
Adaptive Semantic Integration

Marc Ehrig and York Sure

Institute AIFB, University of Karlsruhe, Germany
{ehrig,sure}@aifb.uni-karlsruhe.de

Abstract

Schema integration has become a task of increas-
ing importance. In this paper we give a guide
on how to automatically optimally set the para-
meters of semantic alignment algorithms respec-
tively tools for a wide range of use cases. We ba-
sically define a utility function to rate the results
of alignment algorithms. Then we backtrack from
the utility function first to concrete requirements
for the results and then to the parameters of align-
ment algorithms. The gains of our methodology
are confirmed by its implementation and evalua-
tion.

1 Introduction
Semantic integration has become a task of increasing im-
portance. It is a necessary precondition to establish interop-
eration between agents or services using different schemas.
Thus, many approaches have been brought up to align,
map, integrate and merge data schemas, ontologies, etc.
[1]. In this paper we will concentrate on semantically rich
schemas as represented through ontologies. Thus, we can
make use of more information than simple schemas would
generally allow. Similarly as for the schema integration do-
main for ontology alignment special tools such as GLUE,
PROMPT, etc. [5, 11] have been created but normally focus
on solving exactly one task, thus making it rather difficult
to apply the tools for already slightly different use cases.
However, in bigger projects such as SEKT we face exactly
the problem that we have different use cases to address and
at the same time aim for one integrated alignment frame-
work [3].

In this paper we will present a methodology for deriv-
ing a strategy for ontology alignment so that it can be opti-
mally applied for a wide range of alignment problems. In
specific, we will give a guide on how to automatically set

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

the parameters of ontology alignment algorithms respec-
tively tools based on underlying use cases such as ontology
merging or query rewriting. This will be done by defining
a utility function, which we then are going to maximize.
Through this methodology it will be possible to reuse very
good specialized alignment algorithms not only for one use
case, but for a variety of them, thus increasing the impact
of the ontology alignment technology. As our methodology
will focus on a general alignment process rather than a spe-
cific tool, we expect the results of this paper to be applied
to other existing schema integration approaches as well.

We start this paper with an overview of our adaptive
methodology in Section2. Its main steps will then be pre-
sented separately thereafter: creation of a utility function
(Section3), deriving the requirements for result dimensions
(Section4), and finally deriving the algorithm parameters
(Section5). The methodology of dynamically setting the
parameters of ontology alignment algorithms has been pro-
totypical implemented and evaluated in our tool FOAM
(framework for ontology alignment and mapping) in Sec-
tion 6. The paper closes with related work, an outlook, and
the conclusion.

2 Overview

With this paper we aim to present a methodology for op-
timally adapting ontology alignment algorithms to differ-
ent use cases. Identifying the actual goal of the alignment

Create 

Utility Function


Output:

Parameters 
for


Alignment

Algorithm


Derive 

Requirements

for Dimensions


Derive

Parameters


1
 2
 3
Input:

Use
Case
+ 


Side

Conditions


Create 

Utility Function


Output:

Parameters 
for


Alignment

Algorithm


Output:

Parameters 
for


Alignment

Algorithm


Derive 

Requirements

for Dimensions


Derive

Parameters


1
 2
 3
Input:

Use
Case
+ 


Side

Conditions


Input:

Use
Case
+ 


Side

Conditions


Figure 1:Overview of Methodology

process is one input we need. Further we require the spec-
ification of different side conditions such as the ontologies
to align as well as the computational infrastructure. In the
understanding of this paper an ontology consists of both
schema and instantiating data. Common languages to rep-
resent ontologies are RDF(S)1 or OWL2. Semantically an
alignment returns two entities linked by an identity rela-
tion. In a first step we create a utility function to rate re-
trieved alignments. Obviously we want to maximize the

1http://www.w3.org/TR/rdf-schema/
2http://www.w3.org/TR/owl-ref/

1



utility function. Through this second step, the optimiza-
tion, we derive requirements for core dimensions of align-
ments such as quality or efficiency. This also means con-
sidering the use case, as well as the side conditions. And
in a third step we derive the actual parameters based on the
just mentioned requirements. The final output consists of
the parameters which have to be assigned to an alignment
algorithm such as our framework for ontology alignment
and mapping (FOAM)3. Only then the alignment process
is executed leading to the presumably best possible results
for the given use case.

3 Create Utility Function

3.1 Example

Throughout the paper we will illustrate our methodology
with a practical running example. In each section we will
thereafter extend the example by more general considera-
tions. If the reader only would like to get the basic idea,
he may skip the detailed descriptions and continue with the
example in the subsequent section.

Let us assume we have two OWL-ontologies with about
300 entities each describing the biological domain of ani-
mals. Our user wants to merge the two ontologies to receive
one integrated view of the animal world. For this he has a
powerful tool for ontology alignment at hand, but he is not
an ontology technology expert himself. He wants to use the
optimal strategy given the ontologies and his use case, but
does not know how to set the individual parameters of the
algorithm. He wants to maximize the overallutility value.

3.2 Utility of Ontology Alignment

Ontology alignment is done with a specific goal in mind.
Whether this goal has been reached can be quantified
through a utility function. An ontology alignment algo-
rithm has certain parametersp which have to be set in be-
forehand. When using the parameterized algorithm on two
ontologies we receive concrete alignment results. From
these we can calculate the evaluation valuesr for different
dimensions such as quality or efficiency. Further, there are
side constraints originating from the involved ontologies,
such as their size or format, and computing infrastructure
s. And finally the ontologieso1 ando2 themselves effect
the results. To overall evaluate the results we calculate a
utility u. We argue that the utility is based on preferences
for each of the result dimensions and that the preferences
themselves are dependent on the underlying use casesc ex-
tended by a subjective human preferencem. The utility u
may also be written as functionh.

ri = fi(p1, . . . , pm, s1, . . . , sk, o1, o2)

u = g(c,m, r1, . . . , rm)

u = h(c,m, p1, . . . , pm, s1, . . . , sk, o1, o2)

3http://www.aifb.uni-karlsruhe.de/WBS/meh/foam

3.3 Methodology

Goal of our adaptive methodology is to maximize the util-
ity û by setting the algorithm parameters correctlyp̂. We
assume that the use case is given and fixed, just like the
ontologies and computing equipment.

û = h(p̂1, . . . , p̂m)

∀u : û ≥ u,with c, s1, . . . , sk fixed; m, o1, o2 abstracted

In the next sections we backtrack the utility calculation.
As we want to do the optimization before doing the actual
alignment, we rely on estimate functions forfi andg. For
the prediction we abstract from specific variables and head
for a generic approach. We are looking for optimal results
for typical ontologies and an average user, and may there-
fore ignore the unknown and subjective parameterso1, o2

andm.

4 Derive Requirements

4.1 Example

We will now have a look at theuse case: ontology merging
is a common use case in business applications. Ontolo-
gies of individual persons or departments may be merged
to create a larger potentially company wide understanding
[11]. This is one promising approach for actually engineer-
ing ontologies in a distributed manner [12]. In our example
ontologies are merely schema information. If the original
ontologies e.g. represent database schemas, the merged on-
tology can be the basis for further integration steps such
as data integration. In general the source ontologies would
disappear and only the merged ontology remains. To en-
sure a good final ontology, quality requirements are high,
whereas time resources tend to be less critical, as the merg-
ing process can be run in the background. Further, ontology
merging will normally include a human in the loop, who fi-
nally checks the merged ontologies for correctness.

From the use case description we have identified four
main result dimensionsr influencing the utilityu. Quality
i.e. precision and recall have to be high, time should be of
medium duration, and semi-automation is the ideal level of
user interaction.

Unfortunately, there are furtherside conditionss which
also effect the alignment results. Therefore, to ensure the
utility still reaches a maximum certain constraints are im-
plied to the requirements. In the running example we face
the following critical side conditions: the ontologies do not
contain a lot of instances. Further, the ontologies have a
rather small overlap. Sparse alignments will require a more
thorough search. Fortunately, these critical side conditions
do not further constrain the requirements.

From the example we have derived the finalrequire-
mentsin Table1.

4.2 Dimensions

We identified the following main dimensions.

2



Input Value Prec/Rec Time Autom.

Use Case Merging high/high medium semi-
Content more schema high/med. semi-
Overlap small high/high medium semi-

Final high/high medium semi-
Table 1:Requirements

Quality: There are two values measuring quality of the
alignment process. The precision measures the fraction of
found alignments which are actually correct:precision =
#correct found mapping

#found mappings . Typically precision is balanced
against another measure from information retrieval. Re-
call measures the fraction of alignments found in compari-
son with the total number of existing alignments:recall =
#correct found mappings

#existing mappings . Obviously a very high recall will
entail also many false alignments (a lower precision) and
vice versa. Often precision and recall are balanced against
each other with the so called f-measure.
Time: Time may be a critical factor for many applications.
The requirements might range from instantaneous response
to overnight batch processing. Most existing tools do not
deal with this factor explicitly.
Level of Automation:Most algorithms require interaction
of the human knowledge engineer. However, for some use
cases user interaction is not desirable or even possible. Dif-
ferent levels of automation range from manual alignment,
proposal generation, conflict resolution, to fully automatic.

4.3 Use Cases and Corresponding Requirements

Semantic integration has been a topic of research in
many projects such as SWAP [13]4, SEKT [3]5, Knowl-
edgeWeb6, or DIP7. Based on the requirements analysis
from these projects we derived a set of more general use
cases which need ontology alignment. We also mention
typical preferences of each use case with respect to the
just described dimensions. The use cases were carefully
selected to represent a wide range of applications, but we
do not claim to be complete. Real world applications will
be a combination of these extreme cases.
Query and Answer Translation:An operation occurring
very frequently in knowledge management applications is
querying of information sources. For this task users for-
mulate a query in a certain query language, based on one
ontology, normally the individual’s or community’s ontol-
ogy. This query is sent to a reasoner, possibly it is also
passed across the network to other computers [13]. This
reasoner then returns an answer fitting the query. We want
to allow an application to query different heterogeneous
information sources without actually caring about all the
different ontological representations. In order to achieve
this, a query written in terms of the application’s ontology,
needs to be rewritten using the terms in the target source’s
ontology. Rewriting means to translate the schema infor-

4http://swap.semanticweb.org/
5http://sekt-project.org/
6http://knowledgeweb.semanticweb.org/
7http://dip.semanticweb.org/

mation as well as the instance information included in the
query during runtime. A user being used to internet search-
engines will presumably be tolerant towards wrong results,
as long as the correct results are returned.

Ontology Evolution / Versioning:Ontologies are not sta-
tic objects, they evolve, they develop over time. Keeping
track of these different versions is a key challenge. Busi-
ness processes should seamlessly continue with new ver-
sions. Ontology alignment is necessary to link the different
versions of the evolving ontologies. The new schema needs
to replace the old schema. This also means that the classi-
fication of instances has to be changed, further attributes
may also have to be altered. Quality should generally be
high.

Data Integration: Data Integration is concerned with the
use of data from different sources within one application.
The data from the different sources needs to be presented
to the user in a unified way [8]. For applications equal in-
stances should not be distinguishable, even if they origi-
nated from different underlying repositories. Most times
this can be done in the background without strict time re-
quirements, but, due to the assumed high amount of in-
stance information it will have to be done more or less au-
tomatically.

Reasoning:Another use case heavily dependent on ontol-
ogy alignment is reasoning in a global setting such as envi-
sioned for the Semantic Web. New information is inferred
from distributed and heterogeneous ontologies. In a dis-
tributed web of ontologies errors and inconsistencies can-
not be eliminated completely. This will certainly also have
effects on the alignment of different ontologies. The prob-
ably biggest tasks are requirements on quality. Through
inferencing wrong alignments can quickly result in further
wrong results, which again trigger additional wrong results
in a cascading manner.

Based on the use cases we determined the requirements
r for a maximum utility (see Table2).

Use Case Prec/Rec Time Automation

Query Translation med./high fast full-
Ontology Merging high/high medium semi-
Ontology Evolution high/high medium semi-

Data Integration med./med. medium semi-
Reasoning high/med. slow full-

Table 2:Result Requirements based on Use Cases

4.4 Constraints on Requirements based on Side Con-
ditions

The next step was to check whether side conditions fur-
ther restrict these requirements. They are based on two ar-
eas: the ontologies to be aligned, and the computational
infrastructure. Again, we do not claim this is complete,
but try to cover various aspects. Only the constraining side
conditions are listed in Table3.

3



Side Condition Value Prec/Rec Time Autom.

Ontology Size large fast full-
Ontology low high/high

Complexity high fast
Content more schema high/med. semi-

more instances med./high fast full-
Overlap small high/high semi-

Computational low fast
Resources

Table 3:Constraints on Result Requirements based on Side
Conditions

5 Derive Parameters

5.1 Ontology Alignment Process with Parameters

We have observed that alignment methods like QOM [6]
or PROMPT [11] may be mapped onto a generic alignment
process (Figure2). We refer to [6] for a detailed descrip-
tion. Here we will focus on mentioning the six major steps
to clarify which parameters actually have to be set.
1. Feature Engineering, i.e. select excerpts of the overall
ontology definition to describe a specific entity (e.g. label).
2. Search Step Selection, i.e. choose two entities from the
two ontologies to compare. Either every entity pair is com-
pared or only an efficient subset.
3. Similarity Assessment, i.e. indicate a similar-
ity for a given description of two entities (e.g.,
simsuperConcept(e1,e2)=1.0).

4. Similarity Aggregation, i.e. aggregate multiple similar-
ity assessment for one pair of entities into a single mea-
sure. The feature and similarity selection, together with the
weighting scheme represents the underlying general align-
ment strategy. This may either be done in an semantically
simple or complex way.
5. Interpretation, i.e. use all aggregated numbers, a thresh-
old and interpretation strategy to propose the alignment
(align(e1)=‘e2’). This may also include a user validation.
6. Iteration, i.e. as the similarity of one entity pair influ-
ences the similarity of neighboring entity pairs, the equality
is propagated through the ontologies.

Search
Step

Selection


Similarity

Assessment


Similarity

Aggregation


Iteration


2
 3
 4

6


Feature

Engineering


Inter
-

pretation


1
 5
Input
 Output

Search
Step

Selection


Similarity

Assessment


Similarity

Aggregation


Iteration


2
 3
 4

6


Feature

Engineering


Inter
-

pretation


1
 5
Input
Input
 Output
Output


Figure 2:General Alignment Process

The correlations between parameters and results have
been identified in various experiments with our framework
[6, 7]. Most of them are intuitive: semantical more com-
plex features lead to higher quality, just as longer run times
of the alignment algorithm do.

5.2 Example

We continue with the running example and nowassign
the parametersaccordingly. High precision and high re-
call represents the highest quality requirement. For this
we have to focus on using semantically complex features
and heuristics. Further, it is necessary to take a complete

look at the alignment candidates. Again to increase qual-
ity the user is included in the loop and can provide feed-
back during runtime. And finally we have to ensure that
alignments have flooded the ontology graphs in a complete
way, which can only be achieved through many iteration
steps. To ensure medium fast processing, we can still rely
on complex features and heuristics. However, we need an
efficient strategy only including the most promising align-
ment candidates for comparison and rely only on a low
number of iterations. Compared to a very fast approach
we can use slightly more iterations. Finally, the required
level of automation can be directly translated into the cor-
responding parameter. Semi-automation requirements trig-
ger semi-automation of the algorithm. The final parameters
are also shown in Table4.

Require- Value Feature/ Search Thre- Inter- Iter-
ment Similarity Steps shold action ations

Precision high complex complete semi- many
Recall high
Time med. complex efficient auto few
Auto. semi- semi-

Final complex efficient med. semi- med.
Table 4:Parameters

From this last table we can extract the final parameters:
use of complex feature and heuristic as strategy, an efficient
search step selection, application of a medium threshold
value, a semi-automatic approach with user interaction, and
a medium number of iterations.

With our methodology we have found the algorithm pa-
rameters leading to the required dimensions and thus max-
imizing the utility value for a certain use case. The user
himself doesn’t have to worry about the optimized parame-
ters. The system can determine them on the fly from the
input use case and the side conditions. The parameters can
now be applied to the alignment algorithm, thus resulting
in the presumably highest utility for the user.

5.3 Parameters based on Requirements

In Table5 we give an overview on how parameters have to
be set based on the requirements. To determine the overall

Require- Value Feature/ Search Thre- Inter- Iter-
ment Similarity Steps shold action ations

Precision/ high/high complex complete med. semi- many
Recall high/med. med. high med.

med./high med. low med.
med./med. simple efficient med. auto few

Time fast simple efficient auto few
med. complex efficient med.
slow complex complete semi- many

Auto- automatic auto
mation semi- semi-

Table 5:Parameters based on Requirements

parameters for the alignment algorithm we further have to
combine the found individual parameters from each dimen-
sion. By averaging we can propose an optimal strategy for
the alignment algorithm.

4



6 Implementation and Evaluation

6.1 Implementation

The presented adaptive strategy has been implemented in
the FOAM tool. After providing the corresponding use case
and the underlying ontologies the system determines the
best algorithm parameters according to the methodology
presented in this paper. Unless the user wants to explicitly
change the parameters they are applied as proposed.

6.2 Evaluation Set-Up

Evaluation is difficult as only humans can finally decide
whether the maximum utility has been reached. Apart from
this, it is impossible to try every combination of parame-
ters. We therefore set-up five scenarios with different use
cases (ontology evolution, data integration, ontology merg-
ing, reasoning, and query rewriting), ontologies (RDF vs.
OWL, 50 to 300 entities each) and computing equipment
(very powerful vs. less powerful). For each scenario we
had four sets of alignment algorithm parameters: an op-
timal adaptive set according to our methodology, a fixed
presumably optimal set, and two arbitrary fixed sets. Ten
users were asked to carry out each of the five scenarios with
each of the sets of algorithm parameters. Urged to keep the
use case in mind the users afterwards had to decide which
runs were best, effectively ranking the four runs.

6.3 Evaluation Results and Discussion

After averaging over the different users’ opinions and nor-
malizing we gain the results in Table6.

Case1 Case2 Case3 Case4 Case5 Avg.

Adaptive 1 1 2 3 2 1
Fixed 3 2 3 2 3 3

Other 1 2 4 4 1 1 2
Other 2 4 3 1 4 4 4

Table 6:Ranking

The users confirmed that the dynamically chosen strat-
egy in average yielded the best results. This is a clear indi-
cator, that dynamically parameterizing alignment methods
are valuable.

However, the adaptive approach did not always appear
to be the absolute best one. To understand the reason for
this we had a closer look at Case 4 (two sports ontologies;
reasoning use case). These ontologies were modeled very
exact and clean. As an effect even though the adaptive ap-
proach took considerably longer in its search for further
alignments, it didn’t identify any additional correct ones.
Due to this users preferred the fast only label-based ap-
proach. We conclude that there are things that effect the
outcome of the ontology alignment process, but cannot be
explicitly detected in beforehand. In the end these are the
subjective parameters we could not measure and had to ig-
nore for our methodology. Therefore, one should rather
evaluate on an overall average basis, than claiming an opti-
mal output for every individual case.

Surprisingly, the presumably generally “best” strategy
only was ranked third, which shows how difficult it is to
actually determine a best strategy.

In general the results support the assumption that ontol-
ogy alignment can be done much more effective when the
use case is kept in mind. Algorithms can actually be reused
for different scenarios. Finally, it showed that our theoretic
considerations could be brought to a practical implementa-
tion, despite the often only fuzzily defined coherences of
parameters, goal dimensions, and overall utility.

7 Related Work

To the best of our knowledge there has not been any work
on dynamically changing the parameters of an ontology
alignment algorithm based on the underlying use case or
the involved ontologies.

However, as the basic ontology alignment problem has
been around for some years, first tools have already been
developed.The tools PROMPT and AnchorPROMPT [11]
use labels and to a certain extent the structure of ontologies.
However, their focus lies on ontology merging i.e. how to
create one ontology out of two. Potential matches are pre-
sented to the user for confirmation. [5] use a general ap-
proach of relaxation labeling in their tool GLUE. Most of
their work is based on the similarity of instances only, thus
requiring ontologies with a fair amount of instances. As
this paper focused on ontologies rather than general schema
matching we will only briefly mention work from this re-
lated area. [2, 9] have proposed ways on combining differ-
ent schema matching approaches. A foundation for match-
ing graph-like structures was given by [10] in their similar-
ity flooding approach.

Heading in the direction of finding an optimal algorithm
are [4]. The focus of their work was to generally investigate
which matcher performs best, mainly for XML documents.
They also mentioned that this depends on e.g. the schema
characteristics. However, they don’t take the next step in
thus including use cases for dynamically choosing and ad-
justing the best matcher.

8 Conclusion

Ontology alignment should not be considered as an inde-
pendent topic. It will always occur in conjunction with spe-
cific use cases within real applications. To manage the step
from research to application it is important to understand
the detailed requirements of the use cases for an alignment
algorithm. Further research in this direction is necessary
including field studies and user questionnaires.

In this paper we have presented a methodology for de-
riving an optimal strategy for ontology alignment based on
underlying use cases. We started with a utility function for
ontology alignment taking into account the results of the
alignment process and the preferences of the different use
cases. We then backtracked from the utility value to re-
quirements (e.g. quality) which had to be fulfilled. And
finally we determine the parameters of a general alignment

5



algorithm to actually achieve the requirements, also con-
sidering possible side conditions. This methodology of dy-
namically adapting the parameters of ontology alignment
algorithms has been prototypical implemented in our tool
FOAM. The evaluation thereof has shown that the dynamic
parameters actually outperform fixed strategies.

Semantic integration has been a task of increasing im-
portance. With the work presented in this paper we have
given ideas on how algorithms can generally be adapted to
different alignment use cases as required in the projects we
are involved. Thus, it will be possible to technically reuse
existing good alignment approaches for a variety of align-
ment problems. As the focus of this paper laid on a general
alignment process rather than a specific tool, we expect the
results of this paper to be transferred to other schema inte-
gration approaches as well. This is a key step for bringing
Semantic Web technology from specialized domains to ap-
plication in real world scenarios.

References

[1] R. Agrawal and R. Srikant. On integrating catalogs.
In Proceedings of the Tenth International Conference
on the World Wide Web (WWW-10), pages 603–612.
ACM Press, 2001.

[2] P. A. Bernstein, S. Melnik, M. Petropoulos, and
C. Quix. Industrial-strength schema matching.SIG-
MOD Rec., 33(4):38–43, 2004.

[3] P. Casanovas et al. SEKT legal use case components:
Ontology and architectural design. InProceedings of
ICAIL 05, 2005.

[4] H. Do and E. Rahm. COMA - a system for flexible
combination of schema matching approaches. InPro-
ceedings of the 28th VLDB Conference, Hong Kong,
China, 2002.

[5] A. Doan, J. Madhavan, P. Domingos, and A. Halevy.
Learning to map between ontologies on the seman-
tic web. InProceedings to the Eleventh International
World Wide Web Conference, Honolulu, Hawaii,
USA, May 2002.

[6] M. Ehrig and S. Staab. QOM - quick ontology map-
ping. In F. van Harmelen, S. McIlraith, and D. Plex-
ousakis, editors,Proceedings of the Third Interna-
tional Semantic Web Conference (ISWC2004), LNCS,
pages 683–696, Hiroshima, Japan, 2004. Springer.

[7] M. Ehrig, S. Staab, and Y. Sure. Supervised learning
of an ontology alignment process. InWorkshop on IT
Tools for Knowledge Management Systems: Applica-
bility, Usability, and Benefits (KMTOOLS) at 3. Kon-
ferenz Professionelles Wissensmanagement, Kaiser-
slautern, April 2005.

[8] P. Haase et al. Bibster - a semantics-based bib-
liographic peer-to-peer system. In F. van Harme-
len, S. McIlraith, and D. Plexousakis, editors,Pro-
ceedings of the Third International Semantic Web
Conference (ISWC2004), LNCS, pages 122–136, Hi-
roshima, Japan, 2004. Springer.

[9] J. Madhavan, P. A. Bernstein, and E. Rahm. Generic
schema matching with CUPID. InVLDB ’01: Pro-
ceedings of the 27th International Conference on Very
Large Data Bases, pages 49–58, San Francisco, CA,
USA, 2001. Morgan Kaufmann Publishers Inc.

[10] S. Melnik, H. Garcia-Molina, and E. Rahm. Simi-
larity flooding: A versatile graph matching algorithm
and its application to schema matching. InProceed-
ings of the 18th International Conference on Data En-
gineering (ICDE’02), page 117. IEEE Computer So-
ciety, 2002.

[11] N. F. Noy and M. A. Musen. The PROMPT suite:
interactive tools for ontology merging and mapping.
International Journal of Human-Computer Studies,
59(6):983–1024, 2003.

[12] H. S. Pinto, C. Tempich, and S. Staab. Diligent:
Towards a fine-grained methodology for distributed,
loosely-controlled and evolving engingeering of on-
tologies. In R. L. de Mantaras and L. Saitta, editors,
Proceedings of the 16th European Conference on Ar-
tificial Intelligence (ECAI 2004), pages 393–397, Va-
lencia, Spain, August 2004. IOS Press.

[13] C. Tempich et al. XAROP: A midterm report in in-
troducing a decentralized semantics-based knowledge
sharing application. In D. Karagiannis and U. Reimer,
editors, Proceedings of the 5th International Con-
ference on Practical Aspects of Knowledge Manage-
ment (PAKM 2004), LNCS, Vienna, Austria, Decem-
ber 2004. Springer.

6


