
A Roadmap towards Autonomic Service-oriented Architectures

 Lei Liu Hartmut Schmeck

University of Karlsruhe, Institute of Applied Informatics and Formal Description Methods (AIFB)
D-76133 Karlsruhe, Germany

Email: {liu | schmeck}@aifb.uni-karlsruhe.de
http://www.aifb.uni-karlsruhe.de/english

Abstract: The advent and proliferation of Service-oriented
Architectures (SOA) drives computing infrastructures into a
highly interconnected, heterogeneous, and dynamic world.
Conventional management tools fail in the attempt to deal
with the heterogeneity and the dynamics associated with this
type of information infrastructures. More and more
researchers try to cope with the complexity, heterogeneity,
and uncertainty by using technologies inspired by biological
systems. A promising approach for managing such large-
scale IT infrastructure is to provide capabilities for self-
organization, which – to some extent – is analogous to the
human autonomic system (as postulated in IBM’s Autonomic
Computing Initiative and as extended in the German Organic
Computing Initiative). This paper outlines a common view on
Autonomic Service-oriented Architectures and proposes a
way to get such an autonomic infrastructure. An outline of
the differences between autonomic service-oriented
architectures and other systems with autonomic properties is
followed by a discussion of the existing enabling
technologies and of missing pieces on the roadmap to a self-
organizing infrastructure.
Keywords: autonomic computing, service-oriented
architecture, self-organization, organic computing, Web
services

1. Introduction

The possibility to expose business capabilities as web
services in a platform-independent manner gives
organizations the potential to share their capabilities across
organization as well as platform boundaries. It facilitates the
realization of business processes involving several
organizations and, however, turns the Internet into a tightly
interwoven network with an increasingly unmanageable
technical infrastructure. Together with the underlying
technologies, such as hosting environments, hardware, and
network components, the complexity of the IT landscape
rises into a new dimension, which will barely be manageable
with conventionally available tools.

In the context of systems based on service-oriented
architectures (SOA), the restricted capabilities of
conventional management tools lead to unreliable systems
and high costs typically associated with failure and fault
recovery. As pointed out by Ganek and Corbi [9], 40% of
computer system outages are caused by operator error
because of the complexity of today’s computer systems that

are difficult to be understood. However, the aforementioned
issues constitute only part of the complexity related to SOA-
based systems and to the business systems built upon them.
The problem domains can be categorized as follows:
• System development: developing SOA-based systems

comprises designing, coding, testing, and deploying the
individual parts of the systems. Compared to traditional
component-based software engineering, development of
software for SOA-based systems is more complex
because of the distributed nature of such systems as well
as the requirements for adaptability and flexibility of the
systems later at runtime.

• System management: managing systems embraces tasks
such as deploying, configuring, problem solving, resource
maintenance, security management, and many other
activities for providing services reliably and effectively.
Barrett et al. [2] have performed several field studies of
the current administrator’s work practices and confirmed
that system administration is rapidly becoming more
difficult as the system complex grows. Furthermore, the
loosely-coupled nature of SOA-based systems makes the
administration tasks at runtime even more complex.

• Process management: the complexity of process
management arises from the artifacts involved in business
processes: technical systems, people, resources, and so
on. The gap between business processes and the
underlying SOA-based infrastructure with respect to the
different operational goals makes process management
even more complicated, since a general understanding of
both layers is required for successfully operating the
business processes.
Driven by the necessity of reliable systems for daily

business, more and more industry vendors are looking for
new designs of management systems to cope with the
growing complexity in SOA-based systems. Decentralized
management approaches, such as the manager-to-manager
interface introduced by Liu et al. [15], aim to combine the
capabilities of management applications involved in the
system landscape to provide federated management. But this
is not a sufficient way to construct a generally applicable
solution for managing SOA-based systems as long as
administrators are still strongly involved in managing the
complex, heterogeneous, and dynamic infrastructure. The
concept for solving this problem is to give the systems the
capability to manage themselves. To find appropriate rules
for self-management it looks promising to investigate self-

organizing systems observable in nature. Evolutionary
algorithms [7] and ant colony optimization [6] are prominent
success stories of bio-inspired methodologies in computer
science.

An interesting source for getting the necessary inspiration
is the human autonomic nervous system: It carries out a large
variety of functions, such as temperature and heartbeat
regulation, across a wide range of external conditions without
any conscious intervention of the human itself. Inspired by
this system, in early 2001 IBM introduced the Autonomic
Computing initiative to enable the creation of an IT
computing infrastructure that automates its management in a
similar way as the autonomic nervous system. The major
characteristic of an autonomic system is the presence of the
so-called self-x properties: self-configuring, self-optimizing,
self-protecting, and self-healing [9]. In comparison to other
similar initiatives, such as the German Organic Computing
Initiative, autonomic computing aims at deriving universal
concepts for designing, developing, deploying, and managing
hardware and software components of large-scale enterprise
server systems with a particular focus on dynamically
changing environmental and system requirements (see
Section 3.1).

This paper identifies specific requirements for turning
service-oriented architectures into autonomic systems and
lists key software components required to create a self-
managing computing infrastructure based on SOA. The paper
is organized as follows. Section 2 and Section 3 review the
concepts of service-oriented architecture and autonomic
computing separately. Section 4 presents the characteristics
of SOA-based infrastructures and how autonomic computing
might help to cope with their specific requirements. Section 5
addresses the missing software components for realizing self-
organization and outlines the roadmap towards an autonomic
service-oriented architecture both from a fundamental and an
engineering perspective. Section 6 adds some concluding
remarks.

2. Service-oriented Architectures (SOA)

The reference model for SOA from OASIS [16] defines a
service-oriented architecture as a paradigm for organizing
and utilizing distributed capabilities that may be under the
control of different ownership domains. An SOA provides
the necessary capabilities to integrate, publish, discover, and
manage services. Derived from the concept of object-oriented
distributed systems, an SOA follows the design principles for
encapsulation, abstraction, and reusability. However, it
differs also strongly from the traditional distributed system
paradigms, particularly from the perspective of platform-
independence. While most object-oriented distributed
systems are proprietary and based on some vendor-dependent
technologies and platforms, an SOA is completely platform-
and technology-independent, thanks to the adoption of widely
accepted standards, such as XML, WSDL, etc.

There are various versions of SOA definitions based on
different viewpoints in an enterprise computing
infrastructure. However, the central concept of all these
versions is service, which means that the needs of a service
consumer are matched with the capabilities brought by the
service provider. A service in an SOA can be any possible
function that exposes its capability using a prescribed
interface in compliance with the SOA standards and acts

consistently with the constraints and policies defined in the
description. Therefore, the actual implementation of the
respective service is not the concern of SOA. This “black
box” approach allows changing the implementation details
with minimal impact on the service consumer. Furthermore,
it allows the integration of legacy applications that are either
not network-enabled or not standard compatible for SOA. A
service is typically accessible via a network. Among all the
services that are currently adopted, web services form the
major part.

In an SOA-based computing infrastructure, services are
loosely coupled to each other. The only binding between a
service provider and a service consumer is a formal service
contract. The service contract defines the terms that both the
consumer and the provider should follow. For the service
provider the service contract basically is a service description
that provides the published details about the service, such as
service interface, access information, usage definition, etc.
For the service consumer, the service has to restrict itself to
the terms defined in the service contract, so that the
interaction between it and the provider remains unobstructed.
This formal binding over the service contract forms the
loosely coupled relationship between the provider and the
consumer. With service as the central concept, an SOA-based
computing infrastructure can be modeled as depicted in
Fig. 1. The Technology layer contains all the enabling
technologies and the platforms for Web services. The
Application layer runs on top of the technology layer and
provides the capabilities that can be encapsulated as Web
service in the Service layer. The processes in the Process
layer orchestrate the services from the Service layer to build
composite functionalities out of the ones provided by the
services. The processes are consumed either by another
process to build composite processes or by a workflow-
enabled application.

Fig. 1. Abstract model of SOA-based enterprise computing

The SOA-based computing infrastructure is a completely
XML-driven architecture. The Web service framework
defined by W3C [4] is based on three core specifications:
WSDL for service description, UDDI for service discovery
and SOAP for message transmission. This basic Web service
architecture establishes the foundation for creating loosely
coupled Web services that encapsulate isolated business

functionality. Based on these core specifications, service-
oriented applications can be built that are within or beyond
the boundaries of organizations. But these specifications are
not sufficient for building applications in the real world,
because they do not address most of the problem domains
that distributed systems have to face, such as reliable
messaging, security, context, and transactions based on the
stateless connections between services. The goal to empower
the service-oriented architecture to meet the real world’s
requirements drives the Web services community to extend
the capabilities of the Web services architecture based on the
W3C Web service framework. To avoid the extreme cost for
developing an entire protocol for each vertical domain the
Web service protocol stack is designed as a family of
composite protocols. Each protocol defines a fine-grained
unit of functionality and can be flexibly reused and combined
on demand. In the following, some of the major emerging
Web services specifications are listed:
• Messaging: a major challenge for distributed computing is

reliable communication between messaging partners [5].
To make Web services capable of enterprise level
applications, BEA, IBM, Microsoft, and TIBCO have
jointly published the WS-ReliableMessaging specification
to allow messages to be delivered between distributed
applications even in presence of software, system, or
network failures.

• Transaction: the initial set of Web services specifications
lacks support for maintaining context across several
loosely coupled Web services because the Web services
are stateless and work independently of each other. To
enable distributed transactions across several Web
services, further Web services specifications are
proposed, such as WS-BusinessActivity, WS-
AtomicTransaction and WS-Coordination that are
currently hosted by OASIS Web Services Transaction TC
[21].

• Security: service-oriented enterprise applications depend
on a well-secured communication framework. Diverse
specifications have been proposed by industry and
standardization organizations. The foundations for the
Web service security framework are XML Signature [31],
XML Encryption [32] from W3C and WS-Security from
OASIS [20]. They establish the security measures along
the message transport path and protect the SOAP
messages from unauthorized actions.
In recent years, more and more organizations have

recognized the value of SOA-based solutions for building
agile and flexible enterprise computing infrastructures, not
only in the industry but also in the academic field. The work
described in this paper is conducted in the context of the
Karlsruhe Integrated Information Management (KIM [13])
project, which aims at supporting and integrating
administrative and educational processes in the university
context by adequate IT services. Without abdicating the
existing legacy systems in the various faculties and in central
facilities, the KIM project provides an SOA-based solution to
optimize the collaboration spanning several organizations
within the university. To achieve this goal, the project
focuses on analyzing and categorizing business processes and
their underlying services in the university with respect to
various technical and organizational criteria. Based on this
analysis, services are consolidated and – through the adoption
of Web services standards – a homogenous service layer is

accomplished on top of the currently rather heterogeneous
technology landscape in the university.

3. Autonomic Computing

The term “Autonomic Computing” has been defined by
IBM’s Autonomic Computing initiative, which has the
primary goal to develop computer systems (in particular,
large-scale enterprise server systems) that manage themselves
while hiding the increasing system complexity from the end
users and even from system administrators. During a keynote
presentation at the AGENDA 2001, Paul Horn has compared
the concept of Autonomic Computing to the human’s
autonomic nervous system that regulates the complex human
body without self-conscious actions of the human [12]. The
vision of Autonomic Computing is to apply the same ability
of self-regulation to computer systems, so that one day
computer systems can reach the same level of self-regulation
as the human’s autonomic nervous system.

In the meantime, the concept of Autonomic Computing
has evolved from a proposal in Horn’s keynote to a widely
accepted concept for dealing with the increasing system
complexity. As a result, research in industry and academia
has focused on various solutions and technologies that exhibit
aspects of self-management. However, there is still a lack of
a commonly accepted definition of “Autonomic Computing”.
Paul Lin et al. have tried to establish a common definition for
the Autonomic Computing [14]. They carried out a survey on
the current publications in the field and identified various
definitions for Autonomic Computing. The most commonly
referenced definitions contain the following properties that an
Autonomic Computing system must have:
• Self-configuring: self-configuring is a system’s capability

to adjust itself dynamically to achieve the desired
operational goal, such as performance, reaction time, etc.
The self-configuration may assist in self-healing, self-
optimizing and self-protecting by dynamically responding
to changes in the environment.

• Self-healing: from the perspective of reactive systems,
self-healing is the capability to discover, diagnose, repair,
and recover from system faults when they occur. From
the perspective of predictive systems, self-healing
contains mechanisms to predict and thereby prevent
system faults from happening by monitoring the vital
parameters of the system.

• Self-optimizing: self-optimizing refers to the capability to
measure the current system performance against the
predefined objectives and to attempt to improve the
performance by efficiently controlling the allocation and
utilization of resources.

• Self-protecting: self-protecting describes the capability of
a system to anticipate and detect external malicious
attacks and to protect itself in case of attacks. It means
that the system must be aware of potential threats and be
able to take actions to avoid completely or at least
mitigate partly the affects caused by the external attacks.
To support the functional properties listed above, an

Autonomic Computing system should be aware of itself (self-
awareness) and of the environment around it (context-
awareness). The system should monitor its internal state by
collecting management information from its functional
components and evaluate the collected data to identify its

vital status. Furthermore, a network-enabled system is not
isolated from its environment. For instance, a Web service is
related to its hosting environment, to other Web services in
the business process that call it or are called by it. More or
less, the functional state of all the related systems has impact
on the system itself. Therefore, an Autonomic Computing
system should know the way to interact with neighboring
systems for sharing functional state information. To achieve
cooperation between different systems in a possibly
heterogeneous environment, the Autonomic Computing
system must implement open standards to enable an
unobstructed communication with other systems. In some
publications in the field, this capability is referred to as
“openness” of a system.

A major architectural aspect of an Autonomic Computing
system consists of control loop functionalities that contain the
following four steps: monitor, analyze, plan, and execute
(MAPE). By sensors that connect with the managed
components, the monitor function collects data, for instance,
metrics, from the managed components, and filters the data,
aggregates it and reports the details to the analyze function.
The analyze function correlates the data being reported and
tries to model complex situations from such data. The result
of the analysis is consumed by the plan function, which
selects or constructs actions based on the analysis and the
predefined operation policies. The execute function controls
the execution of the action plan using effectors, which are
connected to the managed components.

3.1 Related Work

The idea to simplify the management of technical systems by
applying nature-inspired mechanisms has led to a set of
industrial and academic projects, as Mazeiar and Ladan have
reviewed in their publication [17]. In the following, we
review the concepts of two other initiatives that are missing
in the work of Mazeiar and Ladan.

3.1.1 Organic Computing

Similar to the concept of Autonomic Computing, Organic
Computing (OC) is an emerging paradigm for coping with
the increasing presence of large collections of intelligent
objects in various areas of our daily life, capable to
communicate and to interact. In particular, Organic
Computing outlines the vision of technical systems that
exhibit various self-x properties like self-configuration, self-
optimization, self-healing, self-explanation, and self-
protection, capable to learn about their environment over
time, survive attacks and breakdowns, adapt to their users,
and react sensibly even if they encounter a new situation for
which they have not been programmed explicitly. OC
systems should be designed with respect to human needs,
they have to be trustworthy and robust, adaptive, and flexible.
[26]. Because of their life-like properties, these systems are
called organic systems. Organic Computing emphasizes that
future technical systems will inevitably have the capability to
self-organize. Therefore, one has to address the major
challenge to guarantee that, nevertheless, these systems will
always adhere to externally given objectives and constraints
while adapting to dynamically occurring changes in their
environment. In the German priority research program on
Organic Computing [34], the major focus is on

• fundamental investigations of the effects of emergence on
the controllability of self-organizing systems,

• investigating systems occurring in nature which exhibit
forms of self-organization in order to identify behavioral
patterns that might be transferable into technical systems,

• the development of generic architectures for realizing
organic systems,

• the design and investigation of specific technical
applications as prototypical organic systems.

Obviously, OC systems satisfy the requirements of
Autonomic Computing.

3.1.2 Organic IT

Organic IT has been proposed by Forrester Research in 2002
[10] to increase the IT efficiency and maximize the business
value of enterprise computing infrastructures. The vision of
Organic IT is to build computing infrastructures on redundant
components that automatically share and manage enterprise-
computing resources, such as software, processor, storage,
etc, across all applications within a datacenter. To deal with
the heterogeneity in the computing infrastructure, the key
concept of Organic IT is abstraction, the way to hide
complexity behind a simple interface and to combine such
simple interfaces into an improved whole. Derived from this
principle, the computing infrastructure synthesizes the four
key layers: network, storage, processors and software. All the
four layers are managed by a single management console on
an exception-driven basis.

4. Enabling Autonomic Computing in SOA

As stated in the introduction, the complexity of an SOA-
based system derives from several fields, from software
development at design time to system management at
runtime, and grows rapidly due to the increasing number of
services and the heterogeneous environments that the services
rely upon. Applying the concepts of Autonomic Computing
to the systems is promising for coping with the complexity
while reducing the management overhead for administrators.
Above all, Autonomic Computing can support and enable
service management and service integration in concert with
the principles of SOA. However, the concept of Autonomic
Computing is too coarse to fit the requirements that an SOA-
based system may have. In this section, we discuss the
functional requirements of an SOA-based system on
Autonomic Computing and show, how an autonomous
service-oriented architecture might look like.

In the context of service-oriented architectures, the
computing infrastructure shows some level of stability due to
the service level agreements (SLA) established between
service providers and service consumers. Furthermore, the
model applied in a business process commits a service
provider to its service consumer(s) and establishes a
relationship between them. From this point-of-view, an
autonomic service-oriented architecture operates in a
comparatively stable and closed environment and emphasizes
the automated and robust management of the architecture
rather than the dynamic (re-)organization of business
processes.

4.1 Functional Requirements

In the abstract SOA model in Fig. 1 five abstraction layers
have been identified: technology, application, service,
process, and service consumer. Across all the layers, services
are the central components in the architecture, where units of
business capabilities are encapsulated. The process layer
above the service layer and the application layer directly
beneath are the layers, which have direct functional
relationships with the service layer. Due to the central role of
services, we discuss the functional requirements of SOA
based on a service and its relationship to other components in
the architecture. As the basic element in the architecture,
which should be managed, a service constitutes an autonomic
element [33] that is responsible for its own behavior and
cooperates with other autonomic elements in accordance with
the global operational goal.

In an exemplary way, Fig. 2 depicts an SOA with services
as the central elements. Vertically, a service is based on
applications in the Application Layer, for instance, a Web
server is the hosting environment for HTTP-based web
services. Processes in the Process Layer model the
relationship between services in the Service Layer and call
the services to invoke the corresponding business
functionalities. Horizontally, a service has a cooperation
relationship with other services, to which it provides service
or which provide services to it.

Fig. 2. Service as the central element in SOA

To enable the interaction with other elements in a networked
environment, it is required that a service needs to know itself
(R1). The knowledge of a service about itself can exist at
several levels. At the meta-level, a service should know its
functionality, its interface to the external world, etc. and a
way to describe itself. The Web Service Description
Language (WSDL) standard is an example for such a meta-
model, which can be used to describe the interface of a
service. A further example of such a meta-model is OWL-S
[30], which is an Ontology Web Language (OWL)-based web
service ontology and describes what a service does, how it
works, and how to access the service. At the instance level, a
service should have detailed knowledge about its
components, its status, and its dependencies with other
elements in the SOA. This is the basic requirement for a

managed service in the SOA to be self-aware and context-
aware.

Next, it is required that the service should be able to
expose meta-level information and at least part of instance-
level information to other elements in the SOA on request
(R2). The meta-level information is crucial for other elements
to determine the capabilities and access information of the
current service, in case that a relationship should be built
between them. The exchange of instance-level information,
such as performance, metrics, logs, is another key
requirement to keep a service context-aware. From the
information exchanged between a service and its
dependencies, a service can get an overview about its
environment and take actions, if necessary, to ensure its
operational goal. The exchange of instance-level information
can take place voluntarily and in combination with a
distributed reputation system, like Obreiter et al. have
proposed in their work for a P2P environment [24]. If the
instance-level information is critical for sharing with other
elements in the architecture, the exchange of such
information can take place upon agreements that are
established as the two elements enter into a new relationship.

It is required that the service should be able to establish
and maintain relationships with other elements in the SOA
(R3). The meta-level information discussed in requirements
R1 and R2 is the basis for the new relationship with other
autonomic elements in the SOA. There are mainly two types
of relationship in the SOA. The first one is the
“provider/consumer” relationship, which is regulated by
service level agreements between the service consumer and
service provider. In this case, both sides must understand the
terms in the agreements and, if necessary, negotiate the terms
in the agreements with each other. Once two parts enter into
an agreement, they must abide by the terms defined in the
agreement to maintain their relationship. The second type of
relationship in SOA is the dependency relationship, for
instance, the “depends on” or “calls” relationships as
illustrated in Fig. 2.

It is required that the service should be context-aware
(R4). A service should at least know its direct neighborhood
in the SOA. In other words, a service must know about all its
neighbors with “provider/consumer” relationships.
Furthermore, it has to know all the components in the SOA,
which it depends on or which depend on it. Through the
regular exchange of information with its direct
neighborhoods, the service can discover its environment and
take necessary actions, if the environment changes.
Furthermore, a service must have knowledge about the
infrastructure services available in the SOA, which it may
make demands on, if necessary, for instance, a registry
infrastructure service helping the services in an SOA to find
one another.

It is required that the service should be able to control its
own behavior to meet its own operational goal (R5). The
service has an operational goal that can be specified initially
at starting time or be specified by a related element in the
architecture as part of an agreement. The agreements between
the service and other elements to establish the relationships
are part of the operational goal to meet. Furthermore, if the
service is involved in a business process, there will be some
global goals for the whole business process. In this case, the
service has to adjust itself to meet the global goal being
given. Generally, there are two possible ways to adjust a

service’s behavior: Either it can configure its own parameters
or it can rely on its dependencies in the SOA. For example, a
web service can adjust its performance by controlling the
appropriate parameters on its hosting environment, such as
the caching time on the web server.

Furthermore, it is required that the service should be able
to take an external directive and execute it, if applicable
(R6). For a service in an SOA, external directives are only
requests and the requestor cannot assume that the service will
execute the directive. Depending on the policies and the type
of the directive, a service can decide how to deal with the
directive. If it is an administrative directive from an element
in the SOA that has sufficient authority to issue directives,
the service will take the directive as a command. If a service
receives conflicting directives from different elements in an
SOA, it can try to resolve the conflict by itself, or it can refer
to other elements in the SOA for help [33].

4.2 Required Interfaces

To achieve the functional requirements stated above, open
standards must be adopted to enable the interactions between
the elements in the SOA. As stated before, an SOA-based
system may have a heterogeneous computing infrastructure
spanning several organizations. A proprietary implementation
of autonomic elements can only deal with part of the SOA,
which is compatible with the implementation. Therefore, all
the implementations should be based upon open standards,
from the web service standards to management standards, for
interoperating in a heterogeneous system environment.

Web services define a set of interfaces and specifications
to achieve various functionalities based on the basic W3C
Web service framework [4]. To realize the functional
requirements discussed in this section, the autonomic
elements in the SOA need additional interfaces as well:
• Metadata interface: this interface allows a service to

expose its meta-level information to other elements in an
SOA that intend to establish a relationship with the
service. The information exposed by this interface can
also be used e.g. by the service registry to find services
with certain criteria.

• Performance interface: this interface allows a service to
expose its instance-level information to other elements in
an SOA at runtime. As this service may expose critical
information, which is not viewable by any service in the
SOA, the autonomic elements that call this interface must
have either the appropriate administrative relationship
with the service or an agreement with the service about
sharing the information.

• Binding interface: this interface allows a service to
establish a “provider/consumer” relationship with other
services. Through the binding interface, a service can
negotiate the terms in the service level agreement with the
service requestor. The service requestor receives either a
confirmation or a rejection, if they cannot come to an
agreement about the service level parameters.

• Administrative interface: this interface allows a service to
receive administrative directives from other autonomic
elements in an SOA at runtime. The service requestor
authenticates itself at the service to show that it has
sufficient authority to issue directives. The service can
make its own decision about what to do with the
directives being received. The directive can be interpreted

individually as command or suggestion, depending on the
relationship between the service and the requestor.

4.3 The Self-x Properties in Autonomic SOA

As aforementioned, currently, the self-x properties (self-
configuring, self-healing, self-optimizing, and self-
protecting) are used to evaluate systems with respect to
autonomic computing. In this section, we discuss how the
functional requirements for SOA are mapped to the self-x
properties.

Table 1. Self-x properties in autonomic SOA

(* indicates that there is a correlation between two terms)

Table 1 shows an overview of the correlations between the
functional requirements and the self-x properties.
• Self-configuring: to achieve self-configuration, a service

needs to be self-ware and context-aware. The services
share information about the environment in the SOA
through the exposing interfaces. To adapt to the changes
in the environment, the service has to control its behavior
depending upon its operational goal and the new
environmental conditions.

• Self-healing: self-healing requires that the service be self-
aware. Based on the instance-level information that it
collects at runtime, such as performance, metrics, logs, a
service can control its behavior to prevent faults from
happening or to recover the faults, if they have occurred.

• Self-optimizing: to achieve self-optimization, a service
needs to be aware of its own state and the state of its
environment by analyzing the data collected via the
exposing interfaces. Based upon this information, a
service can either control its behavior or issue directives
to other elements in the SOA, to which it has
relationships.

• Self-protecting: To protect itself, a service needs to be
self-aware and, in case that external malicious attacks are
detected, the service has to control its behavior to protect
itself. For example, it could reject all the requests from
hostile service requestors or it could also go offline
temporarily to avoid the attacks.
In this section, we have discussed the functional

requirements on an autonomic service-oriented architecture
and how these requirements are mapped to the self-x
properties of Autonomic Computing. In the following
section, we discuss how such an autonomic service-oriented
architecture can be designed, developed, and operated.

5. The Way to an Autonomic SOA

The design and development of an autonomic service-
oriented architecture is a holistic process that covers research

 R1 R2 R3 R4 R5 R6

Self-
configuring * * * * *

Self-
healing * *

Self-
optimizing * * * * * *

Self-
protecting * *

for software and systems engineering (SE) as well as for
artificial intelligence (AI) [29]. The engineering approach
concerns itself with mechanisms to engineer autonomic
capabilities into the individual systems, while the artificial
intelligence approach implies utilization of algorithms and
processes to achieve autonomic behaviors of the components
of an SOA. In the following subsections, we discuss how to
realize an autonomic SOA based on these two approaches
and the functional requirements addressed in the last section.

5.1 State-of-the-Art

Several research efforts have contributed to enable self-x
behaviors in an SOA-based system. Such approaches aim at
either some particular self-x property or at particular layers in
an SOA-based system. For instance, Sherif et al. introduced
an approach that enables the self-x properties in an SOA-
based system by using dedicated autonomic Web services at
runtime [27]. Each autonomic Web service implements the
MAPE control loop and provides some autonomic
functionality, such as self-healing, to other functional Web
services. Instead of providing the self-x behaviors to the
complete SOA-based system, as proposed in this paper, they
focused mainly on the service layer of an SOA-based system.
Pautasso et al. have proposed to create a reactive architecture
across both the service layer and the process layer by a
MAPE control loop [25]. Their system monitors the
performance of processes running within an SOA-based
system. Once workload variations are detected by the system,
it alters its configuration in order to optimally use the
available resources of the service layer.

Just like both systems introduced above, most of the
approaches in the field focus only on part of the autonomic
aspects for an autonomic SOA. From our point-of-view, an
autonomic SOA requires a comprehensive approach
including all the self-x properties and all the layers of an
SOA-based system. For example, it is assumed that a
business process in the process layer rests upon a set of Web
services that are hosted by an application server in the
application layer. In this scenario, any negative workload
variation of the application server may cause longer
responding time for the Web services, which again may lead
to failures in the business process due to the violation of
service level agreements between the process and the Web
services.

IBM provides the Autonomic Computing toolkit that can
be used to build prototypes with autonomic behaviors. The
toolkit contains building blocks for enhancing autonomic
capabilities including problem detection, common system
administration, and system installation and deployment into
the prototypes. For translating legacy log entries into the
common event format, the toolkit contains an adapter, the
Generic Log Adapter (GLA), to include legacy systems into
the autonomic architecture without requiring such systems to
change the way they create the log files. Based on the events
and tracing being collected, the Log and Trace Analyzer
(LTA) analyzes and correlates the log entries. In case that an
incident is detected, LTA consumes the symptom database
and delivers an array of objects representing the solutions and
directives. The Autonomic Management Engine (AME)
provides a reference implementation of an autonomic
manager. At runtime it monitors the system resources, sends

aggregated events, and performs corrective actions for
problems detected.

5.2 Web Services Standards

One of the challenges for building an autonomic SOA is the
heterogeneous computing infrastructure that the SOA relies
on. The only way to deal with this heterogeneity is to keep
the autonomic SOA open by adopting widely accepted
industry standards. In Section 2, we have briefly introduced
the concept and the evolution of service-oriented
architectures. To empower the Web service architecture to
provide more functionalities for building reliable, secure, and
trusted service-oriented applications, a set of new Web
service specifications has been proposed by various
organizations. For building an autonomic SOA, the following
specifications are of particular interest:
• Web service discovery is the key for automatically

connecting to existing services in the infrastructure
without intervention of administrators or operators. W3C
has identified two possible types of discovery
mechanisms for Web service architecture [4]: a registry-
based centralized approach and a peer-to-peer based
distributed approach. The static discovery applies the
centralized approach and provides the necessary
capabilities for looking for the potential cooperation
partner at a well-known location. The UDDI registries
apply this approach and serve as the directory for
registering and querying existing Web services. The
dynamic discovery applies the peer-to-peer approach. In
dynamic discovery, there is no well-known location for
querying Web services. To discover an appropriate Web
service, the requester broadcasts a request to all available
listeners. WS-Discovery defines this approach and
specifies procedures to announce and discover Web
services using multicast messages [3].

• Metadata exchange: in general, information about a Web
service is collectively referred to as metadata. Web
services use a lot of metadata, such as WSDL, XML
Schema, to describe a particular Web service interface.
Web service discovery alone is not sufficient for
automatically building relationships between services. A
service consumer needs more meta-information about the
service provider to enable the bootstrap communication
with it. A new Web services specification, WS-
MetadataExchange, allows a service provider to deliver
metadata to its potential consumers via a predefined Web
services interface, both at design time as well as at
runtime [1].

• Web Service Management: the term “management” has
two aspects for a SOA-based system: management using
a Web service and management of a Web service.
Currently, both aspects are considered by OASIS. Each of
these aspects has a separate specification: Management
Using Web Services (MUWS) [23] and Management of
Web Services (MOWS) [22]. The core component in the
specifications is the Web Services End Point. It interprets
Web services messages and provides access to a backend
manageable resource. A manageable resource can have a
number of capabilities, each of which have distinct
semantics, and provide these capabilities outwards via the
Web Services End Points. Another similar proposal in the

field is Web Services for Management (WS-Management,
former Web Service for Management Extension [18]),
which is a joint publication of AMD, Microsoft, Sun et al.
Comparing to the management specifications of OASIS,
WS-Management can be considered as a lightweight
version of the other two specifications from OASIS,
which makes it suitable for use in small devices with
restricted resources.

5.3 Building Autonomic Service-oriented Architectures

The way to an autonomic service-oriented architecture is
rather evolutionary than revolutionary, just as proposed by
IBM in their Autonomic Computing Initiative [9]. In their
vision for autonomic computing, the path to an AC-enabled
system can be thought of five levels, starting at basic and
continuing through managed, predictive, adaptive and finally
autonomic. The five levels describe the transition from a
basic system to a completely autonomic system by two
aspects: to enhance a unified system management of the
entire infrastructure step-by-step, and to increase the ability
to make decision autonomously based on the environment
information being collected. The crucial task to obtain an
AC-enabled system is to build a managed infrastructure
embedding the MAPE control loop with the necessary
components as well as interfaces.

Fig. 3. Coarse architecture of an autonomic SOA

5.3.1 Autonomic service-oriented architecture

Fig.3 coarsely illustrates the architecture of an autonomic
SOA-based system. In general, the architecture exhibits its
autonomy at two levels: one at the service level providing
autonomic capabilities directly to the services, and the other
one at the infrastructure level that provides the autonomic
capabilities to the whole SOA-based systems. The service-
level autonomy is provided by the service itself. With
services as the central elements in the autonomic SOA, each
service employs two functional parts. One is the “Service
Component” in the service, which provides the desired
business capabilities as Web services to external consumers.
The other is the “Control Component” that interacts with the
service’s direct neighbors in the infrastructure, on which the
service depends functionally. Each control component
implements the four functional interfaces that were discussed
in Section 4.2. Through these interfaces, the control

components in the service layer as well as in other layers can
interact with one another, so that a service can dynamically
control its behavior based on the information it observed in
its direct neighborhood. In this context, the control
component gives a service the ability to adapt to local
changes.

Due to the fact that the control component has a limited
view in terms of environment information, it can only make
local decisions, in some cases sub-optimally or even wrongly.
In this case, the infrastructure-level autonomy helps the
service to improve the decision. The two cross-cutting layers
in Fig. 3, “Monitoring” and “Autonomic Controlling”, are
responsible for the infrastructure-level autonomy. The
monitoring-layer communicates with each control component
in the infrastructure and thereby gets an updated overview of
the entire infrastructure at any time. Based on this global and
its global policy, the autonomic controlling layer can control
the affected infrastructure components to ensure the global
operational policy.

5.3.2 Building the control components

The interfaces discussed in Section 4.2 within the MAPE
control loop are required for realizing the autonomic
capabilities at the services of an SOA-based system.
However, the SOA implies a heterogeneous service
landscape that cannot be instrumented with autonomic
capabilities in the same way. The elements in an SOA should
be instrumented individually according to the possibilities
available for integrating external functionalities:
• For existing applications and services in an SOA, it is

only possible to apply a decoupled agent to the
applications, because the code of these applications is not
available for modification. The external agent implements
the interfaces for the applications and services in the SOA
and handles the autonomic behavior for the applications.
In this case, an approach is needed that can incorporate
self-managing features into applications without
modifying them. The use of Aspect-oriented
Programming (AOP) allows treating the autonomic
functionalities as a concern, as Hoi et al. have
demonstrated in their experiment [11]. The development
of such functionalities is separate from each other and the
integration of such functionalities into the application is
selective, based on the functional requirements that the
agents have.

• For new services in an SOA, it is much more efficient to
include the interfaces directly in the service itself to
achieve a better control of the autonomic behavior of the
elements. In other words, the autonomic functionalities
are tightly coupled with the services and in this way
provide direct control of the service’s behavior. The
implementation of the interfaces is straightforward and
does not differ severely from the implementation of
normal services.
The implementation of an autonomous SOA by

instrumentation of the elements in the SOA individually may
be difficult and complex. New approaches from software
engineering using model-driven architecture (MDA) and
domain specific language (DSL) [19, 28] may help to reduce
the complexity and increase the manageability of the SOA.
With MDA, it is possible to build the autonomic
functionalities into the services directly during the

development process. This approach complies with the
tightly coupled autonomic functionalities in the services and
accelerates the development of the autonomous SOA. As
prerequisites for the MDA development, models and domain
specific language are required for describing the artifacts in
the autonomous SOA. With the help of them, an autonomous
SOA can be expressed in DSL and the expression in DSL in
turn can help to generate action plans about setting up the
elements in SOA with autonomic capabilities. The expression
in DSL can even be used by a dedicated DSL compiler to
generate services for SOA, which have the built-in autonomic
capabilities directly at design time.

5.3.3 Controlling the behavior

Without evaluation of the data being collected at runtime, an
autonomic element in an SOA can never understand itself and
the environment around it. The evaluation of the data can be
classified into two categories: the first category contains the
analysis of live data, for example the response time of a
request or a request error sent back by the provider. The
second category contains the analysis of historical data
throughout a time span. This evaluation category is crucial
for the functionalities of an autonomic service-oriented
architecture, especially for self-healing and self-optimizing,
because the autonomic elements in the SOA need the result
of the evaluation to be self-aware as well as context-aware.
The evaluation of the historical data contains event
correlation, which interprets multiple events and gives them a
collective meaning that represents an event at a higher level.
To correlate events, correlation rules are needed that identify
which events to correlate. Machine learning, data mining, and
other technologies can be used to help discover correlation
rules and interpret the correlative events [29].

In the SOA-based computing infrastructure, there is
normally a global operational goal for the whole SOA. Such
an operational goal can be an operational policy for a
business process or for a set of services that are related to one
another. Moreover, the operational goals are normally
human-centric, in other words, the operational goal might be
expressed in natural language and should be converted to
machine-readable instructions at first. Another challenge is to
split the global operational goal into the local goals for the
various autonomic elements in the SOA, which normally
takes place at the beginning of service deployment and is not
time-critical for the performance of the service. A promising
approach for this process is the utilization of evolutionary
algorithms to generate action plans from the high-level
operational goal for each of the autonomic elements in the
system.

6. Conclusion & Outlook

This paper described a roadmap for applying the self-x
capabilities as postulated in autonomic computing to SOA-
based computing infrastructures. An SOA-based
infrastructure exhibits specific functional properties in
comparison to other self-organizing systems. Therefore, the
concept of autonomic computing has to be adapted to be
applicable for an SOA-based system.

Specifically, the complexity present in SOA-based
computing infrastructures and the need to provide self-x
properties for SOA-based systems have been addressed. After

a review of the fundamentals and features of Service-oriented
Architectures and Autonomic Computing, the functional
requirements of SOA-based systems were outlined with
respect to Autonomic Computing and how these
requirements are mapped to the self-x properties. Based on
the functional requirements the architecture with the
necessary system components was introduced coarsely and it
was outlined which technologies from the areas of software
engineering and artificial intelligence could be utilized to
design, develop, and operate autonomic SOA-based systems.

However, there are several issues for autonomic SOA,
which have not been addressed in this paper. One of them is
the delegation of directives for a managed element in the
system. A managed element, for instance, an autonomic Web
service, may receive requests from other managed elements,
for changing its configuration. In order to make the decision
about how to behave in such a situation, the Web service
should be supported by an authorization model and a
predictive analysis of the possible impact to itself as well as
to other dependent system components. This aspect is
currently missing. Another issue that has to be investigated is
the impact of the business layer on the service layer at
runtime. The considerations in this paper are service-centric.
In other words, the services are considered as the central
elements in the SOA. This simplifies the business processes
in the way that they are treated as the composition of several
related services in accordance with some rule(s). Indeed,
business processes are more than that. Business processes
may employ activities other than just (Web) services. How
the business process management can be combined with the
autonomic elements in the autonomic SOA-based system
remains an interesting aspect to investigate in further work.

Currently, we are in the early stage of work for building an
autonomic SOA. In the context of the KIM project, several
ideas outlined in this paper are explored. For example, a
service map is implemented, called i2map, for monitoring
Web services being deployed in the KIM system landscape
[8]. At runtime, i2map monitors the operational status of the
services dynamically and provides an overview on the status
of the service layer in the KIM infrastructure at any time.
Future work is concerned with the further evaluation of the
concept of autonomic Service-oriented Architecture by
building prototypes that quantifiably demonstrate the
functional requirements as well as the self-x properties for
autonomic computing. Furthermore, advanced algorithms and
methods from AI should be evaluated for their usability with
regard to realize the adaptive autonomic elements in SOA.

Finally, it would be necessary to validate the claim of
autonomic computing that self-x properties actually lead to
predictably more reliable system behavior while significantly
reducing the management complexity.

References

[1] K Ballinger, D Box, F Curbera, et al., Web Services

Metadata Exchange (WS-MetadataExchange), 2004,
http://msdn.microsoft.com/library/en-
us/dnglobspec/html/ws-metadataexchange.pdf

[2] R Barrett, P P Maglio, E Kandogan, et al., Usable
autonomic computing systems: the administrator's
perspective, International Conference on Autonomic
Computing, New York, NY, USA, 2004, pp. 18-25.

[3] J Beatty, G Kakivaya, et al., WS-Discovery, 2005,
http://msdn.microsoft.com/library/en-us/dnglobspec
/html/WS-Discovery.pdf

[4] D Booth, H Haas, F McCabe, et al., Web Services
Architecture, 2004, http://www.w3.org/TR/ws-arch/

[5] S Cohen, A Geller, C Kaler, et al., Reliable Messaging in
SOA, 2004, http://msdn.microsoft.com/webservices/
webservices/understanding/specs/default.aspx?pull=/libra
ry/en-us/dnglobspec/html/ws-rm-soa.asp

[6] M Dorigo and T Stützle, Ant Colony Optimization, MIT
Press, 2004.

[7] A E Eiben and J E Smith, Introduction to Evolutionary
Computing, Springer, 2003.

[8] M Gaedke, J Meinecke and M Nussbaumer, i2Map - An
Approach to Model the Landscape of Federated Systems
IEEE International Conference on Web Services
(ICWS'05), Orlando, Florida, USA, 2005, pp. 797-798.

[9] A G Ganek and T A Corbi, The dawning of the
autonomic computing era, IBM SYSTEMS JOURNAL,
Vol. 42, No. 1, 2003, pp. 5-18.

[10] F E Gillett, C Rutstein, G Schreck, et al., Forrester
Research Report: Organic IT, 2002, http://www.forrester
.com/Research/PDF/0,5110,14136,00.pdf

[11] C Hoi and C C Trieu, An approach to monitor
application states for self-managing (autonomic)
systems, 18th annual ACM SIGPLAN Conf. on Object-
oriented programming, systems, languages, and
applications, Anaheim, CA, USA, 2003, ACM Press.

[12] P Horn, Autonomic Computing: IBM’s Perspective on
the State of Information Technology, 2001, http://www-
03.ibm.com/industries/government/doc/content/bin/auto.
pdf

[13] KIM, Karlsruher Integrated InformationsManagement,
2006, http://www.kim.uni-karlsruhe.de

[14] P Lin, A MacArthur and J Leaney, Defining autonomic
computing: a software engineering perspective,
Australian Software Engineering Conference
(ASWEC'05), Brisbane, Australia, 2005, pp. 88-97.

[15] L Liu, M Gaedke and A Koeppel, M2M interface: a Web
services-based framework for federated enterprise
management, IEEE International Conference on Web
Services, Orlando, Florida, USA, 2005, pp. 774-782.

[16] C M MacKenzie, K Laskey, F McCabe, et al., Reference
Model for Service Oriented Architecture 1.0, Public
Review Draft, 2006, http://www.oasis-open.org/
committees/download.php/16628/wd-soa-rm-pr1.pdf

[17] S Mazeiar and T Ladan, Autonomic computing:
emerging trends and open problems, Workshop on
Design and evolution of autonomic application software
2005, St. Louis, Missouri, 2005, ACM Press, pp. 1 - 7.

[18] Microsoft, et al., Web Services for Management (WS-
Management), 2005, http://msdn.microsoft.com
/webservices/understanding/specs/default.aspx?pull=/libr
ary/en-us/dnglobspec/html/wsmgmtspecindex.asp

[19] M Nussbaumer, P Freudenstein and M Gaedke, The
Impact of DSLs for Assembling Web Applications, to
appear in Engineering Letters, Special Issue on Web
Engineering, Intl. Association of Engineers, 2006.

[20] OASIS, OASIS Web Services Security (WSS) TC,
http://www.oasis-open.org/committees/tc_home.php
?wg_abbrev=wss

[21] OASIS, OASIS Web Services Transaction (WS-TX) TC,
http://www.oasis-open.org/committees/tc_home.php
?wg_abbrev=ws-tx

[22] OASIS, Web Services Distributed Management:
Management of Web Services (WSDM-MOWS) 1.0,
http://docs.oasis-open.org/wsdm/2004/12/mows/cd-
wsdm-mows-1.0.pdf

[23] OASIS, Web Services Distributed Management:
Management Using Web Services (MUWS 1.0) Part 1 -
Architectural Concepts and Required Components,
http://docs.oasis-open.org/wsdm/2004/12/muws/cd-
wsdm-muws-part1-1.0.pdf

[24] P Obreiter and B Koenig-Ries, A New View on
Normativeness in Distributed Reputation Systems
Beyond Behavioral Beliefs, to appear in Proceedings of
the Forth International Workshop on Agents and Peer-to-
Peer Computing, Utrecht, Netherlands, 2005.

[25] C Pautasso, T Heinis and G Alonso, Autonomic
execution of Web service compositions, IEEE Intl. Conf.
on Web Services, Orlando, USA, 2005, pp. 435-442.

[26] H Schmeck, Organic computing - a new vision for
distributed embedded systems, 8th IEEE International
Symposium on Object-Oriented Real-Time Distributed
Computing, Seattle, WA, USA, 2005, pp. 201-203.

[27] A G Sherif and Z Amir, Towards autonomic web
services: achieving self-healing using web services,
ACM SIGSOFT Software Engineering Notes, Vol. 30,
No. 4, 2005, pp. 1-5.

[28] S Shetty, S Nordstrom, S Ahuja, et al., Systems
integration of large scale autonomic systems using
multiple domain specific modeling languages, 12th IEEE
Intl. Conf. on the Engineering of Computer-Based
Systems, Greenbelt, Maryland, 2005, pp. 481-489.

[29] R Sterritt, State of the Art: Autonomic computing,
Innovations in Systems and Software Engineering, Vol.
1, No. 1, 2005, pp. 79-88.

[30] W3C, DAML, http://www.daml.org/services/owl-s/
[31] W3C, XML-Signature Syntax and Processing, http://

www.w3.org/TR/xmldsig-core/
[32] W3C, XML Encryption Syntax and Processing, http://

www.w3.org/TR/xmlenc-core/
[33] S R White, J E Hanson, I Whalley, et al., An

architectural approach to autonomic computing, Intl.
Conf. on Autonomic Computing, New York, USA, 2004,
pp. 2-9.

[34] DFG priority research program “Organic Computing”,
http://www.organic–computing.de/SPP

Author Bio

Lei Liu is currently a Ph.D. student at the Institute AIFB of
the University of Karlsruhe. His research interest focuses on
systematic engineering of self-organizing systems with an
emphasis in service-oriented architecture and Autonomic
Computing.
Hartmut Schmeck holds a Chair of Applied Informatics at the
Institute AIFB of the University of Karlsruhe. His major
research areas are bio-inspired methods in optimization,
parallel and distributed algorithms, and self-organization in
complex systems. He is the coordinator of the German
priority research program on Organic Computing.

