A Roadmap towards Autonomic Service-oriented Arattiires

Lei Liu

Hartmut Schmeck

University of Karlsruhe, Institute of Applied Infmatics and Formal Description Methods (AIFB)
D-76133 Karlsruhe, Germany
Email: {liu | schmeck}@aifb.uni-karlsruhe.de
http://www.aifb.uni-karlsruhe.de/english

Abstract: The advent and proliferation of Service-orientedire difficult to be understood. However, the afoeationed

Architectures (SOA) drives computing infrastructuiato a

issues constitute only part of the complexity ediato SOA-

highly interconnected, heterogeneous, and dynanoddw based systems and to the business systems buiit them.

Conventional management tools fail in the attengpteal
with the heterogeneity and the dynamics associattfdthis e
type of information infrastructures. More and more
researchers try to cope with the complexity, hefeneity,
and uncertainty by using technologies inspired imjolgical
systems. A promising approach for managing sucbelar
scale IT infrastructure is to provide capabilititw self-
organization, which — to some extent — is analogouthe
human autonomic system (as postulated in IBM’s Aatnic
Computing Initiative and as extended in the Ger@aganic .
Computing Initiative). This paper outlines a comnvigw on
Autonomic Service-oriented Architectures and proposes a
way to get such an autonomic infrastructure. Anioeitof
the differences between autonomic
architectures and other systems with autonomic qatEs is
followed by a discussion of the existing enabling
technologies and of missing pieces on the roadmapgelf-
organizing infrastructure.

Keywords: autonomic computing, service-oriented
architecture, self-organization, organic computing/eb .
services

1. Introduction

The possibility to expose business capabilities vasb
services in a platform-independent manner gives
organizations the potential to share their cap#dsliacross
organization as well as platform boundaries. lilitates the
realization of business processes involving

service-oriented

The problem domains can be categorized as follows:

System development: developing SOA-based systems
comprises designing, coding, testing, and deployhe
individual parts of the systems. Compared to trowi#l
component-based software engineering, developmént o
software for SOA-based systems is more complex
because of the distributed nature of such systemmsgedl

as the requirements for adaptability and flexipilif the
systems later at runtime.

System management: managing systems embraces tasks
such as deploying, configuring, problem solvingougce
maintenance, security management, and many other
activities for providing services reliably and effeely.
Barrett et al. [2] have performed several fielddss of

the current administrator’s work practices and camgd

that system administration is rapidly becoming more
difficult as the system complex grows. Furthermdhe
loosely-coupled nature of SOA-based systems mdiees t
administration tasks at runtime even more complex.
Process management: the complexity of process
management arises from the artifacts involved isirmss
processes: technical systems, people, resourcdss@n
on. The gap between business processes and the
underlying SOA-based infrastructure with respecthe
different operational goals makes process managemen
even more complicated, since a general understgrafin
both layers is required for successfully operatthg
business processes.

several Driven by the necessity of reliable systems forlydai

organizations and, however, turns the Internet atiightly business, more and more industry vendors are lgofan
interwoven network with an increasingly unmanageablnew designs of management systems to cope with the

technical infrastructure. Together with

the undedy growing complexity in SOA-based systems. Decerzeali

technologies, such as hosting environments, hasjwand management approaches, such as the manager-to-enanag

network components, the complexity of the IT laragse

interface introduced by Liu et al. [15], aim to doime the

rises into a new dimension, which will barely benageable capabilities of management applications involved tie

with conventionally available tools.

system landscape to provide federated managemanthiB

In the context of systems based on service-orientél not a sufficient way to construct a generallylamble

architectures (SOA), the restricted capabilities

afolution for managing SOA-based systems as long as

conventional management tools lead to unreliabltesys administrators are still strongly involved in maimag the

and high costs typically associated with failured diault
recovery. As pointed out by Ganek and Corbi [9]%40f

complex, heterogeneous, and dynamic infrastructiitee
concept for solving this problem is to give theteyss the

computer system outages are caused by operator erapability to manage themselves. To find appropriales

because of the complexity of today’s computer syst¢hat

for self-management it looks promising to invesgaelf-

organizing systems observable in nature. Evolutipna
algorithms [7] and ant colony optimization [6] gr@minent
success stories of bio-inspired methodologies impmaer
science.

An interesting source for getting the necessargiraton

consistently with the constraints and policies midi in the
description. Therefore, the actual implementatidn tloe
respective service is not the concern of SOA. Thiack
box” approach allows changing the implementatiotaitke
with minimal impact on the service consumer. Furti@e,

is the humarautonomic nervous system: It carries out a larget allows the integration of legacy applicationattlare either

variety of functions, such as temperature and heatt
regulation, across a wide range of external comftiwithout
any conscious intervention of the human itselfplred by
this system, in early 2001 IBM introduced tAatonomic
Computing initiative to enable the creation of an IT
computing infrastructure that automates its managerm a
similar way as the autonomic nervous system. Th¢pma
characteristic of an autonomic system is the presef the
so-called self-x properties: self-configuring, sefitimizing,
self-protecting, and self-healing [9]. In companisio other
similar initiatives, such as the German Organic @otimg
Initiative, autonomic computing aims at derivingivarsal
concepts for designing, developing, deploying, arahaging
hardware and software components of large-scakermige
server systems with a particular focus on dynantyical
changing environmental and system
Section 3.1).

This paper identifies specific requirements forning
service-oriented architectures into autonomic systeand
lists key software components required to createel
managing computing infrastructure based on SOA. jdper
is organized as follows. Section 2 and Section\gere the
concepts of service-oriented architecture and autdn
computing separately. Section 4 presents the clesistics
of SOA-based infrastructures and how autonomic agimg
might help to cope with their specific requiremer@sction 5
addresses the missing software components forimglself-
organization and outlines the roadmap towards &onamic
service-oriented architecture both from a fundaesid an
engineering perspective. Section 6 adds some adingu
remarks.

2. Service-oriented Architectures (SOA)

The reference model for SOA from OASIS [16] defirges
service-oriented architecture as a paradigm foramang
and utilizing distributed capabilities that may beder the
control of different ownership domains. An SOA pdes
the necessary capabilities to integrate, publigtader, and
manage services. Derived from the concept of olgaented
distributed systems, an SOA follows the designgipies for
encapsulation, abstraction, and reusability. Howevie
differs also strongly from the traditional distribd system
paradigms, particularly from the perspective oftfolan-
independence. While most object-oriented distritbute
systems are proprietary and based on some vengenrdent
technologies and platforms, an SOA is completeatfptm-
and technology-independent, thanks to the adojptievidely
accepted standards, such as XML, WSDL, etc.

There are various versions of SOA definitions based
different viewpoints in an enterprise
infrastructure. However, the central concept of thése

not network-enabled or not standard compatibleSOA. A
service is typically accessible via a network. Amail the
services that are currently adopted, web servioes fthe
major part.

In an SOA-based computing infrastructure, serviaes
loosely coupled to each other. The only bindingneein a
service provider and a service consumer is a fosealice
contract. The service contract defines the terras ltbth the
consumer and the provider should follow. For thevise
provider the service contract basically is a serdescription
that provides the published details about the sensguch as
service interface, access information, usage digfimi etc.
For the service consumer, the service has to cedself to
the terms defined in the service contract, so tte
interaction between it and the provider remainshghaicted.

requirements (s€&his formal binding over the service contract forme

loosely coupled relationship between the provided #he
consumer. Wittservice as the central concept, an SOA-based
computing infrastructure can be modeled as depidted
Fig. 1. The Technology layer contains all the enabling
technologies and the platforms for Web servicese Th
Application layer runs on top of the technology layer and
provides the capabilities that can be encapsulaedVeb
service in theService layer. The processes in tlRrocess
layer orchestrate the services from eevice layer to build
composite functionalities out of the ones providad the
services. The processes are consumed either byheanot
process to build composite processes or by a wawkfl
enabled application.

[=—a-—_

Service Consumer Layer

'\
@»@/_’é;'*;%ff
l/

ldamiy
Provider
—a

° &

Fig. 1. Abstract model of SOA-based enterprise aaing

Service C

X

Pem Bulldlng
e
service
Service Layer
e |
server_
Application Layer

Technology Layer

Service Provider

2

computingThe SOA-based computing infrastructure is a comaplet

XML-driven architecture. The Web service framework

versions isservice, which means that the needs of a servicdefined by W3C [4] is based on three core spedifioa:
consumer are matched with the capabilities brolmyhthe WSDL for service description, UDDI for service disery
service provider. A service in an SOA can be angsfide and SOAP for message transmission. This basic Welice
function that exposes its capability using a presd architecture establishes the foundation for crgatopsely
interface in compliance with the SOA standards acts coupled Web services that encapsulate isolatednbssi

functionality. Based on these core specificatiosetvice-
oriented applications can be built that are witbinbeyond
the boundaries of organizations. But these spetifins are
not sufficient for building applications in the teworld,
because they do not address most of the problermaidem
that distributed systems have to face, such asabieli
messaging, security, context, and transactionsdbagsethe
stateless connections between services. The gaasthpower
the service-oriented architecture to meet the reatld’s
requirements drives the Web services communityxterel
the capabilities of the Web services architectaged on the
W3C Web service framework. To avoid the extreme &mrs
developing an entire protocol for each vertical domthe
Web service protocol stack is designed as a farofly
composite protocols. Each protocol defines a firergd
unit of functionality and can be flexibly reuseddarombined

on demand. In the following, some of the major it of self-regulation to computer systems, so that olag
Web services specifications are listed: computer systems can reach the same level of egilifation
+ Messaging: a major challenge for distributed computing isas the human’s autonomic nervous system.
reliable communication between messaging partrigts [|n the meantime, the concept of Autonomic Computing
To make Web services capable of enterprise levRhs evolved from a proposal in Horn's keynote tavidely
applications, BEA, IBM, Microsoft, and TIBCO have accepted concept for dealing with the increasingtesy
jointly published theNS-ReliableMessaging specification complexity. As a result, research in industry acddemia
to allow messages to be delivered between distibuthas focused on various solutions and technolobietseixhibit
applications even in presence of software, system, aspects of self-management. However, there isastidck of
network failures. a commonly accepted definition of “Autonomic Comipgt.
« Transaction: the initial set of Web services specificationsPaul Lin et al. have tried to establish a commdimdmn for
lacks support for maintaining context across sdverghe Autonomic Computing [14]. They carried out avey on
loosely coupled Web services because the Web sarvighe current publications in the field and identifigarious
are stateless and work independently of each offer. definitions for Autonomic Computing. The most comrho
enable distributed transactions across several Wedferenced definitions contain the following prajes that an

accomplished on top of the currently rather hetenegus
technology landscape in the university.

3. Autonomic Computing

The term “Autonomic Computing” has been defined by
IBM's Autonomic Computing initiative, which has the
primary goal to develop computer systems (in paldic
large-scale enterprise server systems) that mahageselves
while hiding the increasing system complexity fréime end
users and even from system administrators. Durikgyaote
presentation at the AGENDA 2001, Paul Horn has auenp
the concept of Autonomic Computing to the human’s
autonomic nervous system that regulates the contplexan
body without self-conscious actions of the huma].[The
vision of Autonomic Computing is to apply the saaislity

services, further Web services specifications ar&utonomic Computing system must have:
proposed, ~ such as WSBusnessActivity, WS . sdf-configuring: self-configuring is a system’s capability
AtomicTransaction and WS-Coordination that are to adjust itself dynamically to achieve the desired

currently hosted by OASIS Web Services TransacliGn
[21].

operational goal, such as performance, reactios, tatc.
The self-configuration may assist in self-healirsg|f-

e Security: service-oriented enterprise applications depend
on a well-secured communication framework. Diverse
specifications have been proposed by industry and
standardization organizations. The foundations tfoe
Web service security framework ax®IL Sgnature [31],
XML Encryption [32] from W3C andWsS Security from
OASIS [20]. They establish the security measuresal

optimizing and self-protecting by dynamically reegding

to changes in the environment.

Slf-healing: from the perspective of reactive systems,
self-healing is the capability to discover, diagna®pair,

and recover from system faults when they occurnfro
the perspective of predictive systems, self-healing
contains mechanisms to predict and thereby prevent

the message transport path and protect the SOAP system faults from happening by monitoring the lvita

messages from unauthorized actions.

In recent years, more and more organizations have
recognized the value of SOA-based solutions folding
agile and flexible enterprise computing infrastunes, not
only in the industry but also in the academic fiélitie work
described in this paper is conducted in the contéxthe
Karlsruhe Integrated Information Management (KIM [13])
project, which aims at supporting and integrating
administrative and educational processes in theeuosity
context by adequate IT services. Without abdicatihg
existing legacy systems in the various facultied imncentral
facilities, the KIM project provides an SOA-bas&dusion to
optimize the collaboration spanning several orgations
within the university. To achieve this goal, theojpct
focuses on analyzing and categorizing businessepses and
their underlying services in the university withspect to
various technical and organizational criteria. Basa this
analysis, services are consolidated and — thraugladoption
of Web services standards — a homogenous serwee is

parameters of the system.

Self-optimizing: self-optimizing refers to the capability to
measure the current system performance against the
predefined objectives and to attempt to improve the
performance by efficiently controlling the alloaati and
utilization of resources.

Salf-protecting: self-protecting describes the capability of
a system to anticipate and detect external maliciou
attacks and to protect itself in case of attacksnéans
that the system must be aware of potential thraatisbe
able to take actions to avoid completely or at tleas
mitigate partly the affects caused by the exteattalcks.

To support the functional properties listed aboem,
Autonomic Computing system should be aware offi{sel|f-
awareness) and of the environment around it (céntex
awareness). The system should monitor its intestate by
collecting management information from
components and evaluate the collected data to ifgeitd

its funchbn

vital status. Furthermore, a network-enabled sysiemot « fundamental investigations of the effects of emecgeon

isolated from its environment. For instance, a Wetvice is the controllability of self-organizing systems,
related to its hosting environm(_ant, to other Web/ises in« investigating systems occurring in nature whichilexh
the business process that call it or are calledt.bylore or forms of self-organization in order to identify taeforal

less, the functional state of all the related systéias impact patterns that might be transferable into techrgatems,

on the system itself. Therefore, an Autonomic Cotimou . the development of generic architectures for remjiz
system should know the way to interact with neigiimp organic systems,

systems for sharing functional state information. achieve . the design and investigation of specific technical
cooperation between different systems in a possibly applications as prototypical organic systems.

heterogeneous environment, the Autonomic Computingpviously, OC systems satisfy the requirements of
system must implement open standards to enable AQtonomic Computing.

unobstructed communication with other systems. dmes
publications in the field, this capability is refed to as 312 0OrganiclT
“openness” of a system.

A major architectural aspect of an Autonomic Cormuut Organic IT has been proposed by Forrester Res@a2002
system consists of control loop functionalitiest thantain the [10] to increase the IT efficiency and maximize thesiness
following four steps:monitor, analyze, plan, and execute yajye of enterprise computing infrastructures. Tision of
(MAPE). By sensors that connect with the managedorganic IT is to build computing infrastructures redundant
components, theonitor function collects data, for i”Stance,components that automatically share and managepeise
metrics, from the managed components, and filteesdata, computing resources, such as software, procestmags,
aggregates it and reports the details toaiayze function. etc, across all applications within a datacenter.d&al with
The analyze function correlates the data being reported ange heterogeneity in the computing infrastructute key
tries to model complex situations from such datae Tesult concept of Organic IT is abstraction, the way talehi
of the analysis is consumed by tpean function, which complexity behind a simple interface and to combsneh
selects or constructs actions based on the anaysisthe sjmple interfaces into an improved whole. Deriveanf this
predefined operation policies. Tlegecute function controls principle, the computing infrastructure synthesities four
the execution of the action plan usieffectors, which are key layers: network, storage, processors and softwll the
connected to the managed components. four layers are managed by a single managemenbleons

an exception-driven basis.
3.1 Related Work

The idea to simplify the management of technicatays by 4. Enabling Autonomic Computing in SOA
applying nature-inspired mechanisms has led to taoke
industrial and academic projects, as Mazeiar ardhhdave
reviewed in their publication [17]. In the followgn we

review the concepts of two other initiatives the¢ anissing

in the work of Mazeiar and Ladan.

As stated in the introduction, the complexity of S@A-
based system derives from several fields, fromwsoft
development at design time to system management at
runtime, and grows rapidly due to the increasingiber of
services and the heterogeneous environments #haetirices
rely upon. Applying the concepts of Autonomic Cortipg
to the systems is promising for coping with the ptexity
while reducing the management overhead for admatiats.
Above all, Autonomic Computing can support and émab
service management and service integration in coniéh
the principles of SOA. However, the concept of Admic
Computing is too coarse to fit the requirements #maSOA-
based system may have. In this section, we distiuss
functional requirements of an SOA-based system on
Autonomic Computing and show, how an autonomous
service-oriented architecture might look like.

In the context of service-oriented architecturebe t
computing infrastructure shows some level of siighiue to

e service level agreements (SLA) established dmtw
ervice providers and service consumers. Furthermie
model applied in a business process commits a cgervi
provider to its service consumer(s) and establislaes
elationship between them. From this point-of-viean
utonomic service-oriented architecture operates ain
comparatively stable and closed environment andhesipes

he automated and robust management of the arthitec
rather than the dynamic (re-)organization of bussne
processes.

3.1.1 Organic Computing

Similar to the concept of Autonomic Computing, Qriga
Computing (OC) is an emerging paradigm for copinthw
the increasing presence of large collections oélligent
objects in various areas of our daily life, capahte
communicate and to interact. In particular, Organi
Computing outlines the vision of technical systethst
exhibit various self-x properties like self-configtion, self-
optimization, self-healing, self-explanation, andelfs
protection, capable to learn about their environmewver
time, survive attacks and breakdowns, adapt ta thetrs,
and react sensibly even if they encounter a nevatsitn for
which they have not been programmed explicitly. O
systems should be designed with respect to humadsne
they have to be trustworthy and robust, adaptind,feexible.
[26]. Because of their life-like properties, thesestems are
called organic systems. Organic Computing emphasizes tha
future technical systems will inevitably have ttapability to
self-organize. Therefore, one has to address thgrm
challenge to guarantee that, nevertheless, thesensy will
always adhere to externally given objectives anastaints
while adapting to dynamically occurring changestfieir
environment. In the German priority research progran

Organic Computing [34], the major focus is on 4.1 Functional Requirements

In the abstract SOA model in Fig. 1 five abstractiayers
have been identified: technology, application, ey
process, and service consumer. Across all thedagervices
are the central components in the architecturerevhaits of
business capabilities are encapsulated. The prolcgss
above the service layer and the application layieecty
beneath are the
relationships with the service layer. Due to thet role of
services, we discuss the functional requirementsSGA
based on a service and its relationship to othempoments in
the architecture. As the basic element in the gechire,

managed service in the SOA to be self-aware andextn
aware.

Next, it is required thathe service should be able to
expose meta-level information and at least part of instance-
level information to other elements in the SOA on request
(R2). The meta-level information is crucial for etrelements
to determine the capabilities and access informatib the

layers, which have direct functionaurrent service, in case that a relationship shdaddbuilt

between them. The exchange of instance-level irdiom,
such as performance, metrics, logs, is another key
requirement to keep a service context-aware. Fromen t
information exchanged between a service and its

which should be managedsavice constitutes an autonomic dependencies, a service can get an overview aleut i

element [33] that is responsible for its own bebavind
cooperates with other autonomic elements in acomalavith
the global operational goal.

In an exemplary way, Fig. 2 depicts an SOA withveers
as the central elements. Vertically, a service aseld on
applications in the Application Layer, for instanae Web

server is the hosting environment for HTTP-based weslements

services. Processes in the Process Layer model
relationship between services in the Service Layet call
the services to invoke the
functionalities. Horizontally, a service has a cegtion
relationship with other services, to which it pes$ service
or which provide services to it.

4)
Process Layer

PN e
—

— >
\ ‘ V,
Calls Calls
& i "

Service Layer
!)
\ v

Depends on Depends on

Web Server
2

4 3 r '
Application Layer

Web Server
1

Datebase 1 Datebase 2

Fig. 2. Service as the central element in SOA

To enable the interaction with other elements imetworked
environment, it is required thatservice needs to know itself
(R1). The knowledge of a service about itself caisteat
several levels. At the meta-level, a service shduldw its
functionality, its interface to the external worleic. and a

environment and take actions, if necessary, to ren#is
operational goal. The exchange of instance-leviekrimation
can take place voluntarily and in combination with
distributed reputation system, like Obreiter et hhve
proposed in their work for a P2P environment [24]the
instance-level information is critical for sharingth other
in the architecture, the exchange of such
ithéormation can take place upon agreements that are
established as the two elements enter into a nievamreship.

corresponding business It is required thathe service should be able to establish

and maintain relationships with other elements in the SOA
(R3). The meta-level information discussed in regmients
R1 and R2 is the basis for the new relationshig wither
autonomic elements in the SOA. There are mainly tiypes
of relationship in the SOA. The first one is the
“provider/consumer” relationship, which is reguthtdoy
service level agreements between the service carsam
service provider. In this case, both sides musetstdnd the
terms in the agreements and, if necessary, negaliatterms
in the agreements with each other. Once two pater énto
an agreement, they must abide by the terms defimete
agreement to maintain their relationship. The sddype of
relationship in SOA is the dependency relationsHipr,
instance, the “depends on” or “calls” relationships
illustrated in Fig. 2.

It is required thatthe service should be context-aware
(R4). A service should at least know its directghéiorhood
in the SOA. In other words, a service must knowualadl its
neighbors with “provider/consumer” relationships.
Furthermore, it has to know all the componentshin $OA,
which it depends on or which depend on it. Throtlé
regular exchange of information with its direct
neighborhoods, the service can discover its enkrent and
take necessary actions, if the environment changes.
Furthermore, a service must have knowledge aboat th
infrastructure services available in the SOA, whithmay
make demands on, if necessary, for instance, astregi
infrastructure service helping the services in &#ASo find
one another.

It is required thathe service should be able to control its

way to describe itself. The Web Service Descriptiogyn behavior to meet its own operational goal (R5). The
Language (WSDL) standard is an example for suche®m service has an operational goal that can be spddifitially

model, which can be used to describe the interfaica
service. A further example of such a meta-mode€DWEL-S
[30], which is an Ontology Web Language (OWL)-bawsexb
service ontology and describes what a service dua, it
works, and how to access the service. At the icstdevel, a
service should have detailed knowledge about

at starting time or be specified by a related elgnie the
architecture as part of an agreement. The agresrbetween
the service and other elements to establish ttaioakhips
are part of the operational goal to meet. Furtheemi the
_service is involved in a business process, thelleb&isome
I§lobal goals for the whole business process. Is ¢hse, the

components, its status, and its dependencies witlero seryice has to adjust itself to meet the globall dueing

elements in the SOA. This is the basic requirenfenta

given. Generally, there are two possible ways tjusida

service’s behavior: Either it can configure its oparameters
or it can rely on its dependencies in the SOA. &@ample, a
web service can adjust its performance by contgllihe
appropriate parameters on its hosting environmanth as
the caching time on the web server.

Furthermore, it is required théte service should be able
to take an external directive and execute it, if applicable
(R6). For a service in an SOA, external directiaes only
requests and the requestor cannot assume thagrthieeswill
execute the directive. Depending on the policies the type
of the directive, a service can decide how to deith the
directive. If it is an administrative directive froan element
in the SOA that has sufficient authority to issueedtives,
the service will take the directive as a commaha. $ervice
receives conflicting directives from different elents in an
SOA, it can try to resolve the conflict by itsedf, it can refer
to other elements in the SOA for help [33].

4.2 Required Interfaces

To achieve the functional requirements stated abopen
standards must be adopted to enable the interadbietween
the elements in the SOA. As stated before, an Saseth
system may have a heterogeneous computing infcaisteu
spanning several organizations. A proprietary im@atation

individually as command or suggestion, dependinghen
relationship between the service and the requestor.

4.3 The Self-x Propertiesin Autonomic SOA

As aforementioned, currently, the self-x propertigelf-

configuring,

self-healing,

self-optimizing,

and fsel

protecting) are used to evaluate systems with oéspe
autonomic computing. In this section, we discuss hibe
functional requirements for SOA are mapped to thk->xs

properties.

Table 1. Self-x properties in autonomic SOA
(* indicates that there is a correlation betweea terms)

R1

R2

R3

R4

R5 R6

Self-
configuring
Self-
healing
Self-
optimizing
Self-
protecting

*

*

*

*

*

of autonomic elements can only deal with part & SOA,
which is compatible with the implementation. Theref all

the implementations should be based upon open a@sd °

from the web service standards to management sas)dar
interoperating in a heterogeneous system envirohmen

Web services define a set of interfaces and spatifins
to achieve various functionalities based on theich¥¢3C
Web service framework [4]. To realize the functibna
requirements discussed in this section,

* Metadata interface: this interface allows a service to
expose its meta-level information to other elemémtan
SOA that intend to establish a relationship witke th
service. The information exposed by this interfaasm

also be used e.g. by the service registry to fienvises *

with certain criteria.

» Performance interface: this interface allows a service to
expose its instance-level information to other elata in
an SOA at runtime. As this service may exposeocetliti
information, which is not viewable by any servicethe
SOA, the autonomic elements that call this intesfaust

have either the appropriate administrative relasfom °

with the service or an agreement with the serviceua
sharing the information.

e Binding interface: this interface allows a service to
establish a “provider/consumer” relationship witthar
services. Through the binding interface, a serdea
negotiate the terms in the service level agreenviéhtthe
service requestor. The service requestor receitiesr ea
confirmation or a rejection, if they cannot come ao
agreement about the service level parameters.

the autanom
elements in the SOA need additional interfaceseals w .

Table 1 shows an overview of the correlations betwthe
functional requirements and the self-x properties.

Salf-configuring: to achieve self-configuration, a service
needs to be self-ware and context-aware. The s=rvic
share information about the environment in the SOA
through the exposing interfaces. To adapt to tlengbs

in the environment, the service has to controbébkavior
depending upon its operational goal and the new
environmental conditions.

Salf-healing: self-healing requires that the service be self-
aware. Based on the instance-level information that
collects at runtime, such as performance, methigs, a
service can control its behavior to prevent fadittem
happening or to recover the faults, if they haveuoed.
Self-optimizing: to achieve self-optimization, a service
needs to be aware of its own state and the staits of
environment by analyzing the data collected via the
exposing interfaces. Based upon this information, a
service can either control its behavior or issuedives

to other elements in the SOA, to which it has
relationships.

Salf-protecting: To protect itself, a service needs to be
self-aware and, in case that external maliciowschks are
detected, the service has to control its behawiqrrotect
itself. For example, it could reject all the regsesom
hostile service requestors or it could also go irufl
temporarily to avoid the attacks.

In this section, we have discussed the functional

requirements on an autonomic service-oriented tciire
and how these requirements are mapped to the self-x
properties of Autonomic Computing.

In the following

« Administrative interface: this interface allows a service toSection, we discuss how such an autonomic servieeted
receive administrative directives from other autoim architecture can be designed, developed, and eplerat

elements in an SOA at runtime. The service requesto

authenticates itself at the service to show thahas 5. The Way to an Autonomic SOA

sufficient authority to issue directives. The seevican

make its own decision about what to do with th&he design and development of an autonomic service-
directives being received. The directive can berpreted oriented architecture is a holistic process thaece research

for software and systems engineering (SE) as welfoa aggregated events, and performs corrective actifmms
artificial intelligence (Al) [29]. The engineeringpproach problems detected.

concerns itself with mechanisms to engineer autdénom
capabilities into the individual systems, while thdificial
intelligence approach implies utilization of algbhms and

5.2 Web Services Standards

processes to achieve autonomic behaviors of thgponemts One of the challenges for building an autonomic S®#£he

of an SOA. In the following subsections, we disches to

heterogeneous computing infrastructure that the 3€li&s

realize an autonomic SOA based on these two appesacon. The only way to deal with this heterogeneityaskeep

and the functional requirements addressed in stes&ction.

the autonomic SOA open by adopting widely accepted

industry standards. In Section 2, we have briaflyoduced

5.1 State-of-the-Art

the

concept and the evolution of service-oriented

architectures. To empower the Web service architecto

Several research efforts have contributed to enabléx
behaviors in an SOA-based system. Such approadmeata
either some particular self-x property or at paitc layers in
an SOA-based system. For instance, Sherif et sibdnced
an approach that enables the self-x propertiesnirB@A-
based system by using dedicated autonomic Webcesrat
runtime [27]. Each autonomic Web service implemehts
MAPE control loop and provides some autonomic
functionality, such as self-healing, to other fuowcal Web
services. Instead of providing the self-x behavitysthe
complete SOA-based system, as proposed in this piyey
focused mainly on the service layer of an SOA-basetem.
Pautasso et al. have proposed to create a reactiigecture
across both the service layer and the process layea
MAPE control loop [25]. Their system monitors the
performance of processes running within an SOA-ase
system. Once workload variations are detected &yiistem,

it alters its configuration in order to optimallysai the
available resources of the service layer.

Just like both systems introduced above, most ef th
approaches in the field focus only on part of théoaomic
aspects for an autonomic SOA. From our point-ofwyian
autonomic SOA requires a comprehensive approach
including all the self-x properties and all the day of an

provide more functionalities for building reliablegcure, and
trusted service-oriented applications, a set of néieb
service specifications has been proposed by various
organizations. For building an autonomic SOA, thiéofving
specifications are of particular interest:

Web service discovery is the key for automatically
connecting to existing services in the infrastruetu
without intervention of administrators or operatdofé3C

has identified two possible types of discovery
mechanisms for Web service architecture [4]: astegi
based centralized approach and a peer-to-peer based
distributed approach. The static discovery applies
centralized approach and provides the necessary
capabilities for looking for the potential coopéoat
partner at a well-known location. The UDDI registri
apply this approach and serve as the directory for
registering and querying existing Web services. The
dynamic discovery applies the peer-to-peer approbch
dynamic discovery, there is no well-known locatifom
querying Web services. To discover an appropriagh W
service, the requester broadcasts a request &vailable
listeners. WS-Discovery defines this approach and
specifies procedures to announce and discover Web
services using multicast messages [3].

SOA-based system. For example, it is assumed that. a vetadata exchange: in general, information about a Web

business process in the process layer rests upeha Web
services that are hosted by an application sermethée
application layer. In this scenario, any negativerkload
variation of the application server may cause longe
responding time for the Web services, which agaay tead
to failures in the business process due to theatigi of
service level agreements between the process andVéb
services.

IBM provides the Autonomic Computing toolkit thadrc
be used to build prototypes with autonomic behavidihe
toolkit contains building blocks for enhancing audmic
capabilities including problem detection, commorsteyn
administration, and system installation and depleytrinto
the prototypes. For translating legacy log entiig® the
common event format, the toolkit contains an adapte
Generic Log Adapter (GLA), to include legacy sysseimto
the autonomic architecture without requiring sugstems to
change the way they create the log files. Basethervents
and tracing being collected, the Log and Trace el
(LTA) analyzes and correlates the log entries.dsecthat an
incident is detected, LTA consumes the symptom biea
and delivers an array of objects representing ¢hetiens and
directives. The Autonomic Management Engine (AME)
provides a reference implementation of an autonomic
manager. At runtime it monitors the system resayreends

service is collectively referred to awetadata. Web
services use a lot of metadata, suchVéSDL, XML
Schema, to describe a particular Web service imtetf
Web service discovery alone is not sufficient for
automatically building relationships between sexsicA
service consumer needs more meta-information atheut
service provider to enable the bootstrap commuioicat
with it. A new Web services specification\Ws
MetadataExchange, allows a service provider to deliver
metadata to its potential consumers via a predefiieb
services interface, both at design time as wellaas
runtime [1].

Web Service Management: the term “management” has
two aspects for a SOA-based system: managemerg usin
a Web service and management of a Web service.
Currently, both aspects are considered by OASIShB&
these aspects has a separate specificaifamagement
Using Web Services (MUWS) [23] andManagement of
Web Services (MOWS) [22]. The core component in the
specifications is th&Veb Services End Point. It interprets
Web services messages and provides access to enolack
manageable resource. A manageable resource can have a
number of capabilities, each of which have distinct
semantics, and provide these capabilities outweiadthe
Web Serviceg€nd Points. Another similar proposal in the

field is Web Services for Management (WS-Management,
former Web Service for Management Extension [18]),
which is a joint publication of AMD, Microsoft, Swet al.

Comparing to the management specifications of OASI8s direct neighborhood.

components in the service layer as well as in dthesrs can
interact with one another, so that a service camadycally
control its behavior based on the information isefved in
In this context, the cohtr

WS-Management can be considered as a lightweigbdmponent gives a service the ability to adapt doall
version of the other two specifications from OASISchanges.

which makes it suitable for use in small deviceshwi
restricted resources.

5.3 Building Autonomic Service-oriented Ar chitectures

The way to an autonomic service-oriented architectis
rather evolutionary than revolutionary, just aspmsed by
IBM in their Autonomic Computing Initiative [9]. Inheir
vision for autonomic computing, the path to an Atdeled
system can be thought of five levels, startingoadic and
continuing throughmanaged, predictive, adaptive and finally

Due to the fact that the control component hasrétdd
view in terms of environment information, it canlpmake
local decisions, in some cases sub-optimally onevengly.
In this case, the infrastructure-level autonomypkethe
service to improve the decision. The two crosshugtiayers
in Fig. 3, “Monitoring” and “Autonomic Controlling” are
responsible for the infrastructure-level autonomyhe
monitoring-layer communicates with each control poment
in the infrastructure and thereby gets an updatedview of
the entire infrastructure at any time. Based os ¢fbal and
its global policy, the autonomic controlling layeain control

autonomic. The five levels describe the transition from ahe affected infrastructure components to ensueegibbal
basic system to a completely autonomic system bg twoperational policy.

aspects: to enhance a unified system managemetteof
entire infrastructure step-by-step, and to increhseability

to make decision autonomously based on the envieahm

information being collected. The crucial task totadb an
AC-enabled system is to build a managed infrasrect

5.3.2 Building the control components

The interfaces discussed in Section 4.2 within Mh&PE
control loop are required for realizing the autommom

embedding the MAPE control loop with the necessaryapabilities at the services of an SOA-based system

components as well as interfaces.

Process Layer

7

(. N
Service Layer

\ 4

gy
Web Server 1 Datebase 1

D: System/Component Boundary
- : Service in SOA

£t 2 Control Component S5

Monitoring

Service Component:

Sujjjos3u0) dwouoIny

Application Layer

: Control Flow

: Service Data Flow

Fig. 3. Coarse architecture of an autonomic SOA

5.3.1 Autonomic service-oriented ar chitecture

Fig.3 coarsely illustrates the architecture of arioaomic
SOA-based system. In general, the architecturebéghits
autonomy at two levels: one at the service leveligiing
autonomic capabilities directly to the services] éme other
one at the infrastructure level that provides théom@omic
capabilities to the whole SOA-based systems. Theicge
level autonomy is provided by the service itself.ithW
services as the central elements in the autono@i&, 8ach
service employs two functional parts. One is theri®e
Component” in the service, which provides the dskir
business capabilities as Web services to extemadumers.
The other is the “Control Component” that interaetth the
service’s direct neighbors in the infrastructure,wehich the
service depends functionally. Each control
implements the four functional interfaces that weiszussed
in Section 4.2. Through these interfaces,

compbne

However, the SOA implies a heterogeneous service
landscape that cannot be instrumented with automomi
capabilities in the same way. The elements in aA Skbuld

be instrumented individually according to the phgisies

available for integrating external functionalities:

e For existing applications and services in an SQAs i
only possible to apply a decoupled agent to the
applications, because the code of these applicatfonot
available for modification. The external agent ierpknts
the interfaces for the applications and servicabénSOA
and handles the autonomic behavior for the apjicat
In this case, an approach is needed that can o
self-managing features into applications without
modifying them. The wuse of Aspect-oriented
Programming (AOP) allows treating the autonomic
functionalites as a concern, as Hoi et al. have
demonstrated in their experiment [11]. The develepim
of such functionalities is separate from each o#mel the
integration of such functionalities into the apption is
selective, based on the functional requirements tifea
agents have.

For new services in an SOA, it is much more effiti®
include the interfaces directly in the service lits®
achieve a better control of the autonomic behasfdahe
elements. In other words, the autonomic functidiesi
are tightly coupled with the services and in thiayw
provide direct control of the service’'s behaviorheT
implementation of the interfaces is straightforwamad
does not differ severely from the implementation of
normal services.
The implementation of an autonomous SOA by
instrumentation of the elements in the SOA indiaitiumay
be difficult and complex. New approaches from saftv

engineering using model-driven architecture (MDA)da
fLomain specific language (DSL) [19, 28] may helpeduce
t

e complexity and increase the manageability ef SOA.

the od)ntrWith_ MDA it is possible to build the autonomic
functionalities

into the services directly duringhet

development process. This approach complies with tfa review of the fundamentals and features of Sereitented

tightly coupled autonomic functionalities in thensgees and
accelerates the development of the autonomous S&A.
prerequisites for the MDA development, models aachain
specific language are required for describing thigaats in
the autonomous SOA. With the help of them, an arwus
SOA can be expressed in DSL and the expressiorSin iD
turn can help to generate action plans about gettm the
elements in SOA with autonomic capabilities. Thpregsion
in DSL can even be used by a dedicated DSL compiler
generate services for SOA, which have the buidtitbnomic
capabilities directly at design time.

5.3.3 Controlling the behavior

Without evaluation of the data being collecteduaitime, an
autonomic element in an SOA can never understaptf and
the environment around it. The evaluation of thead=man be
classified into two categories: the first categoontains the
analysis of live data, for example the responsee toh a
request or a request error sent back by the provitiee
second category contains the analysis of histortata
throughout a time span. This evaluation categorgrigial
for the functionalities of an autonomic serviceented
architecture, especially for self-healing and sgifimizing,
because the autonomic elements in the SOA needetudt
of the evaluation to be self-aware as well as odrdeare.
The evaluation of the historical
correlation, which interprets multiple events aikg them a
collective meaning that represents an event aghehilevel.
To correlate events, correlation rules are needadidentify
which events to correlate. Machine learning, dataing, and
other technologies can be used to help discoveeletion
rules and interpret the correlative events [29].

In the SOA-based computing infrastructure, there
normally a global operational goal for the whole/ASGuch
an operational goal can be an operational policy do
business process or for a set of services thaetated to one
another.

Architectures and Autonomic Computing, the functibn
requirements of SOA-based systems were outlinedh wit
respect to Autonomic Computing and how these
requirements are mapped to the self-x propertiese& on
the functional requirements the architecture withe t
necessary system components was introduced coanselit
was outlined which technologies from the areasodffware
engineering and artificial intelligence could belized to
design, develop, and operate autonomic SOA-bassdrayg.
However, there are several issues for autonomic ,SOA
which have not been addressed in this paper. Otieeati is
the delegation of directives for a managed elenierthe
system. A managed element, for instance, an autiendfab
service, may receive requests from other managadesits,
for changing its configuration. In order to make tfecision
about how to behave in such a situation, the Wehbicee
should be supported by an authorization model and a
predictive analysis of the possible impact to ftsal well as
to other dependent system components. This aspect i
currently missing. Another issue that has to begtigated is
the impact of the business layer on the servicesrleat
runtime. The considerations in this paper are sergentric.
In other words, the services are considered ascémral
elements in the SOA. This simplifies the businessg@sses
in the way that they are treated as the composifaeveral
related services in accordance with some rulef®ledd,

data contains évemusiness processes are more than that. Businessspes

may employ activities other than just (Web) sersiceow
the business process management can be combinedhwit
autonomic elements in the autonomic SOA-based msyste
remains an interesting aspect to investigate ithéurwork.
Currently, we are in the early stage of work foilding an
autonomic SOA. In the context of the KIM projectvesral
isleas outlined in this paper are explored. For gtama
service map is implemented, call&map, for monitoring
Web services being deployed in the KIM system laafds
[8]. At runtime, i2Zmap monitors the operationaltstaof the

Moreover, the operational goals are ndymalservices dynamically and provides an overview anstatus

human-centric, in other words, the operational goight be of the service layer in the KIM infrastructure atyatime.
expressed in natural language and should be caavea Future work is concerned with the further evaluatad the
machine-readable instructions at first. Anotherlelnge is to concept of autonomic Service-oriented Architecturg
split the global operational goal into the localtgofor the building prototypes that quantifiably demonstratbe t
various autonomic elements in the SOA, which nolynal functional requirements as well as the self-x proge for

takes place at the beginning of service deploymaedtis not
time-critical for the performance of the service pfomising
approach for this process is the utilization of lationary
algorithms to generate action plans from the hagrel
operational goal for each of the autonomic eleméantthe
system.

6. Conclusion & Outlook

This paper described a roadmap for applying thd-xsel
capabilities as postulated in autonomic computimdSOA-
based computing infrastructures. An
infrastructure exhibits specific functional propest in
comparison to other self-organizing systems. Tloeegfthe
concept of autonomic computing has to be adaptebleto
applicable for an SOA-based system.
Specifically, the complexity present
computing infrastructures and the need to providd-xs
properties for SOA-based systems have been addrester

SOA-based Metadata Exchange (WS-MetadataExchange),

in SOA-based

autonomic computing. Furthermore, advanced algostand
methods from Al should be evaluated for their u#agbivith
regard to realize the adaptive autonomic elemen80A.

Finally, it would be necessary to validate the rolabf
autonomic computing that self-x properties actuddisd to
predictably more reliable system behavior whilengigantly
reducing the management complexity.

References

[1] K Ballinger, D Box, F Curbera, et al., Web Services
2004,
http://msdn.microsoft.com/library/en-
us/dnglobspec/html/ws-metadataexchange.pdf

R Barrett, P P Maglio, E Kandogan, et al.,, Usable
autonomic computing systems: the administrator's
perspective, International Conference on Autonomic
Computing, New York, NY, USA, 2004, pp. 18-25.

(2]

[3] J Beatty, G Kakivaya, et al., WS-Discovery, 2005[21]OASIS, OASIS Web Services Transaction (WS-TX) TC,

http://msdn.microsoft.com/library/en-us/dnglobspec http://www.oasis-open.org/committees/tc_home.php
/html/WS-Discovery.pdf ?wg_abbrev=ws-tx
[4] D Booth, H Haas, F McCabe, et al., Web Servic2]OASIS, Web Services Distributed Management:
Architecture, 2004, http://www.w3.org/TR/ws-arch/ Management of Web Services (WSDM-MOWS) 1.0,
[5] S Cohen, A Geller, C Kaler, et al., Reliable Megsggdn http://docs.oasis-open.org/wsdm/2004/12/mows/cd-

SOA, 2004, http://msdn.microsoft.com/webservices/ wsdm-mows-1.0.pdf
webservices/understanding/specs/default.aspx?pioibe/ [23]OASIS, Web Services Distributed Management:

ry/en-us/dnglobspec/html/ws-rm-soa.asp Management Using Web Services (MUWS 1.0) Part 1 -
[6] M Dorigo and T Stutzle, Ant Colony Optimization, Wi Architectural Concepts and Required Components,
Press, 2004. http://docs.oasis-open.org/wsdm/2004/12/muws/cd-
[7] A E Eiben and J E Smith, Introduction to Evolutipna wsdm-muws-part1-1.0.pdf
Computing, Springer, 2003. [24]1P Obreiter and B Koenig-Ries, A New View on

[8] M Gaedke, J Meinecke and M Nussbaumer, i2Map - An Normativeness in Distributed Reputation Systems
Approach to Model the Landscape of Federated System Beyond Behavioral Beliefs, to appear in Proceediigs
IEEE International Conference on Web Services the Forth International Workshop on Agents and Raer
(ICWS'05), Orlando, Florida, USA, 2005, pp. 797-798 Peer Computing, Utrecht, Netherlands, 2005.

[91 A G Ganek and T A Corbi, The dawning of the[25]C Pautasso, T Heinis and G Alonso, Autonomic
autonomic computing era, IBM SYSTEMS JOURNAL, execution of Web service compositions, IEEE Inthn€

Vol. 42, No. 1, 2003, pp. 5-18. on Web Services, Orlando, USA, 2005, pp. 435-442.
[10]F E Gillett, C Rutstein, G Schreck, et al., Forest [26]H Schmeck, Organic computing - a new vision for

Research Report: Organic IT, 2002, http://www.feree distributed embedded systems, 8th IEEE Internationa

.com/Research/PDF/0,5110,14136,00.pdf Symposium on Object-Oriented Real-Time Distributed

[11]C Hoi and C C Trieu, An approach to monitor Computing, Seattle, WA, USA, 2005, pp. 201-203.
application states for self-managing (autonomic)27]A G Sherif and Z Amir, Towards autonomic web
systems, 18th annual ACM SIGPLAN Conf. on Object- services: achieving self-healing using web seryices
oriented programming, systems, languages, and ACM SIGSOFT Software Engineering Notes, Vol. 30,

applications, Anaheim, CA, USA, 2003, ACM Press. No. 4, 2005, pp. 1-5.

[12]P Horn, Autonomic Computing: IBM’s Perspective or[28]S Shetty, S Nordstrom, S Ahuja, et al., Systems
the State of Information Technology, 2001, httpafiw: integration of large scale autonomic systems using
03.ibm.com/industries/government/doc/content/bitvau multiple domain specific modeling languages, 1BRE
pdf Intl. Conf. on the Engineering of Computer-Based

[13]KIM, Karlsruher Integrated InformationsManagement, Systems, Greenbelt, Maryland, 2005, pp. 481-489.

2006, http://www.kim.uni-karlsruhe.de [29]R Sterritt, State of the Art: Autonomic computing,

[14]P Lin, A MacArthur and J Leaney, Defining autonomic Innovations in Systems and Software Engineerind, Vo
computing: a software engineering perspective, 1, No. 1, 2005, pp. 79-88.
Australian Software Engineering Conferencg30]W3C, DAML, http://www.daml.org/services/owl-s/
(ASWEC'05), Brisbane, Australia, 2005, pp. 88-97. [31]W3C, XML-Signature Syntax and Processing, http://
[15]L Liu, M Gaedke and A Koeppel, M2M interface: a Web www.w3.0org/TR/xmldsig-core/
services-based framework for federated enterprig82]W3C, XML Encryption Syntax and Processing, http://
management, IEEE International Conference on Web www.w3.org/TR/xmlenc-core/
Services, Orlando, Florida, USA, 2005, pp. 774-782. [33]S R White, J E Hanson, | Whalley, et al.,, An
[16]C M MacKenzie, K Laskey, F McCabe, et al., Refeeenc architectural approach to autonomic computing,. Intl
Model for Service Oriented Architecture 1.0, Public Conf. on Autonomic Computing, New York, USA, 2004,
Review Draft, 2006, http://www.oasis-open.org/ pp. 2-9.
committees/download.php/16628/wd-soa-rm-prl.pdf [34]DFG priority research program “Organic Computing”,
[17]1S Mazeiar and T Ladan, Autonomic computing: http://www.organic—computing.de/SPP
emerging trends and open problems, Workshop on
Design and evolution of autonomic application saeftv A ythor Bio
2005, St. Louis, Missouri, 2005, ACM Press, pp.71 -

[18]Microsoft, et al., Web Services for Management (WStgj Liu is currently a Ph.D. student at the Ins8tWAIFB of

Management), 2005, http:/msdn.microsoft.conthe University of Karlsruhe. His research interflestuses on
/WebSEerCES/Understand|ng/SpeCS/defaU.|t.aSpX?ph“: Systematic engineering of Se|f-organizing Systemm dn
ary/en-us/dnglobspec/html/wsmgmtspecindex.asp emphasis in service-oriented architecture and Aurtio

[19]M Nussbaumer, P Freudenstein and M Gaedke, T'@ﬁ)mputing.
Impact of DSLs for Assembling Web Applications, toHartmut Schmeck holds a Chair of Applied Informsiit the
appear in Engineering Letters, Special Issue on WeRstitute AIFB of the University of Karlsruhe. Himajor
Engineering, Intl. Association of Engineers, 2006. research areas are bio-inspired methods in optiiniza
[20]OASIS, OASIS Web Services Security (WSS) TCparallel and distributed algorithms, and self-oigation in
http://www.oasis-open.org/committees/tc_home.php complex systems. He is the coordinator of the Garma
?wg_abbrev=wss priority research program on Organic Computing.

