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Abstract. Neural networks are a popular tool in e-commerce, in partic-
ular for product recommendations. To build reliable recommender sys-
tems, it is crucial to understand how exactly recommendations come
about. Unfortunately, neural networks work as black boxes that do not
provide explanations of how the recommendations are made.

In this paper, we present TransPer, an explanation framework for neu-
ral networks. It uses novel, explanation measures based on Layer- Wise
Relevance Propagation and can handle heterogeneous data and complex
neural network architectures, such as combinations of multiple neural
networks into one larger architecture. We apply and evaluate our frame-
work on two real-world online shops. We show that the explanations
provided by TransPer help (i) understand prediction quality, (ii) find
new ideas on how to improve the neural network, (iii) help the online
shops understand their customers, and (iv) meet legal requirements such
as the ones mandated by GDPR.

1 Introduction

The breakthrough with neural networks as a pattern recognition technique has
lead its way into many industry sectors. Especially in e-commerce, it can be used
as recommender system for advanced searches [12], personalization of shopping
experiences and direct marketing [20], or advanced sales forcasting and predic-
tions [14]. Improving the predictions and the usefulness of those recommenders
can increase sales and customer satisfaction. Additionally, there is increasing
legal pressure in favor of privacy and data protection. For example, the General
Data Protection Regulation [10] (GDPR) states that data subjects should be en-
abled to check the collection, processing, or use of their data. Thus, businesses
may be legally required to make their recommender systems transparent.
Multilayer Perceptrons (MLP) have been applied in recommender systems
learning feature representations as an extension to collaborative filtering [11].

* Supported by the German Research Ministry (BMBF), the Smart Data Innovation
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Fig. 1: Model of a neural network with different input data types

In combination with convolutional layers, they are applied to generate fashion
outfits for e-commerce or to personalize outfit recommendations based on learned
embeddings in Convolutional Neural Networks (CNN) [3,7]. Recurrent Neural
Networks (RNN) have shown success in modelling sequential data and have been
used for personalized product recommendations based on the purchase patterns
of customers [17], learning embeddings of fashion items [13] and modelling user
behaviour to predict clicks [5].

However, neural networks are black box models, i.e., the predictions can not
be explained. In order to tackle this, it is beneficial to make them more transpar-
ent and therefore, more human-understandable. Typically, the Gradient-based
Sensitivity Analysis [21] is used to explain the predictions of neural networks.
By optimizing the gradient ascent in the input space, it is possible to deter-
mine which inputs lead to an increase or decrease of the prediction score when
changed [23, 25]. Although applications based on this method enable a statement
regarding positive or negative influence of an input on a prediction, they do not
reveal a quantitative decision-relevant input score such as Guided Backpropaga-
tion [24], DeconvNet [19], or DeepLIFT [22]. These algorithms use the trained
weights and activations within the forward pass to propagate the output back to
the input. This way, it is possible to determine which features in an input vector
contribute to the classification and to what extent. Exploiting this, ObAlEx [18]
is an explanation quality metric which measures to what extent the classified ob-
ject is aligned to the mentioned explanations. Nonetheless, all these methods are
solely applied to CNNs with image data where single pixels are then highlighted.
Another back-propagating algorithm is the Layer-Wise Relevance Propagation
(LRP) that has already been successfully used in interaction with MLPs and
CNNs [1,2,15]. LRP computes the relevance of each input neuron to an output
by performing a value-preserving backpropagation of the output. Furthermore,
this method is even applicable on RNNs with sequential data [4, 16] which often
occurs in processing customer profiles in e-commerce.

Contribution. Our contribution is threefold. First, we provide an explanation
framework called TRANSPER! for e-commerce businesses in online shopping

! We provide the source code online at https://github.com/Krusinaldo9/TransPer.
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(e.g., for product recommendation) to provide transparency to the neural net-
works used. Based on a custom implementation of Layer- Wise Relevance Propa-
gation, our approach can not only handle individual neural networks types, but
also more complex architectures that contain multiple neural subnetworks, such
as shown in Fig. 1. This is required in the presence of highly heterogeneous input
data (e.g., product images, chronological shopping interactions, personal infor-
mation) where different neural network types are necessary (e.g., CNN, RNN;,
MLP). We not only take into account the relevance of the activations of the
neurons, but also the bias. This has not been considered in depth in the liter-
ature. Second, we define quantity measures to evaluate the helpfulness of these
explanations. The individuality measure can be used to determine those parts of
the input that are particularly relevant for the decision. The certainty measure
quantifies how certain the system is about its prediction. The diversity measure
states whether there are clear top predictions. Third, we evaluate our approach
on real-world scenarios. To this end, we used data from two real-world online
shops provided by our partner econda, an e-commerce solution provider. We
show that TRANSPER helps in (i) understanding the prediction quality, (ii) find-
ing ideas to improve the neural network, and (iii) understanding the customer
base. Thus, TRANSPER brings transparency to personally individualised auto-
mated neural networks and provides new knowledge about customer behaviour.
We believe that this helps to fulfill GDPR requirements.

The remainder of this paper is structured as follows. After introducing pre-
liminary definitions and concepts in Section 2, we go on to describe the problem
setting and formally define an online shop in Section 3, to introduce our quantity
measures in Section 4. We evaluate our approach on the basis of a real-world
scenario in Section 5 before ending with some concluding remarks.

2 Preliminaries

In this section, we present the fundamentals for the application of our approach.
To begin with, we consider a trained neural network with K € N layers as shown
on the left-hand side of Fig. 2. We refer to II; as the set of all neurons in the k-th
layer, o as a nonlinear monotonously increasing activation function, z¥ as the

i
activation of the i-th neuron in the k-th layer, wF T as the weight between

ij
the neurons z¥ and zf“, and bf as the bias term w.r.t. zf“. Assuming that
we know the activations in Iy, the activations in II;y; can be determined via

forward pass as follows:

z;-“"’l =0 ((Z szfjfk+1> + bf) (1)

i€ Il
, k,k+1
For non-connected neurons z¥ and zf 1 we assume w; 7 1 = 0. If a network has

no bias, then bé? =0.

Layer-Wise Relevance Propagation is a method that represents a backward

analysis method [2]. Knowing the activations zé-”'l in layer k+1, we can determine
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Fig. 2: Exemplary run of LRP. The left-hand side shows the calculation of neuron
activations in the forward pass. These activations are then part of the calculation
of its relevances in the backward analysis depicted on the right-hand side.

to what extent the neurons in II; and the biases bf have contributed, or how
relevant they were. The idea behind the standard implementation of the LRP
algorithm can be found on the right-hand side of Fig. 2 and is defined as

ka]?.’k-"_l
G = Dl . Rijs1,5)» (2)
JEMk4 ( szfjka) —|—b§
i€l
bk
b _ J
Ripj) = Rijt1,)- (3)
k, kk+1 k
( Z W ) + b;
i€ lly,

For a layer k£ + 1, we assume for each neuron j that a relevance can be assigned
in the form of a real—valued number R? (k1 Using Equation 2, we obtain the
relevance, i.e., quantitative contrlbutlon of) the ¢-th neuron in the k-th layer
to the overall relevance of layer k + 1. Furthermore, Equation 3 provides the
relevance of the bias bé? of the j-th neuron in layer k + 1.

In certain applications, customized variations of the standard LRP algorithm
presented above can be considered to increase the performance. In particular,
with respect to the explainability of CNNs, it has been found that adapted
LRP methods lead to better results than the standard LRP method [1,2, 15].
These are characterized, e.g., by the use of tuning parameters or penalty terms
for negative neuron activations. Regarding RNNs, however, hardly any results
exist concerning the use of such variations. Therefore, in relation with the use
cases in Section 5, we provide results of a test study comparing well-known
customizations with the standard method.

3 Formal Model of an Online Shop

In this section, we define an online shop with regard to a suitable neural network
which can handle specific characteristics. Especially, we include heterogeneous
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input data such as interest in products or interactions with products which
additionally can have different input lengths. In order to generalize our definition,
we consider a neural network consisting of several neural subnetworks to cover
different cases as can be seen in Fig. 1. Considering all this, we define our online
shop as follows.

Definition 1 (Online Shop Model). We define an online shop T as a tuple
T= (Cv P7 (P*u ¢)7 Av A*v Sv (QC)C€C7 (WC)CGCa (fc)cGC)
with the following entries:

a) We denote C as the finite set of all customers of the shop.

b) Let P be the finite set of all products that the shop offers.

¢) Then, let P* be a subset of P or P itself, i.e., P* C P, and & denotes the
real-valued output space [0,1]177].

d) We denote A as the set of information types that the shop T can have about
one of its customers ¢ € C' and assume that this amount is finite.

e) We define A* as a finite set of disjoint subsets Ay, ..., A, of A which corre-
sponds to neural networks S = {s1,+-+ ,$n}.

f) For a customer ¢ € C we define an associated real-valued input space

2. =R™©) x xR

with the mappings m; : C = N for i € {1,..,n} with respect to s;.
g) Considering a particular customer ¢ € C, we define his input as w. € (2.
h) For a customer ¢ € C, we also define the mapping f. : 2. — @ where f.(x)
is the recommender’s output vector for an input x € §2..

Assume we have an online shop T with customers C. The online shop has
a catalogue of offered products P. Though, not all products are predicted for
example only seasonally available ones or most purchased ones in the last week
denoted by P*. These are used as output space @ in the neural network, i.e.,
if &(p) > d(p') then product p is recommended. Now, consider the types of
information A the online shop can have about their customers such as already
purchased products, interactions, or ratings. As mentioned in Section 1, certain
network types are more suitable for specific data types. Therefore, this infor-
mation is then classified into disjoint information types, such as sequential data
Ay, graphical data As, etc., and summarized in A*. So, if an online shop T has
heterogeneous user data, Fig. 1 would consist of neural subnetworks sq,--- ,s,.
With homogeneous data, we would have a special case of the previous one. Hence,
we have:

1. A=A and A* = {A},...,A}. (heterogeneous data)  (4)
2. A=A} for some i and A* = {A}}. (homogeneous data)  (5)

The different A, can have different input lengths depending on the sequence
length of the interactions or the size of the images. So, we use the mappings m;
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Fig.3: TRANSPER Overview.

to deal with it and summarize them in 2. Thus, for a customer ¢ € C, we obtain
the neural network’s output vector y = f.(we).

Considering the different data types, the online shop has three possibilities to
define a suitable neural network: (i) The online shop uses n different data types,
i.e., heterogeneous data, and needs n different neural subnetworks. An overall
decision is obtained by concatenating the hidden layers at a suitable positions,
see Fig. 1. (ii) Second, the online shop decides to just use one data class, i.e.,
homogeneous data, and therefore has just one neural subnetwork in Fig. 1. How-
ever, important information can be lost from the other data classes. (iii) Third,
it is possible to define suitable neural subnetworks for n > 1 data classes, train
them separately and then save their weights. These n trained neural subnet-
works can be concatenated and trained again with the entire data, using the
already trained weights and biases as initial values. This approach is therefore a
combination of the two mentioned possibilities above. Thus, n+ 1 neural subnet-
works are obtained in total, with one resulting from the concatenation of the n
individual neural subnetworks. The output vector then depends on whether one
uses the concatenated network s,11 or one of the neural subnetworks sq, ..., Sp.
This third possibility will be relevant for our use case.

4 Explanation Approach

The goal of our approach is to evaluate the explanation of product recommen-
dations of a shop-adapted neural network in order to better understand the
decision. Given an input from a user of an online shop and a trained neural
network as recommender, TRANSPER performs a backward analysis based on
an individual prediction. In this way, it can be explained to what extent compo-
nents of the trained network or certain inputs were relevant. This process can be
seen in Fig. 3. In the following, we will (i) describe how these explanations can
be gained with LRP, (ii) specify how to analyze the input with Leave-One-Out
method and (iii) define quantity measures to evaluate the explanations.

4.1 Explanation via Layer-Wise Relevance Propagation

Following the notation of Section 2 and Definition 1, we assume that K € N
denotes the number of layers in the neural network, i.e., the first layer is the in-
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put layer and the K-th layer is the output layer. Furthermore, for k € {1, ..., K}
let |IIx| = Iy € N be the number of neurons in the k-th layer, i.e., I; describes
the number of input neurons and Ix the number of output neurons. Indeed,
in the context of classifiers, each neuron of the output layer represents one ele-
ment of the target set. For example, for an input z, the neuron (K, i*) with the
highest prediction score f(z);+ as output is the actual recommendation. In this
context, it is then of interest to find out to what extent the neurons of the lower
layers contributed to the decision f(x);. For our approach, we define the initial
relevance vector Rfy = (Rfy ;))ie(1,...,.1,} With

i {f(m)i* if i = i*

(K0 = 0 otherwise

which can be used to iteratively compute the relevance for layers K — 1,...,1
using Equation 2 and Equation 3. Finally, we obtain R 1) as the input layer’s
relevance vector and can thus determine to what extent an input neuron is
decision-relevant (see Fig. 2). Note that a negative relevance in an input neuron
diminishes the prediction i* whereas a positive relevance underpins it. In contrast
to most LRP approaches, we also consider the relevance of the bias Ré’kJ) of the
j-th neuron of the (k+ 1)-th layer. Our LRP method is characterized as follows:
ko kk+1

R R 50 R’
D Buat D Biepy=2 D Ter1)
i€y, JE€EM K11 i€y jEM K11 kak k+1 + b
2 : ij
i€l
k
S bj .
(k+1,5)
JE€EM K11 <§ :Zk kk+1> —l—b;?
i€ 1Ty
k kk+1
E 2z W
_ i€y, z
- Z (k+1,7)
JEMty ko kK41 k
( 2z W + b;
i€lly,
k
D> L
(k+1,5)
JEM K41 k, k.k+1 k
Ziw;; —|—bj
i€l
k. kk+1 k
( 2z W ) +b;
o i€y, z
- Z R(k+17j)
JE k41 k, k,k+1 k
(Z Zi Wy +b;
1€l

= Z (k+1.)-

JEM K41
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As f(x)y = Z R{f ;) is satisfied by assumption, we obtain

VISEN
f@i== > Ric1y+ Y. Rk 1y
i€l 1 JjeEllK
_ z b b
= > Rixant Y, Blxoay+ X Ry
i€l _o JEl K 1 JellK

K-1
_ z b
=D RBhagt D Do Ry (6)
ielly k=1 je€ll)41
——
=:R* —.RP
i.e., the sum of the final relevancies R and R® equals the original output score.
By comparing the two summands in Equation 6, the LRP algorithm also provides
a method to find out how much relevance R*, R can be assigned to the input
neurons and the trained bias, respectively.

4.2 Input Analysis with Leave-One-Out Method

In this section, we want to find out why well-functioning recommenders actually
work and provide new insights into the customers’ shopping behavior. Addition-
ally, we want to know why an insufficiently functioning recommender delivers
meaningless predictions. Therefore, we need to further analyze the explanations
gained from LRP regarding their helpfulness, i.e., the impact of an input on the
prediction. Using the Leave-One-Out method [26], we evaluate the input relating
to the explanations. By consistently leaving one product out by setting its input
value to zero, we can observe its effect on the predictions and explanations, see
Fig. 4. Assuming a trained neural network, we perform the following steps:

(i) We start with a particular customer and the associated input x which is
mapped to an output vector y via the trained network.

(ii) According to Equation 6, for a given output neuron y;- with i* € {1,.., Ik}
(e.g., the one with the highest prediction score), we compute the associated
input relevancies (R‘(ZL j)) je{1,...1,} and the overall relevance of the bias RY.
Thus, we consider the set of relevancies R := { R’} U {R( ;) 1<j<I}

(iii) For a salient subset of the relevancies R* C R (e.g., the inputs with the
highest/lowest relevancies), we set the associated input neurons (marked
red in Fig. 4) in = to 0 and obtain the adapted input vector z*.

(iv) As in Step (i), we map the input z* to the corresponding output y* via the
same trained network and obtain the test output y*.

Thus, with steps (i)-(iv), we obtain the input vectors z and z*, the output
vectors y and y*, and the set of relevancies R. They are used in Section 4.3 to
enable the explainability of neural network predictions according to the online
shop in Definition 1.
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Fig. 4: Selection and analysis of the most relevant inputs via LRP

4.3 Explanation Quantity Measures

Methods such as A/B testing exist to test the performance of a recommender
system [9,6]. They aim at evaluating the predictions trained on a fixed group
of customers with new test customers. Ideally, positive feedback on the training
process is obtained. However, the results can be unsatisfactory as well. In both
cases, it is of interest to know how the predictions come about and how certain
inputs influence them specifically. Using Equation 6 and the definitions

Ry = Z max{0, R{, ;)}, RZ := Z min{0, By i) b,

= =
we obtain the network’s top prediction within the setting of Definition 1
Yir := fo(me)i- = R* + R® = R + R* + R". (7)

In the following we consider two disjoint subsets Cy,Co C C. Cy represents a
set of customers where the inconsistencies to be analysed occur. In contrast, this
is not the case for customers from Cs. With Equation 7, it is then possible to
define measures that can be used to analyse such irregularities in specific test
cases. W.l.o.g we always assume for the output value y;« > 0. Based on these
considerations, we define three measures to quantify the relevance of the input.

(i) Definition 2 (Individuality Measure). o : C — R with

R? R?
or(c) == Bl g
The individuality measure can be used to determine to what extent the input
was relevant for the decision. Via Equation 7, we obtain 1 = R* /y;« + R? /y;
and define that a prediction y;~ is mazimally individual, if or(c) = 1 holds.
In contrast, y;+ is considered to be minimally individual, if o7 (c) = 0 holds.
In this case only the bias was relevant. For op(c) € (0,1) we generally
have R*, R® > 0, so both of these components contribute positively to ;.
If R? or R, are negative, this component argues against prediction y;« and
we either have or(c) € (—00,0) or or(c) € (1,00). Note that due to y;« >0
it can not occur that R* and Ry, are negative.
With or it is for example possible to attribute inconsistencies to overly
homogeneous training data. Consider a shop offering men’s and women’s
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products. Let men be C; and women be Cs. If the training data is largely
assigned to men, women could often get men’s products suggested because
the recommender’s bias was trained on men. Then, for ¢; € C7 and ¢y € Cy,
the following would apply: |1 — op(c1)| < |1 — or(c2)]|-

Definition 3 (Certainty Measure). vr : C — (0,1] with

() { B/ R >0
BT\ Re/RE, i RF <.

The certainty measure can be used to make a quantitative statement about
the deviation of the individual relevancies from the overall relevance. Con-
sidering definitions of R%, R?, and Equation 7, we have R% € [R? c0)
and R* € (—oo, R?]. Depending on the sign of R*, one can determine
whether the input neurons as a whole had a positive or negative relevance
for the decision made. We restrict ourselves to the case of R* > 0. How-
ever, the results apply to R* < 0, respectively. Thus, we can deduce that a
value of v;(c) = 1 means that no negative relevancies were assigned to the
input neurons. A value close to zero, on the other hand, indicates a strong
dispersion of the relevancies.

Definition 4 (Diversity Measure). (r,(f, (7 : C — [0,00) with

(r(c) := max -
TR bR ' ER\{r}
T— R , 1 ,

(F () == max —+| and pR, =5 r,
’ TERE ] HR, R -1 r'eﬂz;\{r}

- TR 1
¢7(c) == max - and pp = —— r’
! rER- Hr " |R7| -1 T’ERZ\{T}

for a customer ¢ € C and top prediction y;. We additionally introduce the
set of input relevancies R := Rfl ) which we divide as follows:

Ro:={reR:r=0}, Ry :={reR:r>0}, and R_:={r e R:r <0}.

The diversity measure finds outliers within certain input relevancies. For ex-
ample, considering r € R, then (r — u%)/p} is the proportional deviation
between the values in R except for . For r € R4 or r € R_ one proceeds
analogously. Note that the calculation of diversity measures does not apply to
empty sets R, R, and R_, respectively. Furthermore, the zero is always ob-
tained for one-element sets. For two customers ¢y, co with ¢ (1) < ¢f (ca),
we can thus state that the prediction for ¢y depends more on a single input
neuron than the prediction for ¢;.

Evaluation

In this section, we demonstrate the benefits and application of our approach in
three use cases. First, our explanation approach can help in understanding fluc-
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tuations in the recommender’s quality. Second, TRANSPER can help in finding
ideas on how to improve the recommender. Third, our contribution can help to
improve the understanding of the customer base. In the course of this research,
we kindly received permission from the e-commerce service provider econda [8]
and two of its partner companies to use their customer data. These partner
companies are a jewellery shop and an interior design shop.

5.1 Evaluation Setting

At this point, we show that both online shops fit the formal model from Defini-
tion 1 and are thus applicable to the TRANSPER framework. We assume that 7'
is the jewellery shop and T? the interior design shop. As shortly mentioned in
Section 3, the neural network econda uses for 7' and T2 comply with the third
neural network type with three neural subnetworks s1, s2, s3 in Fig. 1.

Online Shop Models. We now illustrate how the shops satisfy Definition 1:

a) Both shops provide anonymized information about a variety of their cus-

tomers C1 C Cct, C2 C C?, for example shopping history,

and their offered products P!, P2.

The targets P*, in our use case a subset of selected products of the offered

products, define the real output space ' and 2, respectively.

d) The available customer information types are based on the information
sets A' and A2, respectively.

e) The information from A' (A?) is classified according to its characteristic
properties. In our case, the disjoint subsets are the same for both shops,
ie., A* = A* = A?*, Especially, T' and T? have three disjunctive informa-
tion types, i.e., |A*| = 3, which result in three neural subnetworks s1, s9, s3.

f) According to A*, any customer ¢ has therefore the associated input space
denoted by 2, = R™ xR™2 x R™3(¢) | The first two neural subnetworks $1, 82
have a fixed number of input neurons independent of the customer, so in a
slight abuse of notation we write m; and mqy instead of mi(c) and ma(c),
respectively. The third subnetwork has a number of neurons dependent on
the number of interactions of c.

g) Via preprocessing, the information about a user ¢ € C' is converted into an
input we € 2.

h) The function f. represents the recommender’s implicit process of decision
making. Given an input w,., the vector f.(w.) contains an entry for each
product in P* and the product with the corresponding highest prediction
score is recommended.

b
¢

)
)

The neural networks are trained in two steps, respectively. First, the neural
subnetworks s, so, s3 are trained independently. Based on the trained weights
and biases, the subnetworks are concatenated according to Fig. 1 in their hid-
den layers and trained again to obtain the combined decision function f.. This
also means, each of the subnetworks si, s3, s3 individually fits Definition 1 and
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processes the following information types which we will further analyze in Sec-
tion 5.3. (i) s1 processes information regarding general interactions, whereby the
input vector is an embedding of a user profile. For example, an input neuron can
represent the purchase of a certain product or interest in a product category.
This neural subnetwork is designed as a multi-layer perceptron. (ii) sa processes
personal information not related to former product interactions. A multi-layer
perceptron is used as well. (iii) s3 processes the most recent customer interac-
tions as sequences, whose lengths may be different for each customer. An action
performed by a user is embedded and considered as a part of the interaction
sequence. An RNN approach with Gated Recurrent Unit layers is used here.

5.2 Evaluation Data Set

The data set used in this work consists of the online shops T and 72 as instan-
tiations of the model from Definition 1. For each online shop, the corresponding
recommender is provided in the form of a trained neural network. Furthermore,
we receive the profile stream, which contains the user information about the
customers which were previously considered as training and test data. econda
updates the respective recommender at regular time intervals based on cur-
rent purchasing behaviour. Therefore, the data set used includes several profile
streams and recommenders per online shop. In total, we use 8 (10) profile streams
for Tt (T?). A profile stream contains on average 524 (1004) customers and per
customer we have on average 33 (64) customer interactions. All recommenders
were realised in Python 3.7 with Tensorflow v2.1.0.

5.3 Evaluation Results

In Section 2, we have defined the standard LRP method. However, there are also
variants of this methods which outperform the standard on some architectures.
To the best of our knowledge, it is not known which of these methods works best
for RNNs. As a preliminary step, we therefore fill in this gap by evaluating the
performance of the standard LRP and some of its most popular variants using
our algorithm from Section 4.2. As a reference, we switch off each input neuron
once at a time to find the neuron that is actually most relevant to the decision.
This is the case, when the change of the original prediction value is maximal
by leaving out this specific input. Finally, per LRP variant, we determine the
relative frequency with respect to detecting the most relevant input neuron.
Regarding the mentioned LRP methods, we first consider all possible parameter
combinations with respect to the values 0.01,0.1,1,5,10, and then choose the
best combination. We obtained the scores standard [2] 0.9800, epsilon [1] 0.9560,
gamma [15] 0.9080, alpha-beta [16] 0.7720, and non-negative [16] 0.5040. Based
on these and due to the fact that the standard method achieved a hit rate of
100% in the case of MLPs, we will limit ourselves to this method. In the following,
we describe three use cases that can be achieved with our explanation quantity
measures defined in Section 4.3.
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Fig.5: Two exemplary output layers for shop 7. Output vectors of the NN
ranked in descending order for customer groups C7 and Cs in the upper part in-
cluding corresponding residual plots after setting the most relevant input neuron
to zero in the lower part. The residual of the original top prediction is marked red.

Understanding the Recommendation Quality. To tackle this, we have to examine
discrepancies between prediction and input. We found one within the predic-
tions provided by econda for the jewellery shop T that could not be explained
intuitively. Therefore, we apply the measures from Section 4.3 to obtain expla-
nations regarding the recommender’s decisions. The upper part of Fig. 5 shows
two exemplary output layers of the neural subnetwork s;, where Cy,Cy C C!
are disjoint subsets of customers C' of T'. The exemplary customers were each
randomly selected from 25 customers in C7 and 29 customers in Cs, respectively.
The output neurons are ranked in descending order regarding their prediction
score. It can be seen that the preferred outputs for customers from C are al-
most indistinguishable. In contrast, the scores for customers from Cs imply clear
top predictions. Considering the lower part of Fig. 5, we plot the residuals af-
ter setting the most relevant input neuron to zero to show the discrepancy. For
customers from C7, the discrepancy between the top prediction and the aver-
age prediction score is much smaller than for customers from Cy because the
entire curve hovers quite closely around its average. Thus, the product recom-
mender s; of T' is apparently not as certain about its decisions because the
predictions range over a small interval. Therefore, we consider the top predic-
tions in each case and try to gain new insights into the decision-making of the
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Table 1: Results of LRP-comparison for recurrent model

measure \ user C1 Co ct
op1 (individuality) | 1.2668  1.0021  1.1409

vp1 (certainty) 0.7302 0.9733  0.8804

(;fl (diversity) 1.5564 143.1009 65.7103

neural network via the explanation measures from Section 4.3. Table 1 shows
these results including significant differences between C; and Cl:

(i) Comparing the results of the individuality measure o1, we can see that
predictions for customers of C7 depend more on the bias induced by the train-
ing data. Predictions for customers of Cy are almost independent of the bias.

(ii) Regarding the certainty measure vr1, customers of C; have more contra-
dictory input neurons with negative relevance.

(iii) Since we are interested in the positive influence of input neurons on the
overall decision, we consider the diversity measure C;l. We can see the
greatest divergence between customers of the two classes C7 and Cs. Re-
garding the inputs with positive relevance, customers of C5 have an input
with a relevance that is significantly greater than the other relevancies. This
means that there are inputs that speak in favour of the decision made which
is not the case for customers from C.

All three measures reveal differences between the two customer groups. The
diversity measure stands out particularly prominently. The key figures listed here
reflect a well explainable prediction of the recommender for customers from Cs.
This means that few input neurons had the strongest influence on the prediction
made which is not the case for customers from C;. This discrepancy can also
be seen very well if we switch off the input with the highest relevance and plot
the residuals of the output vectors, see the lower part of Fig. 5. The input with
highest relevance is marked red. It has a significantly stronger influence on the
prediction for customers from Cs than C;. For the latter, switching off this
input causes almost no deviation in the predictions. Using the LRP approach
and the explanatory measures, it has thus been possible to establish that the
clear predictions for customers from C5 are quite simple to explain. Namely,
these customers have activated input neurons that contribute massively to the
prediction made. For the customers from C; on the other hand, the decision-
making is rather based on the entire interaction of the input neurons.

Ideas to Improve the Recommender. A closer look at the most relevant inputs
reveals a certain pattern. We have two different types of input neurons: (a) input
neurons representing the interaction with a product from P* and (b) input neu-
rons representing an interaction with a certain product category. In the latter
case, an interaction with a category can only take place via an interaction with
a product from the associated category. The activation of the categories occurs
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for each product interaction, regardless of whether or not it is contained in P*.
Now, when looking at the input relevancies for customers from C; or C5, the
following is noticeable: Firstly, for customers from C; there are no activations of
products. The most relevant inputs are therefore categories and the relevancies
hardly differ. Secondly, customers from Cy always have product activations. In
these cases, the most relevant input is always a neuron belonging to a product
interaction and these relevancies are significantly higher than those of the like-
wise activated categories. We were thus able to determine that the activation
of products as input neurons leads to more unambiguous decision-making. In
particular, these represent a better explanatory power as the neural network
predicter can identify certain information that significantly influenced the deci-
sion made. It would therefore make sense to separate the user information even
further and define the products or categories as separate subnetworks. In this
way, the decision-making process for user profiles that only contain categories
as input neurons could be given a stronger explanatory power.

Understanding the Customer Base. We also performed an evaluation on the in-
terior design shop T2. Our diversity measures o2 and (;2 revealed that the
trained bias and outliers within the positive input relevancies of the neural sub-
network s, were particularly relevant for the decisions made. Thus, it was found
that buying interest is based on daily trends rather than past interactions. Un-
fortunately, we cannot explain this in more detail here due to space constraints.

6 Conclusion

In this paper, we have presented TRANSPER, an explanation framework for
neural networks used in online shopping.

We used the LRP method to define three explanation measures, namely the
individuality measure, used to determine those parts of the input that are par-
ticularly relevant for the decision; the certainty measure, which measures how
certain the system is about its prediction; and the diversity measure, which mea-
sures whether there are clear top predictions. These measures can be defined on
complex neural networks which process heterogeneous input data.

We have demonstrated the usefulness of our metrics in three explanation
use cases. First, we explained fluctuations in the prediction qualities. Second,
TRANSPER explanations can help find ideas on how to improve the neural net-
work. Third, our explanations can help online shops better understand their
customer base. These explanations also play an important role in fulfilling legal
requirements such as the ones mandated by GDPR.
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