 S. Agarwal et al. / Web Semantics: Science, Services and Agents on the World Wide Web xxx (2004) xxx–xxx

Fig. 11. Mapping between client ontology (left window) and insurer’s ontology (right window).

6. Web services planning432

Often a user wishes to perform a task that is not di-433

rectly accomplished by one single Web service. But434

in many cases there is a particular combination of435

Web services that would offer the needed function-436

ality. Defining such a combination or composition of437

Web services manually from scratch can be difficult and438

time consuming especially for user with little techni-439

cal background. Common AI planning techniques have440

been used in the past for performing such compositions441

automatically. However, the success of planning tech-442

niques is rather a disputed topic. We believe that AI443

planning techniques had moderate success in areas that444

tried to cover many different domains and aspects[14].445

However, they were very successful in a small well de-446

fined domain with well defined building blocks[8].447

Therefore, we believe that in this step of the OntoMat-448

Service, planning techniques can support a user in two449

ways:7450

• Often a user needs a simple combination of Web451

services. With the help of planning techniques such452

combinations can be generated automatically. Thus,453

a user does not have to define the desired combina-454

tion from scratch.455

7 In [20], authors describe a composite Web service as a fixed tem-
plate which must be configured for each specific use instead of pre-
a sing a
c

• If a user needs a complex composition to accomplish456

some task at hand, planning techniques help him by457

generating a rough “first version” of a combination458

(a plan), which the user can modify manually. 459

In Section 6.1, we show two alternative ways of 460

specifying plans, viz. dataflow driven and control-flow461

driven.Section 6.2uses the former to compute possible462

plans andSection 6.3uses both types of plan specifi-463

cations in order to present the generated results to the464

user. Thus,Section 6proceeds through the third main465

step of the OntoMat-Service process. 466

6.1. Plan specification 467

We use two paradigms to specify plans, namely468

data-flow drivenand control-flow driven. The ap- 469

proaches are equivalent in so far as a given specification470

based on one paradigm can be translated into a corre-471

sponding specification based on the other paradigm.472

Each paradigm has its strengths and weaknesses. De-473

pending on the context, the one or the other plan spec-474

ification approach should be preferred. 475

6.1.1. Data-flow-driven plan specification 476

Given a set of Web servicesW, each web service 477

w ∈ W has a set of input parametersw·I and a set of 478

output parametersw·O. We define a connectorc = (o, 479

i) with o ∈ u·O and i ∈ v·I andu, v ∈ W, when the 480

o 481

t is482
U
N

C
Ond postconditions based planning-style approach for compo

omposite Web service from scratch everytime.
WEBSEM 28 1–18

utputo of the Web serviceu becomes the inputi of
he Web Servicev. The set of all such connectors

C
T

 P
R

O
O

F

S. Agarwal et al. / Web Semantics: Science, Services and Agents on the World Wide Web xxx (2004) xxx–xxx 11

Fig. 12. A data-flow graph that must be executed sequentially.

denoted byC. The set of Web servicesW together with483

a set of connectorsCbuilds a directed data-flow graph,484

in which Web services inW build the vertices and the485

connectors inC build the edges.486

Given such a data-flow graph, a Web service is exe-487

cuted as soon as the values of all its input parameters488

are available. This is the basic rule that determines the489

actual order of execution of the Web services.490

Fig. 12shows a simple data-flow graph consisting491

of two Web servicesu andv. The arrows pointing in492

u andv represent the set of input parametersu·I and493

v·I respectively. The arrows pointing out ofu and v494

represent the set of output parametersu·O and v·O,495

respectively. Further, the arrow pointing out ofu and496

intovconnects the second input ofuwith the first input497

of v and represents a connector. Since the Web service498

v needs data fromu, it must be executed after the Web499

serviceu.500

Fig. 13shows another data-flow graph consisting of501

four Web servicesu, v, w andx. The arrows pointing502

in and out of a Web service and from a Web service503

to another Web service have the same meaning as in504

earlier example. Since the Web servicesv andw need505

data fromu but not from each other,v andw must be506

executed afterubut can be executed in parallel. Further,507

the Web servicexmust be executed after the completion508

of v andw since the values of its input parameters are509

available when bothv andw are complete.510

6.1.2. Control-flow driven plan specification511

ere512

t he513

c n is514

s515

F allel.

Currently, we support two types of control con-516

structs, namelysequenceandparallel. We denote the 517

set of control constructs byS, that is, currentlyC = 518

{sequence, parallel}.8 With a component, we refer to 519

either a Web service or a control-construct and denote520

the set of components byP, that is,P = S ∪ W. A 521

plan has exactly one main control-construct, which is522

executed when a plan is invoked. Now we describe523

the control-constructs and their execution semantics in524

more detail. 525

Sequence: A sequence has an ordered set of compo-526

nents. We denote a sequence of componentsp1, . . ., pn 527

with p1, . . ., pn ∈ P by sequence(p1, . . ., pn). For a se- 528

quences, we denote the set of its components withs·P. 529

The execution semantics of a sequences is described 530

recursively by the following rules 531


executep1 then execute sequence ifs · P �= φ

(p2, . . . , pn)

do nothing ifs · P = φ

532

The plan inFig. 12can be specified in the control-533

flow-driven approach assequence(u, v). 534

Parallel: Now, we describe the control construct535

parallel. Like the sequence, the construct for paral-536

lelism p also has a set of components which we de-537

note byp·P. Note, thatp·P does not need to be an538

ordered set. If the set of componentsp1,. . ., pn ∈ 539

P must be executed in parallel, then we denote it540

by parallel (p1, . . ., pn). The execution semantics of541

a g 542

r
543

{
544

545

fi 546

i is a547

s 548

i ation549

o 550

ol-551

fl 552

x 553

ucts
b

U
N

C
O

R
R

E

In contrast to the data-flow-driven approach wh
he order of execution is specified implicitly, in t
ontrol-flow driven approach the order of executio
pecified explicitly with control constructs.

ig. 13. A data-flow graph that can be partially executed in par
E
D

WEBSEM 28 1–18

parallel constructp is described by the followin
ules

executep1, p2, . . . , pn in parallel ifp.P �= φ

do nothing ifp.P = φ

The execution of a construct for parallelismp is
nished when the execution of all the elements ofp·P
s finished. In case the actor executing, the plan
equential actor, the construct for parallelismp can be
mplemented through a sequence with any permut
f the elements ofp·P.

The plan inFig. 13can be specified in the contr
ow driven approach assequence(u, parallel (v, w),
).

8 In future, we will extend the set of supported control constr
y choice, if-then-else, while, repeat-until, etc.

T
 P

R
O

O
F

12 S. Agarwal et al. / Web Semantics: Science, Services and Agents on the World Wide Web xxx (2004) xxx–xxx

6.1.3. Integrating mapping rules in a plan554

If the output of a web service operationA is of type555

t and the input of another web service operationB is556

also of typet, then the service operationsA andB can557

be plugged together (firstA thenB). Since, it is realis-558

tic to assume that different web service providers have559

different ontologies, this approach only support plans560

in which all the web services are provided by one web561

service provider or all the Web services providers re-562

fer to the same domain ontology. In the former case563

our mapping rules come into play. By using the map-564

ping rules that align ontologies of different Web service565

providers, it is possible to deal with plans that contain566

Web services from different Web service providers. For567

example, if the output of a serviceA is of typet1 and the568

input of another web serviceB is of typet2 and there is569

a mapping rule fromt1 to t2, the servicesA andB can570

be plugged together (firstA thenB).571

Mappings are integrated in a plan by modelling them572

as a special kind of web services that are provided by573

the client himself. Currently, the premise as well as the574

conclusion part of our mapping rules is a conjunction575

of “instanceOf” terms. We interpret such a mapping by576

interpreting the terms in the premise of the rule as input577

parameters and the terms in the conclusion of the rule578

as output parameters of a Web service.579

Given a set of such rules, OntoMat-Service-Browser580

automatically generates a set of corresponding Web581

services by interpreting the rules as described above.582

Consequently, the mapping rules are available to the583

u en be584

u ther585

W586

6587

s588

eb589

s with590

ple dat

this we introduce the notion of awebserviceoccurence. 591

A web service occurence has a name and a reference to592

the web service it is an occurence of. The name should593

be chosen in a way such that it is unique among all the594

occurences of the web service in a plan, for example595

a running index. We denote an occurence of a web596

servicew with namei by wi. With wi·I, we denote the 597

set of input parameters and withwi we denote the set 598

of output parameter of the occurencei of a web service 599

w. A plan would then contain web service occurences600

instead of web services. 601

6.2. Plan generation 602

The planning component generates simple plans603

based on a given set of web services and a given604

set of mapping rules. The generated plans are speci-605

fied by their data-flow graphs as described inSection 606

6.1.1. 607

The inputs and outputs of web services are speci-608

fied in the web service description documents of the609

web services. By considering the mapping rules and610

the information about the input and output types of611

web services, the planning component is able to infer612

valid web service flows as follows. 613

The Web service end consumer selects the Web ser-614

vice, he wants to use to accomplish certain tasks at615

hand. By making such a selection, he restricts the sets616

of relevant mapping rules. The plan generation algo-617

rithm iterates over all selected Web services including618

t rele-619

v dency620

g a 621

d lects622

a 623

2 een624

t e 625

c gy
U
N

C
O

R
R

E
C

ser as Web services. These Web services can th
sed in a combination of Web services just like o
eb services.

.1.4. Handling multiple occurences of web
ervices

Above definition of a plan does not allow a w
ervice to occur more than once in a plan. To deal

Fig. 14. An exam
E
D

WEBSEM 28 1–18

a dependency graph.

he Web services that are interpretations of the
ant mapping rules and generates a data depen
raph (a directed acyclic graph).Fig. 14shows the dat
ependency graph that is generated if the user se
ll four Web services that are mentioned inSection
and assuming that there is a mapping rule betw

he conceptLaptop in the vendor ontology and th
onceptLaptop in the insurance company ontolo

C
T

 P
R

O
O

F

S. Agarwal et al. / Web Semantics: Science, Services and Agents on the World Wide Web xxx (2004) xxx–xxx 13

and this mapping rule is interpreted as Web service626

m1.627

As soon as the dependency graph is generated (poly-628

nomial time complexity in number of Web services),629

the user can define his goal by selecting the Web ser-630

vices whose outputs he is interested in. Starting with631

the goal Web services, a set of subgraphs of the depen-632

dency graph is calculated by traversing the dependency633

graph backwards. Each such subgraph is the data-flow-634

driven specification of a plan whose execution would635

lead the user to his goal (cf.Section 6.1).636

In our running example, if the user selects only the637

Web serviceBuylaptop , then the subgraph would638

contain the Web servicesgetLaptopOffers and639

buyLaptop .640

If the user selects the Web servicecloseSer-641

viceContract then the subgraph would con-642

tain the Web servicesgetLaptopOffers , m1,643

getInsuranceTerms andcloseServiceCon-644

tract . If the user selects the Web services645

buyLaptop andcloseServiceContract , then646

the subgraph is equal to the graph shown in647

Fig. 14.

ntation

6.3. Plan presentation 648

Eventually, compiled web service plans are pre-649

sented as part of the OntoMat-Service process. As elab-650

orated on before, the inputs and outputs of a plan de-651

pend obviously on the inputs and outputs of the indi-652

vidual Web services, which are atomic from the client’s653

point of view. For an individual Web service there is a654

Web page, which the user can read to understand what655

the Web service does. But, there is no such Web page656

that describes a plan generated on the fly. Generating657

a descriptive Web page from the individual Web pages658

of the individual Web services is rather difficult, if not659

impossible. 660

To remedy the problem, we visualize the data-flow661

specification of a plan (cf.Fig. 15). Taking advan- 662

tage of the duality of data and control flow, we are663

currently implementing a presentation of the corre-664

sponding control-flow specification, too. The motiva-665

tion is that the control-flow specification is frequently666

sparser than its data-flow counterpart—allowing a less667

crowded view on the overall plan, and thus, a better668

abstraction from too many details.
C
O

R
R

E

Fig. 15. Plan prese
U
N

E
D

WEBSEM 28 1–18

as a data-flow graph.

T
 P

R
O

O
F

14 S. Agarwal et al. / Web Semantics: Science, Services and Agents on the World Wide Web xxx (2004) xxx–xxx

In addition, we present input and output parameters669

of (parts of) plans selected for investigation by the user.670

Inputs and outputs of a plan are calculated from the671

respective inputs and outputs of the individual Web672

services. Thereby, the set of input parameters of a plan673

is equal to the set of all the input parameters of all the674

individual Web services except those input parameters675

that are automatically available. Recall, that our set676

of connectors contains the information about the input677

parameters that are automatically available. Formally,678

the set of input parametersp·I of a planp is679

p · I = ∪
w∈W

w · I {i, such that∃c = (o, i)∈C}.680

Similarly, the set of output parameters of a plan can be681

calculated as
682

p ·O = ∪
w∈W

w ·O {o, such that∃c = (o, i)∈C}.683

Note thatp·O does not contain the outputs that be-684

come inputs of subsequent web services. We believe685

that we need a more expressive specification of plans686

(e.g. one that can deal with messages and actors) to be687

able to handle the outputs that a user obtains during the688

execution of a plan.689

7. Web services invocation690

On the basis of the information about each plan, the691

user decides to execute a plan. Since OntoMat-Service-692

B plex693

p an-694

u695

7696

at-697

S ility698

t ded699

d oes,700

h this701

f rtain702

d nter703

t ring704

e orks705

o are706

s mail707

a dress708

stored in his local repository then he can configure that709

the value of the input parameter of the Web service710

should be retrieved from his local repository. Using711

this feature reduces the chances of unexpected behav-712

ior of a Web service since there are less typing mis-713

takes. We specify one such configuration as the tuple714

<uri,method,parameters >, whereuri repre- 715

sents the URI of the input parameter of the Web service716

the value of which should be automatically retrieved,717

method represents a programming language method718

that must be called in order to retrieve the data and pa-719

rameters represent the set of parameters that must be720

passed to the method. 721

The actual invocation is performed by a generic web722

services client engine. Since we have implemented the723

invocation engine in Java, it can call methods of exter-724

nal Java classes. In this case, we describe the method725

part of the aforementioned tuple such that it points to726

a method of a Java class, which the invocation engine727

has access to. 728

7.2. Plan execution and generic user interface 729

When the user requests the invocation of such a flow,730

the engine takes the plan, the set of mapping rules and731

the set of above mentioned configurations and calls the732

web services in the proper order. The order of exe-733

cution of the Web services is implicitly given in the734

data dependency graph. A Web service is ready to be735

e ters736

a ates737

w n-738

c d 739

m gu-740

r 741

een742

t 743

• er is744

as745

y of746

the747

748

• is749

this750

ter-751

ding752

753
U
N

C
O

R
R

E
C

rowser currently does not generate arbitrary com
lans, we provide the user with the possibility to m
ally modify an automatically generated plan.

.1. Configuring access to client’s KB

Before web service execution begins, OntoM
ervicne-Browser provides the user with a possib

o configure automatic retrieval of data that is nee
uring the execution. Depending on what a plan d
ow long it is and how often it is executed by a user,

eature can be very helpful because it enables a ce
egree of automation by preventing a user to re-e

he values for each input parameter manually du
ach instance of a plan. Obviously, this feature w
nly if the intended values of the input parameters
tored. For example, if a Web service asks for an e
ddress of the user and the user has his email ad
E
D

WEBSEM 28 1–18

xecuted when the values of all its input parame
re available. The execution component communic
ith OntoBroker[3], whenever mapping between co
epts is required (cf.Fig. 16) and calls the specifie
ethod whenever there is automatic retrieval confi

ation present for a required input parameter.
The invocation component differentiates betw

he following cases (cf.Fig. 16):

There are no mapping rules: In this case, the us
provided with a form like interface, in which he h
to enter required data according to the ontolog
the respective web service provider to proceed
execution (cf.Fig. 17).
Automatic retrieval of data from client’s ontology
not configured and mapping rules are defined: in
case, the user is provided with a form like user in
face, in which he has to enter required data accor
to his own (client’s) ontology.

R
R

E
C

TE
D

 P
R

O
O

F

S. Agarwal et al. / Web Semantics: Science, Services and Agents on the World Wide Web xxx (2004) xxx–xxx 15

Fig. 16. Service flow in our running example.

• Automatic retrieval of data from client’s ontology754

is configured and mapping rules are defined: in this755

case, the invocation runs fully automatically.
756

This kind of approach is a generalization of common757

approaches to invocation of single web service opera-758

tions. Let us consider this simple case in our frame-759

of gen

work: if a user wants to manually call only one web760

service operation, he will skip the definition of map-761

ping rules. The flow will consist of only one web ser-762

vice operation. When executing the single web service763

operation, the invocation engine will request data from764

the user via a form interface that reflects the ontology of765

the service provider (because no mapping rule exists).
C
OFig. 17. Example
U
N

WEBSEM 28 1–18

eric user interface.

T
 P

R
O

O
F

16 S. Agarwal et al. / Web Semantics: Science, Services and Agents on the World Wide Web xxx (2004) xxx–xxx

8. Related work766

In this paper, we provide an original framework,767

OntoMat-Service, to embed the process of web service768

discovery (here: by browsing web pages and retrieving769

web pages from search engines like Google), composi-770

tion (here: by deep annotation and reasoning over logi-771

cally possible configurations), and invocation (here: by772

OntoMat-Service-Browser, and the mapping to a client773

ontology). The consideration of semantic heterogene-774

ity is germane to OntoMat-Service. It offers semantic775

translations as one of its core modules.776

OntoMat-Service does not aim at a web service dis-777

covery, composition and invocation that is intelligent778

in the sense that it completely automates the task that779

typically the user is supposed to do. Rather, it provides780

an interface, OntoMat-Service-Browser, that supports781

the intelligence of the user and guides him to add se-782

mantic information such that only few logically valid783

paths remain to be chosen from by the user.784

To fully pursue such an objective, one needs a large785

set of different modules. We have built on our existing786

experience and tool framework for semantic annotation787

(cf. [5,6]) and for logical reasoning[3]. We have not788

yet dealt with the issue of web service flow execution789

and monitoring that is certainly needed to complement790

our current version of OntoMat-Service.791

Closest to our approach come frameworks that fa-792

cilitate the building of web service flows. A number793

of software systems are available to facilitate man-794

u web795

s y of796

w m-797

p798

a ition799

o ypi-800

c that801

i802

803

a rvice804

t ver,805

i ser-806

v807

t use808

s or-809

sla-
t

der to automatically compose web services to perform810

some desired task (e.g.,[13,2,12]). In [13], the authors 811

use situation calculus for representing web service de-812

scription and Petri nets for describing the execution be-813

haviors of web services. In[2], the authors present an814

architecture of intelligent brokers that offer problem815

solving methods that can be configured and used by816

the users according to their needs. In[12], the authors 817

propose an extended version of Golog for formalizing818

the provision of high-level generic procedures and cus-819

tomization of constraints. In[17], the authors propose 820

a rule based expert system to automatically compose821

web services from existing web services. 822

On one hand, most recent experiences from such ad-823

vanced projects like IBrow, however, have shown that824

automatic composition techniques cannot yet been car-825

ried over to an open world setting. There one needs to826

tightly integrate the user of a web service—such as we827

do in OntoMat-Service. On the other hand, OntoMat-828

Service can obviously be extended in the future to con-829

sider more types of automatic semantic matchmaking,830

service discovery[15,19]and configuration of web ser- 831

vices into the web service planning phase. 832

9. Discussion 833

In this paper, we have described OntoMat-Service,834

an original framework to tie together the World Wide835

Web and web services into a Service Web. Germane to836

O eb,837

a vices838

a lat-839

f 840

ser,841

a tion842

o er-843

s rip-844

t ra-845

t n-846

g 847

at-848

S and849

w ded850

t plex851

w For852

t tion853

m an-854
U
N

C
O

R
R

E
C

al composition of programs, and more recently
ervices. Such programs, which include a diversit
orkflow tools[21,4], and more recently, service co
osition aids such as BizTalk Orchestration[10] enable
software engineer to manually specify a compos
f programs to perform some task—though they t
ally neglect the aspect of semantic heterogeneity
s core to OntoMat-Service.9

Web Services Invocation Framework (WSIF)[18] is
n open source framework to execute any web se

hat can be described by a WSDL document. Howe
t does not support the execution of a flow of web
ices.

Some technologies have been proposed tha
ome form of semantic markup of web services in

9 BizTalk even allows for XML-based (non-semantic) tran
ions of data.
E
D

WEBSEM 28 1–18

ntoMat-Service is its blending of browsing the W
ggregating conceptual descriptions and web ser
nd then investigating and invoking them from one p

orm.
We have also presented OntoMat-Service-Brow
tool that constitutes a prototype implementa

f OntoMat-Service. Currently, our prototype und
tands WSDL with RDF(S) for web service desc
ions, but its flexible architecture allows easy integ
ion of more powerful web service description la
uages like DAML-S[1].

Clearly, one must be aware of what OntoM
ervice and OntoMat-Service-Browser can do
hat they cannot do. OntoMat-Service is not inten

o cater to businesses that want to establish com
eb service connections with intricate interactions.

his objective, the integration by semantic annota
ay provide a quick, first prototype, but semantic

C
T

 P
R

O
O

F

S. Agarwal et al. / Web Semantics: Science, Services and Agents on the World Wide Web xxx (2004) xxx–xxx 17

notation cannot provide arbitrary complex mapping855

rules or arbitrarily complex workflows. On the other856

hand, OntoMat-Service allows exactly for easily build-857

ing a prototype web service integration and it allows858

for users with domain knowledge (e.g. consultants do-859

ing ERP configuration) to participate in the Service860

Web—without much programming.861

OntoMat-Service opens up many interesting ques-862

tions that need to be solved in the future, such as863

• how to automate the way that Web Services are pre-864

sented to the World;865

• how to characterize the boundaries of what function-866

ality can be aggregated and executed;867

• how to annotate mappings between ontologies868

(semi-) automatically[16].869

Eventually, OntoMat-Service and OntoMat-870

Service-Browser, in conjunction with their counter-871

parts in semantic annotation[5] and deep annotation872

[5], open up the possibility to bring Web pages,873

databases and Web Services into one coherent frame-874

work and thus progress the Semantic Web to a large875

Web of data and services.876

Acknowledgements877

Part of this work was funded by the BMBF (federal878

m Port879

a880

R881

er-882

, et883

se-884

antic885

886

r, B.887

ro-888

orld889

Ac-890

8),891

892

: on-893

rma-894

antics895

896

[4] C.A. Ellis, G.J. Nutt, Modelling and enactment of work- 897

flow systems, Application and Theory of Petri Nets,898

LNCS 691: modelling and enactment of workflow systems,899

1993. 900

[5] S. Handschuh, S. Staab, Authoring and annotation of web pages901

in cream, in: Proceedings of the 11th International World Wide902

Web Conference, WWW 2002, Honolulu, Hawaii, ACM Press,903

2002, pp. 462–473. 904

[6] S. Handschuh, S. Staab, R. Volz, On deep annotation, in: Pro-905

ceedings of the 12th International World Wide Web Confer-906

ence, WWW 2003, Budapest, Hungary, ACM Press, 2003 (to907

appear). 908

[7] M. Kiefer, G. Lausen, J. wu, Logical foundations of object ori-909

ented and frame-based languages, J. ACM (1995). 910

[8] J. Koehler, K. Schuster, Elevator control as a planning prob-911

lem, Artificial Intelligence Planning Systems, 2000, pp. 331–912

338. 913

[9] O. Lassila, R. Swick, Resource description framework (RDF)914

model and syntax specification, Technical report, W3C915

Recommendation, 1999,http://www.w3.org/TR/REC-rdf- 916

syntax. 917

[10] D. Lowe, X. Chen, T. Mondor, T. Rus, N. Rynearson, S. Wright,918

T. Xu, BizTalk (TM) Server: The Complete Reference, Novem-919

ber 2001. 920

[11] A. Maedche, S. Staab, Services on the move—towards p2p-921

enabled semantic web services, in: Proceedings of the 10th In-922

ternational Conference on Information Technology and Travel923

and Tourism, ENTER 2003, Helsinki, Finland, Springer, 29–31924

January 2003. 925

[12] S. McIlraith, T. Son, Adapting golog for composition of seman-926

tic web services, in: Proceedings of the 8th International Con-927

ference on Principles of Knowledge Representation and Rea-928

soning, 2002. 929

[13] S. Narayanan, S. McIlraith, Simulation, verification and au-930

tomated composition of web services, WWW2002, May931

932

[, AI933

enlo934

/ 935

936

[atch-937

First938

939

[ser-940

enth941

4),942

943

[t for944

11th945

on-946

947

[ame-948

949

[uo,950

in-951

47–952

953
U
N

C
O

R
R

E

inistry of education and research) projects SemI
nd Interneẗokonomie (SESAM).

eferences

[1] A. Ankolekar, M. Burstein, J.R. Hobbs, O. Lassila, D. McD
mott, D. Martin, S.A. McIlraith, S. Narayanan, M. Paolucci
al., Terry Payne, Daml-s: Web service description for the
mantic web, in: Proceedings of the 1st International Sem
Web Conference (ISWC 02), 2002.

[2] V.R. Benjamins, E. Plaza, E. Motta, D. Fensel, R. Stude
Wielinga, G. Schreiber, Z. Zdrahal, Ibrow3—an intelligent b
kering service for knowledge-component reuse on the W
Wide Web, in: Proceedings of the 11th Banff Knowledge
quisition for Knowledge-Based System Workshop (KAW9
1998.

[3] S. Decker, M. Erdmann, D. Fensel, R. Studer, Ontobroker
tology based access to distributed and semi-structured info
tion, in: Proceedings of the Conference on Database Sem
(DS-8), 1999, pp. 351–369.
E
D

WEBSEM 28 1–18

2002.
14] N.J. Nilsson. Shakey the robot. Technical Report 323

Center, SRI International, 333 Ravenswood Avenue, M
Park, CA 94025, USA, April 1984,http://www.sri.com
about/timeline/shakey.html.

15] M. Paolucci, T. Kawmura, T. Payne, K. Sycara, Semantic m
ing of web services capabilities, in: Proceedings of the
International Semantic Web Conference, 2002.

16] A. Patil, S. Oundhakar, A. Sheth, K. Verma, Meteor-s web
vices annotation framework, in: Proceedings of the Thirte
International World Wide Web Conference (WWW 200
2004.

17] Ponnekanti S.R., F. Armando, Sword: a developer toolki
building composite web services, in: Proceedings of the
International World Wide Web Conference, WWW 2002, H
olulu, Hawaii, ACM Press, 2002.

18] Apache Web Services Project, Web services invocation fr
work, http://ws.apache.org/wsif.

19] P.Sycara Katia, Klusch Matthias, Widoff Seth, Lu. Jiang
Dynamic service matchmaking among agents in open
formation environments, SIGMOD Rec. 28 (1) (1999)
53.

http://www.w3.org/tr/rec-rdf-syntax
http://www.w3.org/tr/rec-rdf-syntax
http://www.sri.com/about/timeline/shakey.html
http://www.sri.com/about/timeline/shakey.html
http://ws.apache.org/wsif

 P
R

O
O

F

18 S. Agarwal et al. / Web Semantics: Science, Services and Agents on the World Wide Web xxx (2004) xxx–xxx

[20] A. ten Teije, F. van Harmelen, B. Wielinga, Configuration954

of web services as parametric design, in: Proceedings of the955

14th International Conference on Knowledge Engineering and956

Knowledge Management (EKAW’04), Lecture Notes in Artifi-957

cial Intelligence, Springer–Verlag, 2004.958

[21] W.M.P. van der Aalst, Woflan: a petri-net-based workflow an-959

alyzer, systems analysis–modelling–simulation, Syst. Anal.:960

Model. Simul. 35 (3) (1999) 345–357. 961

[22] W3C, Web service description language (wsdl) version 1.2,962

March 2003,http://www.w3.org/TR/wsdl. 963
U
N

C
O

R
R

E
C

T
E
D

WEBSEM 28 1–18

http://www.w3.org/tr/wsdl

	Annotation, composition and invocation of semantic web services
	Introduction
	Use case
	Overview of the complete process of OntoMat-Service
	Semantic web page markup for web services
	Browsing and deep annotation
	Service browsing
	Deep annotation
	Investigating and modifying mapping rules
	Web services planning
	Plan specification
	Data-flow-driven plan specification
	Control-flow driven plan specification
	Integrating mapping rules in a plan
	Handling multiple occurences of web services

	Plan generation
	Plan presentation

	Web services invocation
	Configuring access to clients KB
	Plan execution and generic user interface
	Related work
	Discussion
	Acknowledgements
	References

