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Abstract. Using a simple simulation model of evolution and learning,
this paper provides an evolutionary argument why Lamarckian inheri-
tance - the direct transfer of lifetime learning from parent to offspring
- may be so rare in nature. Lamarckian inheritance allows quicker ge-
netic adaptation to new environmental conditions than non-lamarckian
inheritance. While this may be an advantage in the short term, it may
be detrimental in the long term, since the population may be less well
prepared for future environmental changes than in the absence of Lamar-
ckianism.

1 Introduction

Natural selection to a first approximation operates with variation that is undi-
rected [1]. Lamarck suggested that the results of lifetime learning could be di-
rectly passed on to ones offspring [2]. When would we expect directed variation
or inheritance of acquired characters to occur? Recent work reveals a range
of mechanisms capable of sustaining heritable epigenetic variation [3], pheno-
typic memory [4] and neo-Lamarckian inheritance [5], for example: mutational
hotspots and adaptive mutations occurring during bacterial stress [6] , chromatin
marks that control differentiation in multicellular organisms [7], RNA silencing
allowing potential influence by somatic RNA on germ line gene expression [8],
inheritance of immune system states by antibody transfer in breast milk [9], and
behavioural and symbolic inheritance systems such as food preference, niche con-
struction traditions and all information transmission dependent on language [3].
By these mechanisms, Lamarckian inheritance can occur without breaking the
central dogma, i.e. without sequence information having to pass from protein to
DNA [10]. In the case of immune system, behavioural and symbolic inheritance
systems, information need not be passed from soma to germ line either [11].

So, directed variation is possible, but is it always advantageous to inherit
characteristics acquired by ones parent? Evolutionary biology modeling revealed
that Lamarckianism would have provided an adaptive advantage in changing en-
vironments compared to genetic mutation alone [4]. In randomly changing, and



rapidly changing environments, low to medium values of heritable phenotypic
plasticity were optimal, respectively. In slowly changing environments there was
a monotonic improvement in fitness as the capacity for heritable phenotypic
plasticity increased. Absent in the above model was a distinction between geno-
type and phenotype, for its intention was not to compare non-heritable pheno-
typic change, i.e. lifetime learning, with heritable phenotypic change, i.e. lifetime
learning plus Lamarckian inheritance. In the field of evolutionary algorithms, re-
searchers experiment with “evolution as it could be”. They found when evolving
artificial neural networks that Lamarckian inheritance of weights learned in a
lifetime was harmful in changing environments but beneficial in stationary en-
vironments [12]. Our aim is to compare various combinations of non-directed
genetic change, lifetime learning, and Lamarckian inheritance of learnt pheno-
types, under variable environmental conditions.

Recently, Paenke et al. developed a general model [13, 14] in a Darwinian
framework to explain under which conditions learning accelerates or decelerates
evolution in stationary environments. In their model, learning altered the fit-
ness landscape, which could speed up or slow down evolution. In this paper we
investigate the interaction between learning, Lamarckian inheritance, and undi-
rected variation, in changing environments. We introduce the model in Section 2,
results are presented in Section 3, and discussed in Section 4.

2 Model

Inspired by the model of Jablonka et al [4], our model of evolution and learning,
allows two environmental states E0,E1. Two phenotypes P0, P1 are possible,
where P0 is better adapted to E0, and P1 is better adapted to E1, i.e.

f(P0|E0) > f(P1|E0) , f(P0|E1) < f(P1|E1) , (1)

where f denotes the fitness score. In the simulations of Section 3 fitness scores
are set such that f(Pi|Ei)/f(Pi|Ej) = 2, i 6= j, i.e. the “fit” phenotype repro-
duces twice as much as the unfit. The real-valued genotype x ∈ [0; 1] represents
the predisposition towards a phenotype, a low x value corresponds to a genetic
predisposition towards P0, and a high x value towards P1. A phenotype is re-
alized stochastically by sampling from a Bernoulli probability distribution with
parameter p. In the absence of learning, p is defined by the genotype value alone,
i.e.

p(P1) = x , p(P0) = 1 − x . (2)

If learning is adaptive, it must increase the probability of realizing the fit phe-
notype of the current environment (P0 in E0, P1 in E1). The following mapping
satisfies this condition

p(P1|x,E0, L) = φ(x,L) , p(P1|x,E1, L) = 1 − φ(1 − x,L) , (3)

with

φ(x,L) =

{

= 1 , if L = 1

= x1/(1−L) , else
, (4)
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Fig. 1. Influence of the learning parameter L on the probability to express phenotype
P1 for genotype value x, in Environments E0 (left panel) and E1 (right panel).

where L ∈ [0; 1] is a learning parameter. Thus, learning (L > 0) increases the
“predisposition” towards the fit phenotype. The larger the L, the larger this
increase. Note, that the probability to express phenotype P0 is the counter-
probability of realizing P1, i.e. p(P0|x,Ei, L) = 1 − p(P1|x,Ei, L), i ∈ {0, 1}.
Fig.1 illustrates the relationship as specified in Equation 3 for different L values.

In each generation, each of 100 individuals reproduces (asexually) an ex-
pected number of f/f̄ offsprings (f is the individual’s fitness, f̄ the population
mean fitness), such that the population size is constant over time. The offspring’s
genotype x′ depends on the parent’s genotype, its learning-induced increase in
predisposition, and a Lamarckian parameter λ, in particular x′ = λp + (1−λ)x.
Pure Lamarckianism is given if λ = 1 and no Lamarckianism is present if λ = 0.
See Fig.2 for illustration of this implementation of Lamarckianism. A low mu-
tation rate (realized by adding a Gaussian random number with mean µ = 0
and standard deviation σ = 10−4, cut off at the genotype space boundaries)
may further influence the offspring’s genotype. In some of the experiments the
Lamarckian parameter λ and/or the learning parameter L evolves as well. In
these cases each individual has an additional gene that stores its λ respectively
L. The average time between two environment changes is specified by a param-
eter T . The actual change periods are either deterministic (cyclic changes) or
probabilistic. How well the population adapts is measured as the mean fitness
of individuals in the population averaged over time. To avoid an initialization
bias, only fitness from generation 1000 to 2000 is sampled. Three experiments
have been carried out, which are described in the next section.

3 Results

Experiment 1

The results of this experiment are presented in Fig.3. We simulate evolution
for a range of combinations of the Lamarckian parameter λ and change interval
T , for learning parameters L = 0.5 and L = 0.75, and we compare the case of
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Fig. 2. Implementation of Lamarckianism: Learning increases the probability of re-
alizing the optimal phenotype from genetic predisposition x to p. Depending on the
Lamarckian parameter λ its offspring benefits from this increase directly because it
inherits a value x′, with x ≤ x′

≤ p, where λ determines how close x′ is to x and p.

probabilistic to the case of deterministic environmental changes. In particular we
combine T ∈ {1, 5, 10, · · · , 95, 100, 200} and λ ∈ {0, 0.05, · · · , 0.95, 1.0}. The re-
sults are shown in four figures (see Fig.3), each showing all combinations of λ and
T . The mesh plots show for each combination of T and λ the mean population
fitness, averaged over time and over 25 independent evolution runs. The following
findings are qualitatively consistent over all settings: With small T , i.e. in rapidly
changing environments, the maximum mean population fitness is produced for
λ = 0, i.e. without Lamarckianism (see the thick gray line). However, with large
T , i.e. slowly changing environments, the maximimum mean population fitness
(thick gray line) is produced with λ = 1, i.e. pure Lamarckianism. The minimum
mean population fitness (thick black line) is produced with pure or high level
of Lamarckianism (λ around 1) in rapidly changing environments, and without
or low level of Lamarckianism (λ around 0) in slowly changing environments.
Interestingly, for intermediate T , the lowest adaptation success is found for in-
termediate λ. For example, in the top-left panel, for T = 20 the minimum mean
population fitness is produced with λ = 0.4. The curious fitness valley disappears
for very low or high T . A geometric explanation for this fitness valley is provided
at the end of this section. Although qualitatively consistent, the observed effects
are weaker with higher mutation rates (not shown). In summary, Lamarckianism
results in higher mean population fitness than Darwinian inheritance in slowly
changing environments and a lower mean population fitness in rapidly changing
environments. For a given level of environmental change, the minimum mean
population fitness is produced by an intermediate level of Lamarckianism. The
slower the environment changes, the lower the level of Lamarckianism where this
minimum occurs (see also end of this section for a geometrical explanation).
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Fig. 3. Experiment 1: Mean fitness in evolution with different Lamarckianian param-
eters λ and environmental change intervals T . The thick black line shows where, for
a given T , the minimum occurs for λ. The thick gray line is the corresponding max-
imum. Panels in the left column correspond to L = 0.5, panels in the right column
correspond to L = 0.75. Upper row panels are based on deterministic, lower row panel
on probabilistic environmental changes.

Fig. 4. Experiment 2: Evolving the Lamarckian parameter λ, initialized uniformly on
[0; 1] (left panel), and starting without Lamarckianism, i.e. λ = 0 for all individuals
(right panel), in case of deterministic environmental changes and with L = 0.5.
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Fig. 6. Geometrical explanation for the
fitness valley for intermediate λ at inter-
mediate T encountered in Experiment 1
(cf. Fig 3). The figure shows Equation 6
with L = 0.5. A mean fitness minium oc-
curs at D = 0.5 (cf. text).

Experiment 2

The results of this experiment are presented in Fig.4. This experiments aims to
test whether the optimal level of Lamarckianism λ (cf. thick gray line in the top-
left panel of Fig.3) evolves if each individual has its λ encoded in the genotype.
Note, that a second-order adaptation process is necessary for this. Fig.4 presents
the results of a set of evolutionary runs. For each T ∈ {1, 5, 10, · · · , 95, 100, 200},
evolution was run 100 times with mutation σ = 0.0001 for x and λ, and with
learning parameter L = 0.5. The lenghts of the bars in Fig.4 represents the frac-
tion of runs that resulted in a mean λ in the interval [0; 0.1], [0.1; 0.2] · · · [0.9; 1.0].
The left panel of Fig.4 shows the case in which the initial population was dis-
tributed uniformly on the entire λ-range. In rapidly changing environments
(T ≤ 10), the majority of the runs produce a small λ, and for slower changing
environment (T ≥ 15) a large λ. Comparing this to the results of Experiment 1
(top-left panel of Fig.3), we see that the optimal λ indeed evolves in a second-
order process. In another experiment (Fig.4, right panel) evolution starts without
Lamarckianism (λ = 0) for all individuals. In this case, a large λ is only evolved
for T ≥ 25. The likely reason for this difference is the observed fitness valley for
intermediate λ in case of intermediate levels of environmental change. Appar-
ently, the population can not cross the fitness minimum for T around 20. In an
additional experiment (results not shown) the learning rate L was evolvable as
well. In the absence of learning cost, a high L quickly evolved and suppressed the
evolution of the Lamarckian parameter λ in slowly changing environments: With
very high learning ability, there was only weak selection pressure for a large L in
slowly changing environments, which leads to the evolution of only intermediate
levels of λ. In summary, in most cases, a near-optimal level of Lamarckianism
evolves as a second order process. However, in cases where there is a population
mean fitness minimum for intermediate levels of Lamarckianism (see Experiment
1), the globally optimal level of Lamarckianism does not always evolve.



Experiment 3

The results of this experiment are presented in Fig.5. The aim of this experiment
is to test if Lamarckianism influences the evolution of learning ability L. Holding
the level of Lamarckianism λ constant during the evolution, we evolve L, for a
wide range of T , and compare the cases “no Lamarckianism” (λ = 0), pure
Lamarckianism (λ = 1) and an intermediate level of Lamarckianism (λ = 0.5).
Comparing the two extreme cases no (λ = 0) and pure (λ = 1) Lamarckianism,
we see that in quickly changing environments (T < 60) a larger mean L evolves
with pure Lamarckianism, and in slower changing environments a lower mean
L evolves with pure Lamarckianism than without Lamarckianism. The case of
intermediate level of Lamarckianism (λ = 0.5) lies between the two extremes
cases, but is closer to the case of λ = 1. So, Lamarckianism suppresses the
evolution of learning ability in slowly changing environments and facilitates the
evolution of learning ability in quickly changing environments. An explanation
for this is that for large T , there is a relatively low selection pressure for high
L in case of Lamarckianism, because a high λ alone allows good adaption. For
small T , however, we have shown that Lamarckianism is detrimental, and there
is a relatively high selection pressure to evolve a high L that can compensate for
the Lamarckian disadvantage. In summary, where Lamarckianism provides an
adaptive advantage (slowly changing environments) a lower learning ability is
evolved because there is less selection pressure for it, but where Lamarckianism
provides an adaptive disadvantage (rapidly changing environments) a higher
learning ability is evolved because there is stronger selection pressure for it, i.e.
learning compensates the disadvantage of Lamarckianism here.

Geometric explanation for the fitness valley

In experiments 1 and 2, we found that for a given T , the minimum mean popula-
tion fitness is produced by an intermediate λ. A possible explantion is outlined in
the following: With a very low mutation rate we assume that genotype changes
within time T are mainly induced by Lamarckianism and that mutation-induced
random genetic changes are negligible. We further assume that the population
mean fitness is well represented by the expected fitness of the population mean
genotype. Thus, population mean fitness can be expressed w.r.t. the population
mean distance to the optimal genotype, which we denote d. Assume that initially
d = 0.5 and between two environmental changes (within one T ), this distance
is reduced by a distance of D, where D depends on the level of Lamarkckian-
ism λ and the learning parameter L, i.e. D(λ,L). In our model, we know that
∂D
∂L ≥ 0 and more importantly for this analysis ∂D

∂λ ≥ 0, i.e. D is increasing with
λ. Let us first consider the case where (0 < D ≤ 0.5), such that the population
never reaches the optimum within T or just immediatly before the environmental
change at T , e.g. because λ is too small: At the time, just before an environmen-
tal change occurs, the population has a distance d = 0.5 − D to the optimum.
Immediately after the environmental change this distance becomes d = 0.5 + D
since the optimal genotype has changed (from 0 to 1 or from 1 to 0). Since the



population always moves back and forth between these two states, the expected
fitness over time is approximately

f̄(D,L) =
1

D

∫ 0.5+D

0.5−D

fexp(d, L) dd , (5)

where the expected fitness of d is fexp(d, L) = 2 − φ(d, L) (cf. equations 3 and
4). This assumes, that the fit phenotype’s fitness is twice the unfit phenotype’s
fitness. Equation 5 can be reformulated with straight-forward calculations. Sub-
stituting n for (1/(1 − L)), we obtain

f̄(D,n) =











2 + (0.5−D)n+1

2D(n+1) − (0.5 + D)n+1 if 0 < D ≤ 0.5

2 + 1
2D

2n+1
n+1 − 1

D if 0.5 < D ≤ 1

2 − 0.5n if D = 0 .

(6)

The first case (0 < D ≤ 0.5) corresponds to the above described scenario,
where the population never reaches the optimum within T . In the second case
(0.5 < D ≤ 1), the population reaches the optimal genotype within T and stays
there until the next environmental change (having the maximum fitness of 2
during this time). Thus, for (0.5 < D ≤ 1), we obtain (0.5/D) · f̄(0.5, n) +
((D − 0.5)/D) · 2, which produces the second case of Equation 6 after some
straightforward calculations. The third case (D = 0) corresponds to λ = 0 (no
Lamarckianism). Here, the mean fitness over time is simply the expected fitness
of d = 0.5, i.e. the population does not move. Figure 6 illustrates Equation 6 for
L = 0.5. It shows a minimum at D = 0.5. For a given constant L, D only depends
on λ and we know that D is increasing with λ. Thus, the mean population fitness
f̄ is decreasing for small λ and increasing for large λ, producing a minimum for
intermediate λ. This provides a possible explanation for the occurence of the
fitness valley for intermediate λ at intermediate T in experiments 1 and 2.

To summarize the main argument of this geometrical explanation: With a
low mutation rate, the population’s mean genotype movement is mainly depen-
dend on the level of Lamarckianism, i.e. Lamarckianism allows quick genotype
movement. A (Lamarckianism-induced) quickly moving population may be less
fit than a population that is not or hardly moving (without Lamarckianism):
While a quickly moving population has the advantage of approaching a recently
changed fitness optimum, it potentially has an adaptive disavdantage when the
next environmental change occurs, since it is farther away from the new opti-
mum than the population that has moved less. In our model this disadvantage
indeed occurs, and the disadvantage is even larger than the adaptive advantage
of approaching a new optimum. Thus, the population mean fitness is decreasing
for increasing level of Lamarckianism. If, however, the level of Lamarckianism
increases further and exceeds a certain threshold, the population can move very
quickly to the new optimum and stay there at a high fitness level (until the next
environmental change occurs). Thus, at intermediate levels of Lamarckianism,
the population mean fitness is increasing with the level of Lamarckianism.



4 Discussion

This paper predicts that Lamarckian inheritance should be less common in nat-
ural environments that oscillate rapidly, compared to stationary environments.
The disadvantage of Lamarckian inheritance in rapidly changing environments
is explained by the movement of the mean genotype. With Lamarckian inheri-
tance, genotype movement is faster than with genetic mutation alone. In rapidly
oscillating environments, Lamarckianism increases the integral of genotype dis-
tance from the optimum. The advantage of Lamarckian inheritance in slowly
changing environments is because the genotype converges to the optimum more
rapidly than by random mutation alone. A curious finding at intermediate levels
of environmental oscillation is that a minimum value of mean population fitness
is associated with a particular value of Lamarckian inheritance. This is in con-
trast to the monotonic changes in mean population fitness observed at very high
and very low rates of environmental change. This fitness valley may prevent the
evolution of Lamarckianism from scratch even though high levels of Lamarckian
inheritance are a global optimum.

A follow-up experiment in which learning rate was evolvable, showed us that
the introduction of Lamarckian inheritance in rapidly oscillating environments
increases selective pressure for better learning mechanisms, whilst introduction of
Lamarckian inheritance in slowly oscillating environments decreases the selective
pressure for learning mechanisms. Note that this finding is limited to instances
where environmental changes occur cyclically such that the genotype is able to
establish itself in an area where a high fitness under several environmental con-
ditions is experienced. In nature, simple binary oscillating environments involve
geophysical rhythms such as diurnal and seasonal cycles. If however, the envi-
ronment were to change in a non-oscillating path, e.g. a continuously increasing
temperature or in a co-evolutionary setting, then Lamarckianism may be benefi-
cial even in rapidly changing environments. We have not modeled non-oscillating
environmental changes.

Recently it has been proved for several conditions that directed phenotype
plasticity helps to cross a fitness valley by smoothing the fitness landscape [15].
This positive effect stems from a non-Lamarckian inheritance mechanism and
would not be observed with Lamarckian inheritance. Our model does not cover
this type of adaptive disadvantage of Lamarckianism. It also does not include
dependencies between Lamarckian mechanisms and learning mechanisms as one
would find them in cultural evolution, a Lamarckian-like inheritance mechanism,
where a high learning ability is actually a prerequisite for this form of Lamarck-
ianism, to appear. Neither does the model include a cost of learning, which can
certainly influence the balance between Lamarckianism and learning ability.

In future we will carefully extend the analysis model in order to cover various
aspects of the interaction of evolution and learning under Lamarckian inheri-
tance.
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