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Abstract: The advent and proliferation of Service-oriented 
Architectures (SOA) drives computing infrastructures into a 
highly interconnected, heterogeneous, and dynamic world. 
Conventional management tools fail in the attempt to deal 
with the heterogeneity and the dynamics associated with this 
type of information infrastructures. More and more 
researchers try to cope with the complexity, heterogeneity, 
and uncertainty by using technologies inspired by biological 
systems. A promising approach for managing such large-
scale IT infrastructure is to provide capabilities for self-
organization, which – to some extent – is analogous to the 
human autonomic system (as postulated in IBM’s Autonomic 
Computing Initiative and as extended in the German Organic 
Computing Initiative). This paper outlines a common view on 
Autonomic Service-oriented Architectures and proposes a 
way to get such an autonomic infrastructure. An outline of 
the differences between autonomic service-oriented 
architectures and other systems with autonomic properties is 
followed by a discussion of the existing enabling 
technologies and of missing pieces on the roadmap to a self-
organizing infrastructure. 
Keywords: autonomic computing, service-oriented 
architecture, self-organization, organic computing, Web 
services 

 
1. Introduction 

 
The possibility to expose business capabilities as web 
services in a platform-independent manner gives 
organizations the potential to share their capabilities across 
organization as well as platform boundaries. It facilitates the 
realization of business processes involving several 
organizations and, however, turns the Internet into a tightly 
interwoven network with an increasingly unmanageable 
technical infrastructure. Together with the underlying 
technologies, such as hosting environments, hardware, and 
network components, the complexity of the IT landscape 
rises into a new dimension, which will barely be manageable 
with conventionally available tools. 

In the context of systems based on service-oriented 
architectures (SOA), the restricted capabilities of 
conventional management tools lead to unreliable systems 
and high costs typically associated with failure and fault 
recovery. As pointed out by Ganek and Corbi [9], 40% of 
computer system outages are caused by operator error 
because of the complexity of today’s computer systems that 

are difficult to be understood. However, the aforementioned 
issues constitute only part of the complexity related to SOA-
based systems and to the business systems built upon them. 
The problem domains can be categorized as follows: 
• System development: developing SOA-based systems 

comprises designing, coding, testing, and deploying the 
individual parts of the systems. Compared to traditional 
component-based software engineering, development of 
software for SOA-based systems is more complex 
because of the distributed nature of such systems as well 
as the requirements for adaptability and flexibility of the 
systems later at runtime. 

• System management: managing systems embraces tasks 
such as deploying, configuring, problem solving, resource 
maintenance, security management, and many other 
activities for providing services reliably and effectively. 
Barrett et al. [2] have performed several field studies of 
the current administrator’s work practices and confirmed 
that system administration is rapidly becoming more 
difficult as the system complex grows. Furthermore, the 
loosely-coupled nature of SOA-based systems makes the 
administration tasks at runtime even more complex. 

• Process management: the complexity of process 
management arises from the artifacts involved in business 
processes: technical systems, people, resources, and so 
on. The gap between business processes and the 
underlying SOA-based infrastructure with respect to the 
different operational goals makes process management 
even more complicated, since a general understanding of 
both layers is required for successfully operating the 
business processes.  
Driven by the necessity of reliable systems for daily 

business, more and more industry vendors are looking for 
new designs of management systems to cope with the 
growing complexity in SOA-based systems. Decentralized 
management approaches, such as the manager-to-manager 
interface introduced by Liu et al. [15], aim to combine the 
capabilities of management applications involved in the 
system landscape to provide federated management. But this 
is not a sufficient way to construct a generally applicable 
solution for managing SOA-based systems as long as 
administrators are still strongly involved in managing the 
complex, heterogeneous, and dynamic infrastructure. The 
concept for solving this problem is to give the systems the 
capability to manage themselves. To find appropriate rules 
for self-management it looks promising to investigate self-



organizing systems observable in nature. Evolutionary 
algorithms [7] and ant colony optimization [6] are prominent 
success stories of bio-inspired methodologies in computer 
science.  

An interesting source for getting the necessary inspiration 
is the human autonomic nervous system: It carries out a large 
variety of functions, such as temperature and heartbeat 
regulation, across a wide range of external conditions without 
any conscious intervention of the human itself. Inspired by 
this system, in early 2001 IBM introduced the Autonomic 
Computing initiative to enable the creation of an IT 
computing infrastructure that automates its management in a 
similar way as the autonomic nervous system. The major 
characteristic of an autonomic system is the presence of the 
so-called self-x properties: self-configuring, self-optimizing, 
self-protecting, and self-healing [9]. In comparison to other 
similar initiatives, such as the German Organic Computing 
Initiative, autonomic computing aims at deriving universal 
concepts for designing, developing, deploying, and managing 
hardware and software components of large-scale enterprise 
server systems with a particular focus on dynamically 
changing environmental and system requirements (see 
Section 3.1).  

This paper identifies specific requirements for turning 
service-oriented architectures into autonomic systems and 
lists key software components required to create a self-
managing computing infrastructure based on SOA. The paper 
is organized as follows. Section 2 and Section 3 review the 
concepts of service-oriented architecture and autonomic 
computing separately. Section 4 presents the characteristics 
of SOA-based infrastructures and how autonomic computing 
might help to cope with their specific requirements. Section 5 
addresses the missing software components for realizing self-
organization and outlines the roadmap towards an autonomic 
service-oriented architecture both from a fundamental and an 
engineering perspective. Section 6 adds some concluding 
remarks. 

 
2. Service-oriented Architectures (SOA) 

 
The reference model for SOA from OASIS [16] defines a 
service-oriented architecture as a paradigm for organizing 
and utilizing distributed capabilities that may be under the 
control of different ownership domains. An SOA provides 
the necessary capabilities to integrate, publish, discover, and 
manage services. Derived from the concept of object-oriented 
distributed systems, an SOA follows the design principles for 
encapsulation, abstraction, and reusability. However, it 
differs also strongly from the traditional distributed system 
paradigms, particularly from the perspective of platform-
independence. While most object-oriented distributed 
systems are proprietary and based on some vendor-dependent 
technologies and platforms, an SOA is completely platform- 
and technology-independent, thanks to the adoption of widely 
accepted standards, such as XML, WSDL, etc. 

There are various versions of SOA definitions based on 
different viewpoints in an enterprise computing 
infrastructure. However, the central concept of all these 
versions is service, which means that the needs of a service 
consumer are matched with the capabilities brought by the 
service provider. A service in an SOA can be any possible 
function that exposes its capability using a prescribed 
interface in compliance with the SOA standards and acts 

consistently with the constraints and policies defined in the 
description. Therefore, the actual implementation of the 
respective service is not the concern of SOA. This “black 
box” approach allows changing the implementation details 
with minimal impact on the service consumer. Furthermore, 
it allows the integration of legacy applications that are either 
not network-enabled or not standard compatible for SOA. A 
service is typically accessible via a network. Among all the 
services that are currently adopted, web services form the 
major part. 

In an SOA-based computing infrastructure, services are 
loosely coupled to each other. The only binding between a 
service provider and a service consumer is a formal service 
contract. The service contract defines the terms that both the 
consumer and the provider should follow. For the service 
provider the service contract basically is a service description 
that provides the published details about the service, such as 
service interface, access information, usage definition, etc. 
For the service consumer, the service has to restrict itself to 
the terms defined in the service contract, so that the 
interaction between it and the provider remains unobstructed. 
This formal binding over the service contract forms the 
loosely coupled relationship between the provider and the 
consumer. With service as the central concept, an SOA-based 
computing infrastructure can be modeled as depicted in  
Fig. 1. The Technology layer contains all the enabling 
technologies and the platforms for Web services. The 
Application layer runs on top of the technology layer and 
provides the capabilities that can be encapsulated as Web 
service in the Service layer. The processes in the Process 
layer orchestrate the services from the Service layer to build 
composite functionalities out of the ones provided by the 
services. The processes are consumed either by another 
process to build composite processes or by a workflow-
enabled application. 

 
 

Fig. 1. Abstract model of SOA-based enterprise computing 
 

The SOA-based computing infrastructure is a completely 
XML-driven architecture. The Web service framework 
defined by W3C [4] is based on three core specifications: 
WSDL for service description, UDDI for service discovery 
and SOAP for message transmission. This basic Web service 
architecture establishes the foundation for creating loosely 
coupled Web services that encapsulate isolated business 



functionality. Based on these core specifications, service-
oriented applications can be built that are within or beyond 
the boundaries of organizations. But these specifications are 
not sufficient for building applications in the real world, 
because they do not address most of the problem domains 
that distributed systems have to face, such as reliable 
messaging, security, context, and transactions based on the 
stateless connections between services. The goal to empower 
the service-oriented architecture to meet the real world’s 
requirements drives the Web services community to extend 
the capabilities of the Web services architecture based on the 
W3C Web service framework. To avoid the extreme cost for 
developing an entire protocol for each vertical domain the 
Web service protocol stack is designed as a family of 
composite protocols. Each protocol defines a fine-grained 
unit of functionality and can be flexibly reused and combined 
on demand. In the following, some of the major emerging 
Web services specifications are listed: 
• Messaging: a major challenge for distributed computing is 

reliable communication between messaging partners [5]. 
To make Web services capable of enterprise level 
applications, BEA, IBM, Microsoft, and TIBCO have 
jointly published the WS-ReliableMessaging specification 
to allow messages to be delivered between distributed 
applications even in presence of software, system, or 
network failures. 

• Transaction: the initial set of Web services specifications 
lacks support for maintaining context across several 
loosely coupled Web services because the Web services 
are stateless and work independently of each other. To 
enable distributed transactions across several Web 
services, further Web services specifications are 
proposed, such as WS-BusinessActivity, WS-
AtomicTransaction and WS-Coordination that are 
currently hosted by OASIS Web Services Transaction TC 
[21]. 

• Security: service-oriented enterprise applications depend 
on a well-secured communication framework. Diverse 
specifications have been proposed by industry and 
standardization organizations. The foundations for the 
Web service security framework are XML Signature [31], 
XML Encryption [32] from W3C and WS-Security from 
OASIS [20]. They establish the security measures along 
the message transport path and protect the SOAP 
messages from unauthorized actions.  
In recent years, more and more organizations have 

recognized the value of SOA-based solutions for building 
agile and flexible enterprise computing infrastructures, not 
only in the industry but also in the academic field. The work 
described in this paper is conducted in the context of the 
Karlsruhe Integrated Information Management (KIM [13]) 
project, which aims at supporting and integrating 
administrative and educational processes in the university 
context by adequate IT services. Without abdicating the 
existing legacy systems in the various faculties and in central 
facilities, the KIM project provides an SOA-based solution to 
optimize the collaboration spanning several organizations 
within the university. To achieve this goal, the project 
focuses on analyzing and categorizing business processes and 
their underlying services in the university with respect to 
various technical and organizational criteria. Based on this 
analysis, services are consolidated and – through the adoption 
of Web services standards – a homogenous service layer is 

accomplished on top of the currently rather heterogeneous 
technology landscape in the university.  

 
3. Autonomic Computing 

 
The term “Autonomic Computing” has been defined by 
IBM’s Autonomic Computing initiative, which has the 
primary goal to develop computer systems (in particular, 
large-scale enterprise server systems) that manage themselves 
while hiding the increasing system complexity from the end 
users and even from system administrators. During a keynote 
presentation at the AGENDA 2001, Paul Horn has compared 
the concept of Autonomic Computing to the human’s 
autonomic nervous system that regulates the complex human 
body without self-conscious actions of the human [12]. The 
vision of Autonomic Computing is to apply the same ability 
of self-regulation to computer systems, so that one day 
computer systems can reach the same level of self-regulation 
as the human’s autonomic nervous system.  

In the meantime, the concept of Autonomic Computing 
has evolved from a proposal in Horn’s keynote to a widely 
accepted concept for dealing with the increasing system 
complexity. As a result, research in industry and academia 
has focused on various solutions and technologies that exhibit 
aspects of self-management. However, there is still a lack of 
a commonly accepted definition of “Autonomic Computing”. 
Paul Lin et al. have tried to establish a common definition for 
the Autonomic Computing [14]. They carried out a survey on 
the current publications in the field and identified various 
definitions for Autonomic Computing. The most commonly 
referenced definitions contain the following properties that an 
Autonomic Computing system must have: 
• Self-configuring: self-configuring is a system’s capability 

to adjust itself dynamically to achieve the desired 
operational goal, such as performance, reaction time, etc. 
The self-configuration may assist in self-healing, self-
optimizing and self-protecting by dynamically responding 
to changes in the environment. 

• Self-healing: from the perspective of reactive systems, 
self-healing is the capability to discover, diagnose, repair, 
and recover from system faults when they occur. From 
the perspective of predictive systems, self-healing 
contains mechanisms to predict and thereby prevent 
system faults from happening by monitoring the vital 
parameters of the system. 

• Self-optimizing: self-optimizing refers to the capability to 
measure the current system performance against the 
predefined objectives and to attempt to improve the 
performance by efficiently controlling the allocation and 
utilization of resources. 

• Self-protecting: self-protecting describes the capability of 
a system to anticipate and detect external malicious 
attacks and to protect itself in case of attacks. It means 
that the system must be aware of potential threats and be 
able to take actions to avoid completely or at least 
mitigate partly the affects caused by the external attacks.  
To support the functional properties listed above, an 

Autonomic Computing system should be aware of itself (self-
awareness) and of the environment around it (context-
awareness). The system should monitor its internal state by 
collecting management information from its functional 
components and evaluate the collected data to identify its 



vital status. Furthermore, a network-enabled system is not 
isolated from its environment. For instance, a Web service is 
related to its hosting environment, to other Web services in 
the business process that call it or are called by it. More or 
less, the functional state of all the related systems has impact 
on the system itself. Therefore, an Autonomic Computing 
system should know the way to interact with neighboring 
systems for sharing functional state information. To achieve 
cooperation between different systems in a possibly 
heterogeneous environment, the Autonomic Computing 
system must implement open standards to enable an 
unobstructed communication with other systems. In some 
publications in the field, this capability is referred to as 
“openness” of a system. 

A major architectural aspect of an Autonomic Computing 
system consists of control loop functionalities that contain the 
following four steps: monitor, analyze, plan, and execute 
(MAPE). By sensors that connect with the managed 
components, the monitor function collects data, for instance, 
metrics, from the managed components, and filters the data, 
aggregates it and reports the details to the analyze function. 
The analyze function correlates the data being reported and 
tries to model complex situations from such data. The result 
of the analysis is consumed by the plan function, which 
selects or constructs actions based on the analysis and the 
predefined operation policies. The execute function controls 
the execution of the action plan using effectors, which are 
connected to the managed components. 

 
3.1 Related Work 

 
The idea to simplify the management of technical systems by 
applying nature-inspired mechanisms has led to a set of 
industrial and academic projects, as Mazeiar and Ladan have 
reviewed in their publication [17]. In the following, we 
review the concepts of two other initiatives that are missing 
in the work of Mazeiar and Ladan.  
 
3.1.1 Organic Computing 
 
Similar to the concept of Autonomic Computing, Organic 
Computing (OC) is an emerging paradigm for coping with 
the increasing presence of large collections of intelligent 
objects in various areas of our daily life, capable to 
communicate and to interact. In particular, Organic 
Computing outlines the vision of technical systems that 
exhibit various self-x properties like self-configuration, self-
optimization, self-healing, self-explanation, and self-
protection, capable to learn about their environment over 
time, survive attacks and breakdowns, adapt to their users, 
and react sensibly even if they encounter a new situation for 
which they have not been programmed explicitly. OC 
systems should be designed with respect to human needs, 
they have to be trustworthy and robust, adaptive, and flexible. 
[26]. Because of their life-like properties, these systems are 
called organic systems. Organic Computing emphasizes that 
future technical systems will inevitably have the capability to 
self-organize. Therefore, one has to address the major 
challenge to guarantee that, nevertheless, these systems will 
always adhere to externally given objectives and constraints 
while adapting to dynamically occurring changes in their 
environment. In the German priority research program on 
Organic Computing [34], the major focus is on  

• fundamental investigations of the effects of emergence on 
the controllability of self-organizing systems, 

• investigating systems occurring in nature which exhibit 
forms of self-organization in order to identify behavioral 
patterns that might be transferable  into technical systems, 

• the development of generic architectures for realizing 
organic systems, 

• the design and investigation of specific technical 
applications as prototypical organic systems. 

Obviously, OC systems satisfy the requirements of 
Autonomic Computing. 
 
3.1.2 Organic IT 
 
Organic IT has been proposed by Forrester Research in 2002 
[10] to increase the IT efficiency and maximize the business 
value of enterprise computing infrastructures. The vision of 
Organic IT is to build computing infrastructures on redundant 
components that automatically share and manage enterprise-
computing resources, such as software, processor, storage, 
etc, across all applications within a datacenter. To deal with 
the heterogeneity in the computing infrastructure, the key 
concept of Organic IT is abstraction, the way to hide 
complexity behind a simple interface and to combine such 
simple interfaces into an improved whole. Derived from this 
principle, the computing infrastructure synthesizes the four 
key layers: network, storage, processors and software. All the 
four layers are managed by a single management console on 
an exception-driven basis.  

 
4. Enabling Autonomic Computing in SOA 

 
As stated in the introduction, the complexity of an SOA-
based system derives from several fields, from software 
development at design time to system management at 
runtime, and grows rapidly due to the increasing number of 
services and the heterogeneous environments that the services 
rely upon. Applying the concepts of Autonomic Computing 
to the systems is promising for coping with the complexity 
while reducing the management overhead for administrators. 
Above all, Autonomic Computing can support and enable 
service management and service integration in concert with 
the principles of SOA. However, the concept of Autonomic 
Computing is too coarse to fit the requirements that an SOA-
based system may have. In this section, we discuss the 
functional requirements of an SOA-based system on 
Autonomic Computing and show, how an autonomous 
service-oriented architecture might look like. 

In the context of service-oriented architectures, the 
computing infrastructure shows some level of stability due to 
the service level agreements (SLA) established between 
service providers and service consumers. Furthermore, the 
model applied in a business process commits a service 
provider to its service consumer(s) and establishes a 
relationship between them. From this point-of-view, an 
autonomic service-oriented architecture operates in a 
comparatively stable and closed environment and emphasizes 
the automated and robust management of the architecture 
rather than the dynamic (re-)organization of business 
processes. 

 
4.1 Functional Requirements 



 
In the abstract SOA model in Fig. 1 five abstraction layers 
have been identified: technology, application, service, 
process, and service consumer. Across all the layers, services 
are the central components in the architecture, where units of 
business capabilities are encapsulated. The process layer 
above the service layer and the application layer directly 
beneath are the layers, which have direct functional 
relationships with the service layer. Due to the central role of 
services, we discuss the functional requirements of SOA 
based on a service and its relationship to other components in 
the architecture. As the basic element in the architecture, 
which should be managed, a service constitutes an autonomic 
element [33] that is responsible for its own behavior and 
cooperates with other autonomic elements in accordance with 
the global operational goal.  

In an exemplary way, Fig. 2 depicts an SOA with services 
as the central elements. Vertically, a service is based on 
applications in the Application Layer, for instance, a Web 
server is the hosting environment for HTTP-based web 
services. Processes in the Process Layer model the 
relationship between services in the Service Layer and call 
the services to invoke the corresponding business 
functionalities. Horizontally, a service has a cooperation 
relationship with other services, to which it provides service 
or which provide services to it. 

 
 

Fig. 2. Service as the central element in SOA 
 

To enable the interaction with other elements in a networked 
environment, it is required that a service needs to know itself 
(R1). The knowledge of a service about itself can exist at 
several levels. At the meta-level, a service should know its 
functionality, its interface to the external world, etc. and a 
way to describe itself. The Web Service Description 
Language (WSDL) standard is an example for such a meta-
model, which can be used to describe the interface of a 
service. A further example of such a meta-model is OWL-S 
[30], which is an Ontology Web Language (OWL)-based web 
service ontology and describes what a service does, how it 
works, and how to access the service. At the instance level, a 
service should have detailed knowledge about its 
components, its status, and its dependencies with other 
elements in the SOA. This is the basic requirement for a 

managed service in the SOA to be self-aware and context-
aware.  

Next, it is required that the service should be able to 
expose meta-level information and at least part of instance-
level information to other elements in the SOA on request 
(R2). The meta-level information is crucial for other elements 
to determine the capabilities and access information of the 
current service, in case that a relationship should be built 
between them. The exchange of instance-level information, 
such as performance, metrics, logs, is another key 
requirement to keep a service context-aware. From the 
information exchanged between a service and its 
dependencies, a service can get an overview about its 
environment and take actions, if necessary, to ensure its 
operational goal. The exchange of instance-level information 
can take place voluntarily and in combination with a 
distributed reputation system, like Obreiter et al. have 
proposed in their work for a P2P environment [24]. If the 
instance-level information is critical for sharing with other 
elements in the architecture, the exchange of such 
information can take place upon agreements that are 
established as the two elements enter into a new relationship. 

It is required that the service should be able to establish 
and maintain relationships with other elements in the SOA 
(R3). The meta-level information discussed in requirements 
R1 and R2 is the basis for the new relationship with other 
autonomic elements in the SOA. There are mainly two types 
of relationship in the SOA. The first one is the 
“provider/consumer” relationship, which is regulated by 
service level agreements between the service consumer and 
service provider. In this case, both sides must understand the 
terms in the agreements and, if necessary, negotiate the terms 
in the agreements with each other. Once two parts enter into 
an agreement, they must abide by the terms defined in the 
agreement to maintain their relationship. The second type of 
relationship in SOA is the dependency relationship, for 
instance, the “depends on” or “calls” relationships as 
illustrated in Fig. 2.  

It is required that the service should be context-aware 
(R4). A service should at least know its direct neighborhood 
in the SOA. In other words, a service must know about all its 
neighbors with “provider/consumer” relationships. 
Furthermore, it has to know all the components in the SOA, 
which it depends on or which depend on it. Through the 
regular exchange of information with its direct 
neighborhoods, the service can discover its environment and 
take necessary actions, if the environment changes. 
Furthermore, a service must have knowledge about the 
infrastructure services available in the SOA, which it may 
make demands on, if necessary, for instance, a registry 
infrastructure service helping the services in an SOA to find 
one another. 

It is required that the service should be able to control its 
own behavior to meet its own operational goal (R5). The 
service has an operational goal that can be specified initially 
at starting time or be specified by a related element in the 
architecture as part of an agreement. The agreements between 
the service and other elements to establish the relationships 
are part of the operational goal to meet. Furthermore, if the 
service is involved in a business process, there will be some 
global goals for the whole business process. In this case, the 
service has to adjust itself to meet the global goal being 
given. Generally, there are two possible ways to adjust a 



service’s behavior: Either it can configure its own parameters 
or it can rely on its dependencies in the SOA. For example, a 
web service can adjust its performance by controlling the 
appropriate parameters on its hosting environment, such as 
the caching time on the web server. 

Furthermore, it is required that the service should be able 
to take an external directive and execute it, if applicable 
(R6). For a service in an SOA, external directives are only 
requests and the requestor cannot assume that the service will 
execute the directive. Depending on the policies and the type 
of the directive, a service can decide how to deal with the 
directive. If it is an administrative directive from an element 
in the SOA that has sufficient authority to issue directives, 
the service will take the directive as a command. If a service 
receives conflicting directives from different elements in an 
SOA, it can try to resolve the conflict by itself, or it can refer 
to other elements in the SOA for help [33]. 

 
4.2 Required Interfaces 

 
To achieve the functional requirements stated above, open 
standards must be adopted to enable the interactions between 
the elements in the SOA. As stated before, an SOA-based 
system may have a heterogeneous computing infrastructure 
spanning several organizations. A proprietary implementation 
of autonomic elements can only deal with part of the SOA, 
which is compatible with the implementation. Therefore, all 
the implementations should be based upon open standards, 
from the web service standards to management standards, for 
interoperating in a heterogeneous system environment. 

Web services define a set of interfaces and specifications 
to achieve various functionalities based on the basic W3C 
Web service framework [4]. To realize the functional 
requirements discussed in this section, the autonomic 
elements in the SOA need additional interfaces as well: 
• Metadata interface: this interface allows a service to 

expose its meta-level information to other elements in an 
SOA that intend to establish a relationship with the 
service. The information exposed by this interface can 
also be used e.g. by the service registry to find services 
with certain criteria. 

• Performance interface: this interface allows a service to 
expose its instance-level information to other elements in 
an SOA at runtime. As this service may expose critical 
information, which is not viewable by any service in the 
SOA, the autonomic elements that call this interface must 
have either the appropriate administrative relationship 
with the service or an agreement with the service about 
sharing the information. 

• Binding interface: this interface allows a service to 
establish a “provider/consumer” relationship with other 
services. Through the binding interface, a service can 
negotiate the terms in the service level agreement with the 
service requestor. The service requestor receives either a 
confirmation or a rejection, if they cannot come to an 
agreement about the service level parameters. 

• Administrative interface: this interface allows a service to 
receive administrative directives from other autonomic 
elements in an SOA at runtime. The service requestor 
authenticates itself at the service to show that it has 
sufficient authority to issue directives. The service can 
make its own decision about what to do with the 
directives being received. The directive can be interpreted 

individually as command or suggestion, depending on the 
relationship between the service and the requestor. 

 
4.3 The Self-x Properties in Autonomic SOA 

 
As aforementioned, currently, the self-x properties (self-
configuring, self-healing, self-optimizing, and self-
protecting) are used to evaluate systems with respect to 
autonomic computing. In this section, we discuss how the 
functional requirements for SOA are mapped to the self-x 
properties.  

 
Table 1. Self-x properties in autonomic SOA  

(* indicates that there is a correlation between two terms) 
 

Table 1 shows an overview of the correlations between the 
functional requirements and the self-x properties.  
• Self-configuring: to achieve self-configuration, a service 

needs to be self-ware and context-aware. The services 
share information about the environment in the SOA 
through the exposing interfaces. To adapt to the changes 
in the environment, the service has to control its behavior 
depending upon its operational goal and the new 
environmental conditions. 

• Self-healing: self-healing requires that the service be self-
aware. Based on the instance-level information that it 
collects at runtime, such as performance, metrics, logs, a 
service can control its behavior to prevent faults from 
happening or to recover the faults, if they have occurred. 

• Self-optimizing: to achieve self-optimization, a service 
needs to be aware of its own state and the state of its 
environment by analyzing the data collected via the 
exposing interfaces. Based upon this information, a 
service can either control its behavior or issue directives 
to other elements in the SOA, to which it has 
relationships. 

• Self-protecting: To protect itself, a service needs to be 
self-aware and, in case that external malicious attacks are 
detected, the service has to control its behavior to protect 
itself. For example, it could reject all the requests from 
hostile service requestors or it could also go offline 
temporarily to avoid the attacks. 
In this section, we have discussed the functional 

requirements on an autonomic service-oriented architecture 
and how these requirements are mapped to the self-x 
properties of Autonomic Computing. In the following 
section, we discuss how such an autonomic service-oriented 
architecture can be designed, developed, and operated.  

 
5. The Way to an Autonomic SOA 

 
The design and development of an autonomic service-
oriented architecture is a holistic process that covers research 

 R1 R2 R3 R4 R5 R6 

Self-
configuring * * * * *  

Self- 
healing *    *  

Self-
optimizing * * * * * * 

Self-
protecting *    *  



for software and systems engineering (SE) as well as for 
artificial intelligence (AI) [29]. The engineering approach 
concerns itself with mechanisms to engineer autonomic 
capabilities into the individual systems, while the artificial 
intelligence approach implies utilization of algorithms and 
processes to achieve autonomic behaviors of the components 
of an SOA. In the following subsections, we discuss how to 
realize an autonomic SOA based on these two approaches 
and the functional requirements addressed in the last section. 

 
5.1 State-of-the-Art 

 
Several research efforts have contributed to enable self-x 
behaviors in an SOA-based system. Such approaches aim at 
either some particular self-x property or at particular layers in 
an SOA-based system. For instance, Sherif et al. introduced 
an approach that enables the self-x properties in an SOA-
based system by using dedicated autonomic Web services at 
runtime [27]. Each autonomic Web service implements the 
MAPE control loop and provides some autonomic 
functionality, such as self-healing, to other functional Web 
services. Instead of providing the self-x behaviors to the 
complete SOA-based system, as proposed in this paper, they 
focused mainly on the service layer of an SOA-based system. 
Pautasso et al. have proposed to create a reactive architecture 
across both the service layer and the process layer by a 
MAPE control loop [25]. Their system monitors the 
performance of processes running within an SOA-based 
system. Once workload variations are detected by the system, 
it alters its configuration in order to optimally use the 
available resources of the service layer.  

Just like both systems introduced above, most of the 
approaches in the field focus only on part of the autonomic 
aspects for an autonomic SOA. From our point-of-view, an 
autonomic SOA requires a comprehensive approach 
including all the self-x properties and all the layers of an 
SOA-based system. For example, it is assumed that a 
business process in the process layer rests upon a set of Web 
services that are hosted by an application server in the 
application layer. In this scenario, any negative workload 
variation of the application server may cause longer 
responding time for the Web services, which again may lead 
to failures in the business process due to the violation of 
service level agreements between the process and the Web 
services.  

IBM provides the Autonomic Computing toolkit that can 
be used to build prototypes with autonomic behaviors. The 
toolkit contains building blocks for enhancing autonomic 
capabilities including problem detection, common system 
administration, and system installation and deployment into 
the prototypes. For translating legacy log entries into the 
common event format, the toolkit contains an adapter, the 
Generic Log Adapter (GLA), to include legacy systems into 
the autonomic architecture without requiring such systems to 
change the way they create the log files. Based on the events 
and tracing being collected, the Log and Trace Analyzer 
(LTA) analyzes and correlates the log entries. In case that an 
incident is detected, LTA consumes the symptom database 
and delivers an array of objects representing the solutions and 
directives. The Autonomic Management Engine (AME) 
provides a reference implementation of an autonomic 
manager. At runtime it monitors the system resources, sends 

aggregated events, and performs corrective actions for 
problems detected. 

 
5.2 Web Services Standards 

 
One of the challenges for building an autonomic SOA is the 
heterogeneous computing infrastructure that the SOA relies 
on. The only way to deal with this heterogeneity is to keep 
the autonomic SOA open by adopting widely accepted 
industry standards. In Section 2, we have briefly introduced 
the concept and the evolution of service-oriented 
architectures. To empower the Web service architecture to 
provide more functionalities for building reliable, secure, and 
trusted service-oriented applications, a set of new Web 
service specifications has been proposed by various 
organizations. For building an autonomic SOA, the following 
specifications are of particular interest: 
• Web service discovery is the key for automatically 

connecting to existing services in the infrastructure 
without intervention of administrators or operators. W3C 
has identified two possible types of discovery 
mechanisms for Web service architecture [4]: a registry-
based centralized approach and a peer-to-peer based 
distributed approach. The static discovery applies the 
centralized approach and provides the necessary 
capabilities for looking for the potential cooperation 
partner at a well-known location. The UDDI registries 
apply this approach and serve as the directory for 
registering and querying existing Web services. The 
dynamic discovery applies the peer-to-peer approach. In 
dynamic discovery, there is no well-known location for 
querying Web services. To discover an appropriate Web 
service, the requester broadcasts a request to all available 
listeners. WS-Discovery defines this approach and 
specifies procedures to announce and discover Web 
services using multicast messages [3].  

• Metadata exchange: in general, information about a Web 
service is collectively referred to as metadata. Web 
services use a lot of metadata, such as WSDL, XML  
Schema, to describe a particular Web service interface. 
Web service discovery alone is not sufficient for 
automatically building relationships between services. A 
service consumer needs more meta-information about the 
service provider to enable the bootstrap communication 
with it. A new Web services specification, WS-
MetadataExchange, allows a service provider to deliver 
metadata to its potential consumers via a predefined Web 
services interface, both at design time as well as at 
runtime [1]. 

• Web Service Management: the term “management” has 
two aspects for a SOA-based system: management using 
a Web service and management of a Web service. 
Currently, both aspects are considered by OASIS. Each of 
these aspects has a separate specification: Management 
Using Web Services (MUWS) [23] and Management of 
Web Services (MOWS) [22]. The core component in the 
specifications is the Web Services End Point. It interprets 
Web services messages and provides access to a backend 
manageable resource. A manageable resource can have a 
number of capabilities, each of which have distinct 
semantics, and provide these capabilities outwards via the 
Web Services End Points. Another similar proposal in the 



field is Web Services for Management (WS-Management, 
former Web Service for Management Extension [18]), 
which is a joint publication of AMD, Microsoft, Sun et al. 
Comparing to the management specifications of OASIS, 
WS-Management can be considered as a lightweight 
version of the other two specifications from OASIS, 
which makes it suitable for use in small devices with 
restricted resources. 
 

5.3 Building Autonomic Service-oriented Architectures 
 

The way to an autonomic service-oriented architecture is 
rather evolutionary than revolutionary, just as proposed by 
IBM in their Autonomic Computing Initiative [9]. In their 
vision for autonomic computing, the path to an AC-enabled 
system can be thought of five levels, starting at basic and 
continuing through managed, predictive, adaptive and finally 
autonomic. The five levels describe the transition from a 
basic system to a completely autonomic system by two 
aspects: to enhance a unified system management of the 
entire infrastructure step-by-step, and to increase the ability 
to make decision autonomously based on the environment 
information being collected. The crucial task to obtain an 
AC-enabled system is to build a managed infrastructure 
embedding the MAPE control loop with the necessary 
components as well as interfaces.  

 
 

Fig. 3. Coarse architecture of an autonomic SOA 
 
5.3.1 Autonomic service-oriented architecture 
 
Fig.3 coarsely illustrates the architecture of an autonomic 
SOA-based system. In general, the architecture exhibits its 
autonomy at two levels: one at the service level providing 
autonomic capabilities directly to the services, and the other 
one at the infrastructure level that provides the autonomic 
capabilities to the whole SOA-based systems. The service-
level autonomy is provided by the service itself. With 
services as the central elements in the autonomic SOA, each 
service employs two functional parts. One is the “Service 
Component” in the service, which provides the desired 
business capabilities as Web services to external consumers. 
The other is the “Control Component” that interacts with the 
service’s direct neighbors in the infrastructure, on which the 
service depends functionally. Each control component 
implements the four functional interfaces that were discussed 
in Section 4.2. Through these interfaces, the control 

components in the service layer as well as in other layers can 
interact with one another, so that a service can dynamically 
control its behavior based on the information it observed in 
its direct neighborhood. In this context, the control 
component gives a service the ability to adapt to local 
changes.  

Due to the fact that the control component has a limited 
view in terms of environment information, it can only make 
local decisions, in some cases sub-optimally or even wrongly. 
In this case, the infrastructure-level autonomy helps the 
service to improve the decision. The two cross-cutting layers 
in Fig. 3, “Monitoring” and “Autonomic Controlling”, are 
responsible for the infrastructure-level autonomy. The 
monitoring-layer communicates with each control component 
in the infrastructure and thereby gets an updated overview of 
the entire infrastructure at any time. Based on this global and 
its global policy, the autonomic controlling layer can control 
the affected infrastructure components to ensure the global 
operational policy. 
 
5.3.2 Building the control components 
 
The interfaces discussed in Section 4.2 within the MAPE 
control loop are required for realizing the autonomic 
capabilities at the services of an SOA-based system. 
However, the SOA implies a heterogeneous service 
landscape that cannot be instrumented with autonomic 
capabilities in the same way. The elements in an SOA should 
be instrumented individually according to the possibilities 
available for integrating external functionalities: 
• For existing applications and services in an SOA, it is 

only possible to apply a decoupled agent to the 
applications, because the code of these applications is not 
available for modification. The external agent implements 
the interfaces for the applications and services in the SOA 
and handles the autonomic behavior for the applications. 
In this case, an approach is needed that can incorporate 
self-managing features into applications without 
modifying them. The use of Aspect-oriented 
Programming (AOP) allows treating the autonomic 
functionalities as a concern, as Hoi et al. have 
demonstrated in their experiment [11]. The development 
of such functionalities is separate from each other and the 
integration of such functionalities into the application is 
selective, based on the functional requirements that the 
agents have.  

• For new services in an SOA, it is much more efficient to 
include the interfaces directly in the service itself to 
achieve a better control of the autonomic behavior of the 
elements. In other words, the autonomic functionalities 
are tightly coupled with the services and in this way 
provide direct control of the service’s behavior. The 
implementation of the interfaces is straightforward and 
does not differ severely from the implementation of 
normal services. 
The implementation of an autonomous SOA by 

instrumentation of the elements in the SOA individually may 
be difficult and complex. New approaches from software 
engineering using model-driven architecture (MDA) and 
domain specific language (DSL) [19, 28] may help to reduce 
the complexity and increase the manageability of the SOA. 
With MDA, it is possible to build the autonomic 
functionalities into the services directly during the 



development process. This approach complies with the 
tightly coupled autonomic functionalities in the services and 
accelerates the development of the autonomous SOA. As 
prerequisites for the MDA development, models and domain 
specific language are required for describing the artifacts in 
the autonomous SOA. With the help of them, an autonomous 
SOA can be expressed in DSL and the expression in DSL in 
turn can help to generate action plans about setting up the 
elements in SOA with autonomic capabilities. The expression 
in DSL can even be used by a dedicated DSL compiler to 
generate services for SOA, which have the built-in autonomic 
capabilities directly at design time. 

 
5.3.3 Controlling the behavior 
 
Without evaluation of the data being collected at runtime, an 
autonomic element in an SOA can never understand itself and 
the environment around it. The evaluation of the data can be 
classified into two categories: the first category contains the 
analysis of live data, for example the response time of a 
request or a request error sent back by the provider. The 
second category contains the analysis of historical data 
throughout a time span. This evaluation category is crucial 
for the functionalities of an autonomic service-oriented 
architecture, especially for self-healing and self-optimizing, 
because the autonomic elements in the SOA need the result 
of the evaluation to be self-aware as well as context-aware. 
The evaluation of the historical data contains event 
correlation, which interprets multiple events and gives them a 
collective meaning that represents an event at a higher level. 
To correlate events, correlation rules are needed that identify 
which events to correlate. Machine learning, data mining, and 
other technologies can be used to help discover correlation 
rules and interpret the correlative events [29].  

In the SOA-based computing infrastructure, there is 
normally a global operational goal for the whole SOA. Such 
an operational goal can be an operational policy for a 
business process or for a set of services that are related to one 
another. Moreover, the operational goals are normally 
human-centric, in other words, the operational goal might be 
expressed in natural language and should be converted to 
machine-readable instructions at first. Another challenge is to 
split the global operational goal into the local goals for the 
various autonomic elements in the SOA, which normally 
takes place at the beginning of service deployment and is not 
time-critical for the performance of the service. A promising 
approach for this process is the utilization of evolutionary 
algorithms to generate action plans from the high-level 
operational goal for each of the autonomic elements in the 
system. 

 
6. Conclusion & Outlook 

 
This paper described a roadmap for applying the self-x 
capabilities as postulated in autonomic computing to SOA-
based computing infrastructures. An SOA-based 
infrastructure exhibits specific functional properties in 
comparison to other self-organizing systems. Therefore, the 
concept of autonomic computing has to be adapted to be 
applicable for an SOA-based system. 

Specifically, the complexity present in SOA-based 
computing infrastructures and the need to provide self-x 
properties for SOA-based systems have been addressed. After 

a review of the fundamentals and features of Service-oriented 
Architectures and Autonomic Computing, the functional 
requirements of SOA-based systems were outlined with 
respect to Autonomic Computing and how these 
requirements are mapped to the self-x properties. Based on 
the functional requirements the architecture with the 
necessary system components was introduced coarsely and it 
was outlined which technologies from the areas of software 
engineering and artificial intelligence could be utilized to 
design, develop, and operate autonomic SOA-based systems. 

However, there are several issues for autonomic SOA, 
which have not been addressed in this paper. One of them is 
the delegation of directives for a managed element in the 
system. A managed element, for instance, an autonomic Web 
service, may receive requests from other managed elements, 
for changing its configuration. In order to make the decision 
about how to behave in such a situation, the Web service 
should be supported by an authorization model and a 
predictive analysis of the possible impact to itself as well as 
to other dependent system components. This aspect is 
currently missing. Another issue that has to be investigated is 
the impact of the business layer on the service layer at 
runtime. The considerations in this paper are service-centric. 
In other words, the services are considered as the central 
elements in the SOA. This simplifies the business processes 
in the way that they are treated as the composition of several 
related services in accordance with some rule(s). Indeed, 
business processes are more than that. Business processes 
may employ activities other than just (Web) services. How 
the business process management can be combined with the 
autonomic elements in the autonomic SOA-based system 
remains an interesting aspect to investigate in further work. 

Currently, we are in the early stage of work for building an 
autonomic SOA. In the context of the KIM project, several 
ideas outlined in this paper are explored. For example, a 
service map is implemented, called i2map, for monitoring 
Web services being deployed in the KIM system landscape 
[8]. At runtime, i2map monitors the operational status of the 
services dynamically and provides an overview on the status 
of the service layer in the KIM infrastructure at any time. 
Future work is concerned with the further evaluation of the 
concept of autonomic Service-oriented Architecture by 
building prototypes that quantifiably demonstrate the 
functional requirements as well as the self-x properties for 
autonomic computing. Furthermore, advanced algorithms and 
methods from AI should be evaluated for their usability with 
regard to realize the adaptive autonomic elements in SOA. 

Finally, it would be necessary to validate the claim of 
autonomic computing that self-x properties actually lead to 
predictably more reliable system behavior while significantly 
reducing the management complexity. 
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