
Querying for Meta Knowledge

Bernhard Schueler, Sergej Sizov, Steffen Staab
ISWeb — Information Systems and Semantic Web

University of Koblenz-Landau, Germany
{bernie,sizov,staab}@uni-koblenz.de

Duc Thanh Tran
Institute AIFB

University of Karlsruhe, Germany
dtr@aifb.uni-karlsruhe.de

Abstract

The Semantic Web is based on accessing and reusing RDF data
from many different sources, which one may assign different lev-
els of authority and credibility. Existing Semantic Web query lan-
guages, like SPARQL, have targeted the retrieval, combination
and reuse of facts, but have so far ignored all aspects of meta
knowledge, such as origins, authorship, recency or certainty of
data, to name but a few.

In this paper, we present an original, generic, formalized and
implemented approach for managing many dimensions of meta
knowledge, like source, authorship, certainty and others. The ap-
proach re-uses existing RDF modeling possibilities in order to rep-
resent meta knowledge. Then, it extends SPARQL query process-
ing in such a way that given a SPARQL query for data, one may
request meta knowledge without modifying the query proper. Thus,
our approach achieves highly flexible and automatically coordi-
nated querying for data and meta knowledge, while completely
separating the two areas of concern.

1. Introduction

Integrating and re-using Semantic Web data becomes more and
more fruitful and worthwhile in order to answer questions and
deliver results. Typically, engines like Swoogle provide points
of access for RDF data, crawlers may fetch relevant RDF data,
and query languages like SPARQL with their corresponding query
engines allow for selecting and re-using data in the appropriate
format. With the arrival of more and more data in the Semantic
Web and more sophisticated processing through query and reason-
ing engines, one now, however, encounters challenging questions
linked to meta knowledge about the data like:

•Where is this data from?
•Who provided the data?
•When was this data provided?
•Was the provider certain about the truth of this data?
•Was the data believed by others, too?

Copyright is held by the author/owner(s).
WWW2008, April 21–25, 2008, Beijing, China.
.

For instance, when querying the Semantic Web with the help of
SPARQL for the affiliation of a person by the name of “James
Hendler”, one finds (at least) two answers, i.e. “University of Mary-
land” and “Rensselaer Polytechnic Institute”. Obviously, without
further indication as to where, by whom, when, etc. such informa-
tion was given, it is impossible to decide which of the two affilia-
tions is still valid.

The problem might be remedied in several ways. First, an ideo-
syncratic solution by the search engine, such as returning the cor-
responding RDF files or links to sources of knowledge extraction
(sayhttp://www.cs.umd.edu/survey.pdf andhttp://www.
rpi.edu/report.doc), might help in this special case. However,
an ideosyncratic solution may not be appropriate in a second case
in which the ‘when’ was more relevant than the ‘where’ or in a
third case where such a piece of information had to be aggregated
from several resources. Second, the person or system requesting
the meta knowledge might manually extend the SPARQL query
formalizing the request for the affiliation in order to return the
where, the who and the when. Such a modification will, however,
be very tedious, as it will include a number of additional optional
statements, and expressing it manually will be error prone. Also,
it will not help in delivering meta knowledge that arises from join-
ing several statements, e.g. meta knowledge about uncertainty that
was based on several meta knowledge statements with different
values of uncertainty.

Therefore, querying Semantic Web data requires a principled,
generic approach to the treatment of meta knowledge that is able
to adapt to many dimensions of meta knowledge and that is open
to accommodate to new dimensions when the need arises. Such
a principled, original framework is given in this paper. We start
to explain our approach with a discussion of important design
choices in section 2. We model meta knowledge in existing RDF
structures by embedding a slightly more expressive language, which
we call RDF+, into RDF1. We define the abstract syntax of RDF+,
its semantics and its embedding in RDF in Section 4. In Sec-
tion 5, we extend the SPARQL syntax and semantics to work on
data and meta knowledge of RDF+. The extension allows the user
to extend a given conventional SPARQL query by a keyword for
meta knowledge triggering the construction of meta knowledge by
the query processor. Section 6 summarizes the overall use and
processing of SPARQL queries with meta knowledge. Section 7
reports on initial graceful results for meta knowledge processing
from a theoretic point of view and Section 8 provides pointers to

1This proposal is a completely revised and extended version of [17]. Major
revisions include a novel formal model, discussion of the design space,
complexity analysis, and prototype implementation.

the prototype implementation of the system.

2. Scenario

In our sample application scenario, we assume that the user
utilizes knowledge which has been initially extracted from Web
pages of Computer Science departments and stored in form of
RDF triples in his personal “active space” [16], backed by a local
RDF repository. Example 2.1 shows the relevant facts that may
have been obtained from departments of different universities. For
better readability, we use for our examples in this paper the RDF
triple language Turtle [8] with Named Graphs [1, 4] in a simplified
form that abstracts from default namespaces.

E 2.1. Extracted Knowledge and SPARQL query

G1 { JamesHendler researchTopic SemanticWeb .
JamesHendler affiliatedWith RensselaerPI }

G2 { JamesHendler researchTopic KnowledgeDiscovery .
JamesHendler affiliatedWith UnivMaryland .
RudiStuder researchTopic SemanticWeb .
RudiStuder affiliatedWith UnivKarlsruhe }

The extracted knowledge comes from different sources, at dif-
ferent timepoints, and with different degrees of extraction con-
fidence. This information is also captured and stored into the
same RDF repository as shown in example 2.2, using the notion
of Named RDF Graphs [1, 4].

E 2.2. Associated meta knowledge

G3 {
G1 mk:source <www.rpi.edu/report.doc> .
G1 mk:certainty "0.9" .
G1 mk:timestamp "5/5/2007"

}
G4 {

G2 mk:source <www.cs.umd.edu/survey.pdf> .
G2 mk:certainty "0.6" .
G2 mk:timestamp "6/6/2001"

}

In our scenario, the sample user aims to explore the knowledge
and meta knowledge using the RDF query language SPARQL. We
assume that he aims to find experts in the domain of Semantic Web
and their affiliations. The corresponding SPARQL query is shown
in example 2.3. In addition, the user wants to exploit meta knowl-
edge from example 2.2 for obtaining results with best certainty and
for analyzing contradictive answers (e.g. different affiliations for
the same person “James Hendler” in example 2.1).

E 2.3. Extracted Knowledge and SPARQL query

CONSTRUCT (?X worksAt ?Y)
FROM NAMED G1,G2
WHERE
{

{
{?X researchTopic ?Y } AND
{?X affiliatedWith ?Z }

}
FILTER {?Y = SemanticWeb}

}

3. Design choices

This section summarizes and shortly motivates the design choices
for our meta knowledge framework.

Reification. Establishing relationships between knowledge and
meta knowledge requires appropriate reification mechanisms for
supporting statements about statements. Our general objective is
to execute queries for data proper (i.e. without meta knowledge)
directly, without complex transformations. For compliance with
existing applications that access the repository in a common way
(e.g. using SPARQL queries), we do not modify existing user data.
This requirement does not allow us to use mechanisms like RDF
reification, which decompose existing triples and fully change the
representational model. In our framework described in section 4,
we adopt the notion of Named RDF Graphs for meta knowledge
representation [1, 4].

Storage mechanisms. Following the overall philosophy of
RDF, we do not separate meta knowledge from “normal” user
knowledge in the repository. Following this paradigm, a user or
developer has unlimited access to all contents of the triple store
and can manipulate meta knowledge directly. In other words,
the user can directly access meta knowledge (e.g. using suitable
SPARQL queries). Beyond explicitly designed queries for meta
knowledge access, in Section 5 we describe the extension of SPARQL
that allows us to access meta knowledge about the result set auto-
matically without user intervention.

Dimensions of Meta Knowledge.An important point for the
application design is the definition of relevant meta knowledge
properties and their suitable interpretation for arbitrary complex
query patterns. In general, meta knowledge properties are appli-
cation dependent and must be carefully chosen by the system ad-
ministrator. In our sample scenario (sections 2 and 6) we discuss
common and widely used properties, such as timestamp, source,
and (un)certainty, and show ways of defining and utilizing them in
our framework.

Syntax extensions.Seamless integrated access to meta knowl-
edge requires corresponding extensions of existing querying mech-
anisms. These can be realized at different levels, e.g. query lan-
guage (e.g. SPARQL) or application-specific interfaces (e.g. Sesame
API). In Section 5 we describe our SPARQL extension for con-
structing query results with associated meta knowledge. It is system-
independent and not related to some particular implementation of
the RDF repository. Furthermore, it fully supports the existing
SPARQL syntax and semantics. Compliance with existing estab-
lished standards makes the integration with existing applications
and interfaces substantially easier.

4. Syntax and Semantics for RDF with Meta-
knowledge

In the course of representing and reasoning with meta knowl-
edge we embed a language with meta-knowledge reasoning, i.e.
RDF+, in a language without such specific facilities, i.e. in RDF.
This embedding implies that we may consider an RDF snippet
in its literal senseand we may possibly interpret it as making a
meta-knowledge statement. Embedding meta knowledge in RDF
is not the most expressive means to deal with all needs of meta-
knowledge processing, but it retains upward compatibility with ex-

isting usage of the language and corresponding tools and methods,
which is a major concern for Semantic Web approaches.

Though we denote meta knowledge in RDF, we must distin-
guish the notation of RDF with onlyimplicit notation of meta-
knowledge, but no semantic consequences specifically due to this
meta knowledge, from a formally extended model of RDF with
explicit notation of meta-knowledge. The following definition of
RDF+ helps us to draw this line very clearly and concisely. The
abstract syntax for this embedded language, RDF+, is given in Sec-
tion 4.1 and its semantics in Section 4.2. Eventually in this section,
we show how to embed RDF+ in RDF with named graphs.

4.1 An Abstract Syntax for RDF+

The abstract syntax of RDF+ is based on the same building
blocks as RDF:

• U are Uniform Resource Identifiers (URIs).

• L are all RDF literals.

• G ⊆ U is the set of graph names.

• P ⊆ U is the set of properties.

In addition, we must be able to refer to statements directly with-
out use of reification. For this purpose, we introduce statement
identifiers:

• Θ is a set of statement identifiers, which is disjoint fromU
andL.

Now, we may define RDF+ literal statements that are placed in
named graphs and have, in addition to RDF, a globally unique
statement identity.

D 4.1 (RDF+ L S).
The set of all RDF+ literal statements,S, is defined as quintuples
by:
S := {(g, s, p,o, θ)|g ∈ G, s ∈ U, p ∈ P,o ∈ U ∪ L, θ ∈ Θ}.

Thereby,θ and(g, s, p,o) are keys such that there exists a bijec-
tion f1 with f1(g, s, p,o) = θ ∧ f4(θ) := f −1(θ) = (g, s, p,o). More-
over, we define the overloaded function f5 to return the complete
quintuple given eitherθ or (g, s, p,o), i.e. f5(θ) := (g, s, p,o, θ) =:
f5(g, s, p,o), when f1(g, s, p,o) = θ.

The reader may note that we assume thatf1 is fixed and given
before any statement is defined. Furthermore, this definition of lit-
eral statements and the rest of this paper abstracts from RDF blank
nodes in order to keep the formalization more concise. However,
we do not see any principle problem in extending our treatments
to blank notes, too.

The two statements of Graph G1 of Example 2.1 may now be
represented in RDF+ in the following way.

E 4.1.
S ⊇ K ⊇ {
(G1, JamesHendler, researchTopic, SemanticWeb, θ1),
(G1, JamesHendler, affiliatedWith, RensselaerPI, θ2) }

Thereby, the exact form of statement identifiers inΘ is up to
the implementation, as they are only used for internal processing.

Having represented the literal interpretation of RDF statements
in RDF+, we may now address the representation of selected RDF
statements as RDF+ meta knowledge. This is done using a struc-
ture of RDF+ meta-knowledge statements,M, that is separate from
the set of RDF+ literal statements:

D 4.2 (RDF+ M- S).
Let Π ⊆ P be the set of meta-knowledge properties. LetΩπ ⊆
U ∪ L, with π ∈ Π, be sets providing possible value ranges for the
meta-knowledge propertiesπ ∈ Π.

Then, the set of all RDF+ meta-knowledge statements,M, is
defined by:M := {(θ, π, ω)|θ ∈ Θ, π ∈ Π, ω ∈ Ωπ)}.

The following example partially demonstrates the target repre-
sentation of the first two meta-knowledge statements of graph G3
from Example 2.2.

E 4.2.
M ⊇ M ⊇ {
(θ1, mk:source, <www.rpi.edu/report.doc>),
(θ1, mk:certainty, 0.9)}

Together we may now define a RDF+ theory.

D 4.3 (RDF+ T).
A RDF+ theory of literal statements and associated meta knowl-
edge statements is a pair(K,M) referring to a set of literal state-
ments K⊆ S and a set of meta-knowledge statements M⊆ M.

A (partial) example for such a theory is given by the pair (K,M)
with definitions forK and M as given in examples 4.1 and 4.2,
respectively.

4.2 A Semantics for RDF+

Though we now have an abstract syntax for representing lit-
eral statements like “JamesHendler researchTopic SemanticWeb”
in G1 and meta-knowledge statements like ”the source of the state-
ment that James Hendler’s research topic is Semantic Web is found
in the document

<www.rpi.edu/report.doc>"

in G3, such an abstract syntax may remain remarkably ambiguous
if it cannot be linked to a formal semantics. For instance, given
two meta-knowledge statements:
(θ1, mk:source, <www.rpi.edu/draftReport.doc>) and

(θ1, mk:source,<www.rpi.edu/finalReport.doc>)

for the same literal statement identified byθ1, the question may
arise whether this means a disjunction, i.e. one of the two docu-
ments has provided the fact, or a conjunction, i.e. both documents
have provided the fact, or a collective reading, i.e. the two docu-
ments together gave rise to the fact, or whether this situation con-
stitutes invalid meta-knowledge.

In order to prevent such ambiguities we introduce a generic
semantic framework for meta-knowledge in RDF+. However, the
framework must also be able to reproduce the literal interpretations
found in RDF. For the latter purpose, we first define a ‘standard’
model for a RDF+ theory.

D 4.4 (S I  M).
A standard interpretation Is : S → {>,⊥} for a structure(K,M)

assigns truth values to all statements2 in K.
A standard interpretation is a standard model if and only if it

makes all statements in K become true.

2Note that because f1 is fixed there are no two tuples
(g, s, p,o, θ1), (g, s, p,o, θ2), where θ1 , θ2. This implies that the
standard interpretation is independent of the identifiersθ1, θ2.

For instance, any standard modelIs for (K,M) in example 4.1
would include

(G1, JamesHendler, researchTopic, SemanticWeb,θ1)
in its set of literal statements evaluating to>.

In order to address the level of meta-knowledge we foresee an
additional model layer that provides a different interpretation to
each meta-knowledge property.

D 4.5 (Π-I  M).
A Π-interpretation Iπ : S ⇀ Ωπ for a propertyπ ∈ Π is a partial
function mapping statements into the allowed value range ofπ.

A Π-interpretation Iπ is a Π-model for (K,M) if and only if
for all meta-knowledge statements(θ, π, ω) ∈ M where f1(θ) =
(g, s, p,o) the value of the interpretation coincides withω, i.e.
Iπ((g, s, p,o, θ)) = ω.

As an example, consider the source interpretationImk:source of
the literal statement (G1, JamesHendler, researchTopic, Seman-
ticWeb,θ1) from Examples 4.1 and 4.2. A modelI would map this
literal statement usingImk:sourceonto<www.rpi.edu/report.doc>.

The literal and the meta-knowledge interpretations may now be
combined to define what an overall, unambiguous model is:

D 4.6 (M- I  M).
A meta-knowledge interpretationI is a set including a standard
interpretation Is and theΠ-interpretations Iπ for all meta-knowledge
propertiesπ ∈ Π.

A meta-knowledge interpretationI is a model for a theory
(K,M) if and only if all its interpretations I∈ I are standard
models orΠ-models for(K,M).

4.3 Mapping between RDF and RDF+

The mapping between RDF and RDF+ needs to be defined in
two directions. First, one must be able to map from RDF as given
in the examples from Section 2 to RDF+. Second, one must be able
to map from RDF+to RDF. Because RDF+is more fine-grained
than RDF, the first direction will be easy, while the second will
have to make compromises on the granularity of the representa-
tion.

4.3.1 From RDF to RDF+

The examples of Section 2 reify groups of statements, i.e. the
ones found in G1 and G2, in order to associate meta-knowledge,
such as given in G3 and G4. In order to allow for an interpretation
of the meta knowledge as defined in the preceding section, we map
RDF into RDF+. For all RDF statements, including statements
in graphs G1 and G2 of Example 2.1, the mapping performed is
close to an identity mapping. One only needs to add statement
identifiers. The result for G1 in RDF+ is:

E 4.3.
K ⊇ { (G1, JamesHendler, researchTopic, SemanticWeb, θ1),
(G1, JamesHendler, affiliatedWith, RensselaerPI, θ2) },
with
θ1 := f1(G1, JamesHendler, researchTopic, SemanticWeb) and
θ2 := f1(G1, JamesHendler, affiliatedWith, RensselaerPI)

The same mapping – close to the identity mapping – is per-
formed for meta-knowledge statements like statements of graph
G3, resulting in their representation as literal statements:

E 4.4.
K ⊇ {
(G3, G1, mk:source, <www.rpi.edu/report.doc> , θ3),
(G3, G1, mk:certainty, "0.9", θ4), ...}

Note that this step is necessary in order to achieve upward
and – limited – downward compatibility between RDF+ and RDF.
Of course, the interpretation of statements, like the ones found
in G3, also require an interpretation as meta knowledge. This is
achieved by mapping RDF statements with designated properties
fromΠ like ‘mk:source’ and ‘mk:certainty’ to the additional meta-
knowledge layer:

E 4.5.
M ⊇ {
(θ1, mk:certainty, "0.9"),
(θ1, mk:source, <www.rpi.edu/report.doc>), . . .}

The mapping of predicates and objects of these meta-knowledge
statements from RDF to RDF+ are obvious, they are mapped to it-
self. For the subjects, however, there arise modeling choices. For
instance, if ‘mk:certainty’ were interpreted using probability the-
ory, one might assign a distributive or a collective reading. In the
distributive reading, each fact in G1 receives the probability value
of 0.9 and, eventually, the distributive reading will assign a joint
probability of close to 0 for a large number ofn stochastically in-
dependent facts, i.e. the joint probability 0.9n. In the collective
reading, the collection of facts in G1 as a whole will receive the
probability value 0.9. Therefore, the collective reading will assign
an individual certainty close to 1 for each individual fact, when the
number of facts is high and each fact is independent from the oth-
ers, i.e. the individual probability would be

n√
0.9. A priori, none

of the two (and more) modeling choices is better than the other,
but they constitute different modeling targets.

The mapping from RDF to RDF+ for the distributive reading
of a meta propertyπ is easy to achieve.

D 4.7 (D E).
Given an RDF statement “:G{S P O}” and an RDF meta-knowledge
statement “:H{:G π ω}”, a distributive embedding of RDF+ in
RDF adds the meta-knowledge statement{(θ, π, ω)|θ = f1(G, s, p,o)∧
f5(θ) ∈ K} to M.

This means that such a meta-knowledge statement is applied
individually to all statements in the graph to which it refers in RDF,
as indicated in the example above.

In order to assign a joint probability of 0.9, one must assign
this value to the conjunction of statements, i.e.f5(θ1)∧ f5(θ2) must
be assigned probability value 0.9. An interpretation for this will
be given in Section 5.

4.3.2 From RDF+ to RDF
The serialization of RDF+ data in the knowledge baseK is

straightforward. Each quintuple (g, s, p,o, θ) is realized as a cor-
responding triple in a named graph and the tuple identifierθ is
discarded.

E 4.6.
(G5, JamesHendler, researchTopic, SemanticWeb, θ)

is mapped to
G5 {JamesHendler researchTopic SemanticWeb }

For meta-knowledge statements the situation is more challeng-
ing, because literal statements with different statement identifiers
may belong to only one named graph. Their corresponding meta-
knowledge statements may differ, but the realization of the meta-
knowledge statements in RDF does not allow for retaining these
fine-grained distinctions – unless one chooses to change the mod-
eling approach drastically, e.g. by assigning each literal statement

to a named graph of its own, which seems undesirable (cf. discus-
sion in Section 3).

We have preferred to pursue a more conventional modeling
strategy for RDF with named graphs. Therefore, we weaken the
association between meta knowledge statements and their corre-
sponding literal statements when mapping to RDF. I.e. we group
sets of meta-knowledge property values into one complex value.

D 4.8 (G G M-).
Given a RDF+ theory(K,M), RDF meta-knowledge is generated
by grouping RDF+ meta-knowledge statements as follows:

Add one RDF statementhashGraph(g){g π ω′} for each

ω′ := groupπ(
∨

∃θ,ω: f5(θ)∈K,(θ,π,ω)∈M

ω)

where group is a meta-property specific grouping function and
hashGraphis a function mapping existing graph names onto graph
names suitable for associating meta knowledge.

The suitability of hashGraph may be application specific. A
general strategy may map graph namesg to graph names pre-
fixed by<http://metaknowledge.semanticweb.org> in a determin-
istic manner.

In the following example the grouping of meta-knowledge val-
ues is illustrated.

E 4.7.
K:={
(G5, JamesHendler, researchTopic, SemanticWeb, θ1),
(G5, JamesHendler, affiliatedWith, UnivMaryland, θ2) },
M:={
(θ1, mk:source, <www.rpi.edu/report.doc>),
(θ2, mk:source, <www.cs.umd.edu/survey.pdf>) }

is mapped to
:G5 {
JamesHendler researchTopic SemanticWeb .
JamesHendler affiliatedWith UnivMaryland }
:G6 {
G5 mk:source {<www.rpi.edu/report.doc>,
<www.cs.umd.edu/survey.pdf>} }

In Example 4.7, the resulting grouped value is simply denoted
as a set of source documents,{<report.doc>, <survey.pdf>}. The
property specific grouping function must provide the mechanism
to represent such a grouped value in an appropriate RDF data
structure, e.g. as a rdf:bag or as an appropriate datatype.

5. SPARQL for RDF and Meta-Knowledge

In this section we first introduce a small extension to standard
SPARQL syntax [15] and then define how SPARQL can be applied
to an RDF+ knowledge base. The objective of our considerations
is the derivation of meta-knowledge about query results.

5.1 SPARQL Syntax Revisited

When using SPARQL to query RDF+ we propose only two
modifications to obtain meta knowledge. First, we introduce one
additional expression “WITH METAMetaList”. This expression
includes the named graphs specified inMetaList for treatment as
meta knowledge. This statement is optional. When it is present the
SPARQL processor may digest the RDF+ meta-knowledge state-
ments derivable from the RDF named graphs appearing in the

MetaList. The SPARQL processor will then use this meta knowl-
edge to compute and output all the meta knowledge statements
deriveable by successful matches of RDF+ literal statements with
the WHERE pattern.

In order to determine which literal statements should be con-
sidered we introduce a second modification. We do not process
FROM expressions with our meta knowledge framework, but only
FROM NAMED. The reason is that FROMg expressions repli-
cate all RDF triples ofg into the default triple space of the query.
Thereby, they remove the links between the RDF statements ofg
and possible meta knowledge. Hence, FROM expressions are not
relevant for our treatment of meta-knowledge, but of course they
may still be processed using the standard SPARQL semantics.

Thus, SPARQL queries on RDF+ have one of the two following
overall forms:

D 5.1 (SPARQL SELECT Q).
The structure of a SPARQL SELECT query has the following form:

SELECT selectExpression
[WITH META MetaList]
FROM NAMED GraphList
WHERE P

D 5.2 (SPARQL CONSTRUCT Q).
The structure of a SPARQL CONSTRUCT query has the following
form:

CONSTRUCT constructExpression
[WITH META MetaList]
FROM NAMED GraphList
WHERE P

In these definitions,P refers to a graph pattern that explains how
RDF+ literal statements from the givenGraphList are matched.
Matches bind variables that are used for providing results accord-
ing to theselectExpressionor theconstructExpression.

5.2 SPARQL Semantics Revisited

In this subsection we define the semantics of SPARQL queries
evaluated on an RDF+ theory. For our definitions we use two
building blocks: algebraic semantics of SPARQL [11, 13] and the
how-provenancecalculated via annotated relations (cf. [7]).

The algebraic semantics of SPARQL queries are given based
on set-theoretic operations for sets of variable assignments (cf.
[11, 13]). Thereby, a variable assignment is a partial function
µ : V → U ∪ L, whereV is the set of variables given in a SPARQL
query. A set of variable assignments can be represented by a rela-
tion φ over the domain (U ∪ L)|V|, where the variablesV are the at-
tributes and assignments are the tuples of this relation. Such a set
of assignments may be assigned information about the so called
how-provenance[7], i.e. the assignments may be annotated with
formulae describing the individual derivation tree used to assign
the variables. The how-provenance annotation may be represented
by a functionΦ : (U ∪ L)|V| → F, where (U ∪ L)|V| is the set of all
tuples of the length|V| over the domainU ∪ L andF is the set of
formulae annotating variable assignments. The set of formulaeF

is given by all Boolean formulas constructed over the set of literal
statementsS and including a bottom element⊥ and a top element
>. The formulae constitute an algebra (F,∧,∨,¬,⊥,>). The spe-
cial element⊥ is used as annotation of variable assignments which
are not in the relationφ. The special element> may be omitted,
but it allows for simplification of complex formulas.

Assume the following SPARQL query to be evaluated on the
RDF+ knowledge baseK:

E 5.1.

SELECT ?g ?x ?y
FROM NAMED G1, G2
WHERE {

GRAPH ?g {?x researchTopic ?y .} }

K = {
(G1, JamesHendler,researchTopic,SemanticWeb, θ1),
(G1, JamesHendler,affiliatedWith,RensselaerPI, θ2),
(G2, JamesHendler,researchTopic,KnowledgeDiscovery, θ3)
... }

For the query of example 5.1, we may find the following vari-
able assignments using standard SPARQL processing and we may
indicate, which atomic formulae, i.e. RDF+ quintuples in this sim-
ple example, led to these variable assignments. This indication is
given by the statement identifiers representing their statements.

E 5.2.

Φ =

?g ?x ?y F

G1 JamesHendler SemanticWeb θ1
G2 JamesHendler KnowledgeDiscoveryθ3
G2 RudiStuder SemanticWeb θ5

.

This simple example of how a set of variable bindings has been
produced is generalized to SPARQL queries of arbitrary complex-
ity by a recursive definition of simultaneous query evaluation and
computation of the annotations. The first step in evaluating a graph
pattern is to find matches for the triple pattern contained in the
query. Because the RDF+ knowledge base K consists of quintu-
ples, we need to adapt the SPARQL evaluation procedures. The
statement identifiers do not need to be matched, as they depend
functionally on graph name, subject, predicate and object. There-
fore, we consider matching of quadruple patterns (γ, α, β, δ). As
a simplification of our formalization we assume that the keyword
GRAPH together with a URI or a graph variable is used in any
given SPARQL query. If it is not used, we may expand a given
SPARQL query to include it.

D 5.3 (B Q P M).
Let K be a knowledge base of RDF+ literal statements andµ be a
variable assignment.

The evaluation of the SPARQL query”GRAPH γ {α β δ}” over
K, denoted by[[GRAPH γ {α β δ}]] K is defined by the annotated
relationΦ, dom(Φ) = {µ |dom(µ) = vars(GRAPHγ {α β δ})},

Φ(µ) =


θ if r(µ, (γ, α, β, δ)) = (g, s, p,o)∧

(g, s, p,o, θ) ∈ K ∧ f1(g, s, p,o) = θ,
⊥ else

wherevars(P) denotes the variables contained in a pattern P and
r(µ, (γ, α, β, δ)) is the quadruple obtained by replacing the vari-
ables in(γ, α, β, δ) according toµ.

An example for this definition is given by processing example 5.1,
i.e. query and corresponding dataset, delivering the result as indi-
cated in example 5.2.

Basic quadruple pattern matching is not directly applicable, if
an expression “GRAPHγ” appears outside a complex triple pat-
tern. In such a case, we first need to distribute the expression

“GRAPH γ” appropriately to atomic triple patterns in order to pre-
scribe atomic SPARQL expressions accessible by basic quadruple
pattern matching. Because named graphs cannot be nested, this
distribution is always possible and unambiguous. In the following
we use the function quads(P) to denote the query resulting from
this transformation. In example 5.3 this transformation is demon-
strated on a conjunction of two triple patterns.

E 5.3.
P1 =
GRAPH ?src {

{ ?x researchTopic ?y .}
{ ?x affiliatedWith ?z .}

}

quads(P1) =
GRAPH ?src { ?x researchTopic ?y .}
GRAPH ?src { ?x affiliatedWith ?z .}

Now we define the evaluation of complex graph patterns by
operations on sets of variable assignments similar to [11, 13].

D 5.4 (C   ).
Let P1, P2 be complex graph patterns. The evaluation of graph
patterns over K, denoted by[[·]] K , is defined recursively:

1. [[GRAPH γ {α β δ}]] K is given by definition 5.3,

2. [[GRAPH g P1]] K = [[quads(P1)]] K ,

3. (a) [[P1 AND P2]] K = [[P1]] K Z [[P2]] K ,

(b) [[P1 OPTP2]] K = [[P1]] K =./ [[P2]] K ,

(c) [[P1 UNION P2]] K = [[P1]] K ∪ [[P2]] K ,

4. [[P1 FILTER C]] K = σc([[P1]] K),

The definition uses the operation AND. In standard SPARQL
the operation AND is denoted by the absence of an operator. Like
[11, 13] we still use the explicit term AND in order to facilitate
referencing to this operator.

The recursion in the SPARQL query evaluation defined here
is indeed identical to [11, 13]. Only the basic pattern matching
has been changed slightly. Basic pattern matching now consid-
ers quadruples and it annotates variable assignments from basic
matches with atomic statements fromS and variable assignments
from complex matches with Boolean formulaeF ∈ F overS.

As an example, consider the query from example 5.4 evaluated
on the knowledge base from example 5.5.

E 5.4.
SELECT ?h1 ?h2 ?x ?y
FROM NAMED G1,G2
WHERE {

{ GRAPH ?h1 {?x affiliatedWith ?y .} AND
GRAPH ?h2 {?x researchTopic "SemanticWeb" .} }

FILTER {?x="JamesHendler"}
}

E 5.5.

K = {
(G1, JamesHendler,researchTopic,SemanticWeb, θ1),
(G1, JamesHendler,affiliatedWith,RensselaerPI, θ2),
(G2, JamesHendler,researchTopic,KnowledgeDiscovery, θ3),
(G2, JamesHendler,affiliatedWith,UnivMaryland, θ4),
(G2, RudiStuder,researchTopic,SemanticWeb θ5),
(G2, RudiStuder,affiliatedWith,UnivKarlsruhe θ6) }

Let P be the graph pattern contained in the WHERE clause of
the query. Then the evaluation ofP is defined by an algebraic
expression:

[[P]] K = [[{P1 AND P2} FILTER {?Z= ”JamesHendler”}]] K

= σ?x=”JamesHendler”([[P1 AND P2]] K)

= σ?x=”JamesHendler”([[P1]] K Z [[P2]] K)

= σ?x=”JamesHendler”(Φ1 Z Φ2)

whereΦ1 andΦ2 are relations representing variable assignments
and their annotations. In this example and in the preceding defin-
ition we have used algebraic operations on sets of annotated bind-
ings. However, we have not yet explained how these operations are
used to construct formulas representing the how-provenance. The
following definition will specify how complex formulae fromF,
which serve as annotations for results of matching complex graph
pattern, will be derived.

D 5.5 (A  A R). LetΦ1,Φ2

be sets of annotated variable assignments. We defineZ,∪, \ σ and
=./ via operations on the annotations of the assignments as follow-
ing:

• (Φ1 Z Φ2)(µ) = Φ1(µ1) ∧ Φ2(µ2), whereµ1 andµ2 are com-
patible andµ = µ1 ∪ µ2,

• (Φ1 ∪ Φ2)(µ) = Φ1(µ) ∨ Φ2(µ),

• (Φ1 \ Φ2)(µ) = Φ1(µ) ∧ ¬
(∨
µi ,Φ2(µi),⊥ Φ2(µi)

)
, whereµi is

compatible toµ,

• (σc(Φ))(µ) = Φ(µ) ∧ fc(µ), where fc(µ) denotes a function
mappingµ to either> or ⊥ according the condition c.

• (Φ1 =Z Φ2)(µ) = (Φ1 Z Φ2)(µ) ∨ (Φ1 \ Φ2)(µ).

Let us now continue the evaluation of the query specified in Ex-
ample 5.4. In order to evaluate the expressionσ?x=”JamesHendler”(Φ1 Z
Φ2) we need to determineΦ1 andΦ2 using definition 5.3. The
intermediate result is shown in example 5.6. To evaluate the con-
junction of two quadruple patterns the operationZ is applied, the
result is shown in example 5.7. The annotationθ1 ∧ θ2 of the first
row represents that this assignment has been derived from the con-
junction of the two literal statementsθ1 andθ2 (see example 5.5).
Application of theσ-operation to the intermediate results gives the
annotated relation shown in example 5.8.

E 5.6.

Φ1 =

?h1 ?x ?y A1

G1 JamesHendler RensselaerPI θ2
G2 JamesHendler UnivMaryland θ4
G2 RudiStuder UnivKarlsruhe θ6

Φ2 =

?h2 ?y A2

G2 JamesHendler θ1
G2 RudiStuder θ5

E 5.7.

Φ1 Z Φ2 =

?h1 ?h2 ?x ?y A3

G1 G1 JamesHendler RensselaerPI θ1 ∧ θ2
G1 G2 JamesHendler UnivMaryland θ1 ∧ θ4
G2 G2 RudiStuder UnivKarlsruhe θ5 ∧ θ6

E 5.8.

σ?x=”JamesHendler”(Φ1 Z Φ2) =

?h1 ?h2 ?x ?y A4

G1 G1 JamesHendler RensselaerPI (θ1 ∧ θ2) ∧ >
G1 G2 JamesHendler UnivMaryland(θ1 ∧ θ4) ∧ >

The annotationsΦ(µ) can now be used to assign truth values
for µ. Is (see definition 4.4) assigns truth values to all atomic state-
mentssi ∈ K ⊆ S. We extend the interpretationIs to capture all
the Boolean formulae over statementsS.

D 5.6 (S I  F).
Let F, F1, F2 ∈ F be Boolean formulae overS, let Fa ∈ S be an
atomic formula. We define the standard interpretation of formulae
I f
s as follows:

• I f
s (Fa) := Is(Fa);

• I f
s (¬F) := ⊥ if I f

s (F) = >; I f
s (¬F) := > if I f

s (F) = ⊥;

• I f
s (F1 ∧ F2) is> if I f

s (F1) = I f
s (F2) = >, otherwise⊥

• I f
s (F1 ∨ F2) is> if I f

s (F1) = > or I f
s (F2) = >, otherwise⊥.

For instance,I f
s returns> for the assignment shown in the first

row ofΦ1 Z Φ2 from example 5.7, because the statementsθ1 and
θ2 are in the knowledge base.

Analogously toI f
s , we can extend aΠ-interpretationIπ over

RDF+ statements to aΠ-interpretationI f
π over formulae. Remem-

ber that RDF+ allows for only oneω per θ ∈ Θ andπ ∈ Π. In
order to make use of the how-provenance represented by the an-
notations we require that for each meta-knowledge propertyπ an
algebra (Ωπ,∧,∨,¬,>π,⊥π) with three operations∧,∨,¬ and two
special elements>π,⊥π ∈ Ωπ is defined. The definition of the
algebras can be supplied by a modeler according to the intended
semantics of the different meta-knowledge properties.

D 5.7 (Π-I  F).
Let F, F1, F2 ∈ F be Boolean formulae overS, let Fa ∈ S be an
atomic formula. We define the interpretation If

π as follows:

• I f
π (Fa) := Iπ(Fa);

• I f
π (¬F) is ¬I f

π (F);

• I f
π (F1 ∧ F2) is I f

π (F1) ∧ I f
π (F2);

• I f
π (F1 ∨ F2) is I f

π (F1) ∨ I f
π (F2);

For illustration we consider in example 5.9 the definition of
fuzzy logic operations to calculate a possibility measure on vari-
able assignments, operations defined on timestamps which calcu-
late the time of the last modification, and set operations defined
for extraction sources that construct the combined provenance.

E 5.9.
Ifuzzy(x1 ∧ x2) = min(Ifuzzy(x1), Ifuzzy(x2))
Ifuzzy(x1 ∨ x2) = max(Ifuzzy(x1), Ifuzzy(x2))
Ifuzzy(¬x1) = 1− Ifuzzy(x1)

Itime(x1 ∧ x2) = min(Itime(x1), Itime(x2))
Itime(x1 ∨ x2) = max(Itime(x1), Itime(x2))
Itime(¬x1) = 0

Isource(x1 ∧ x2) = Isource(x1) ∪ Itime(x2)
Isource(x1 ∨ x2) = Isource(x1) ∪ Itime(x2)
Isource(¬x1) = {}

Query forms. For SELECT queries the evaluation on an
RDF+dataset is almost the same as in standard SPARQL. The only
difference is that the evaluationsI f

π (Φ(µ)) are returned in addi-
tion to the bindings themselves. The evaluation will consider all
named graphs specified in the WITH META clause, retrieve all
meta knowledge statements from these graphs, and calculate val-
ues for all found knowledge properties. If there is no meta knowl-
edge statement (θ, π, ω) for a particular RDF+ literal statement
f5(θ) and a meta-knowledge propertyπ we will use⊥π as default
value.

Analogously to standard evaluation, the evaluation of a CON-
STRUCT query on an RDF+ dataset results in a single RDF+ graph
using a graph template. This is in line with the fact that the graph
template consists of a conjunction of triple patterns and, thus, quadru-
ple patterns cannot be stated.3

For each bindingµi satisfying the WHERE-conditions and for
each triple patternt j in the CONSTRUCT-template add the quin-
tuple (ĝ, si, j , pi, j ,oi, j , θi, j) to the result set where (si, j , pi, j ,oi, j) is the
triple obtained by replacing the variables int j according toµi and
θi, j is the statement identifierf1(ĝ, si, j , pi, j ,oi, j).

Notice that the same quintuple might have been produced more
than once, because different derivation trees may result in the same
binding of variables. Then, there may also be different annotations
Φ(µi) of the different bindingsµi which have been used to create
the identical (ˆg, si, j , pi, j ,oi, j , θi, j).

In order to account for meta-statements for new quintuples,
each new quintuple inherits the meta-knowledge propertiesπ as-
sociated with the binding which has been used to create that quin-
tuple. For all new quintuplesf5(θi, j) and allπ we add statements
(θi, j , π, ωi, j) to M whereωi, j = I f

π (Φ(µi)).
If the same quintuple has been obtained via different bindings

with different annotations,I f
π (Φ(µi)) will return different values

for the involved bindingsµi . As a consequence there are multiple
(θi, j , π, ωi, j) refering to the same statement identifierθi, j . We aggre-
gate the valuesωi, j for each meta-knowledge property into a single
new meta-knowledge statement (θi, j , π, I

f
π (
∨
ωi, j)) and discard the

original meta-knowledge statements (i.e.I f
π is also the grouping

function used in Definition 4.8).
Now we extend our previous examples to the calculation of

meta-knowledge. Meta-knowledge for some of the RDF+ state-
ments presented in example 5.5 is specified in example 5.10.

E 5.10.

M = {
(θ1, mk:fuzzy, 0.9),
(θ1, mk:time, "5/5/2007"),
(θ2, mk:fuzzy, 0.9),
(θ2, mk:time, "5/5/2007"),
(θ4, mk:fuzzy, 0.6),
(θ4, mk:time, "6/6/2001")}

We assume that the RDF+ meta-knowledge statements of ex-
ample 5.10 are returned in a new RDF graph as described in sec-
tion 4.3.

As an example for an CONSTRUCT statement consider exam-
ple 5.11.

3Standard SPARQL does not allow for giving this graph a name. In or-
der to associate meta knowledge, multiple named graphs as outputs are
convenient. In order to remain standard compliant, the SPARQL engine
may however also return data and meta knowledge in two different batches
distinguished by some implementation-specific mechanism.

E 5.11.

CONSTRUCT {?x worksAt ?y}
WITH META G3, G4
FROM NAMED G1, G2
WHERE {

{ GRAPH ?h1 {?x researchTopic "SemanticWeb" .} AND
GRAPH ?h2 {?x affiliatedWith ?y .} }

FILTER {?x="JamesHendler"}
}

The preliminary result of query evaluation is shown in exam-
ple 5.12. It contains variable assignments, the how-provenance of
their construction, and corresponding meta knowledge properties
that were constructed according to the standard interpretation. Us-
ing this information, the query processor returns the RDF+ literal
and meta-knowledge statements listed in example 5.13.

E 5.12.

?h1 ?h2 ?x ?y A4 fuzzy time

G1 G1 JamesHendler RensselaerPI (θ1 ∧ θ2) ∧ > 0.9 5/5/2007
G1 G2 JamesHendler UnivMaryland (θ1 ∧ θ4) ∧ > 0.6 6/6/2001

E 5.13.

Kres = {
(Gnew, JamesHendler, worksAt , RensselaerPI, θnew1)}
(Gnew, JamesHendler, worksAt , UnivMaryland, θnew2)}

Mres = {
(θnew1, mk:fuzzy, 0.9),
(θnew1, mk:time, "5/5/2007"),
(θnew2, mk:fuzzy, 0.6),
(θnew2, mk:time, "6/6/2001") }

6. A Run through the Example

This section summarizes the discussed steps of meta knowl-
edge representation and utilization for the sample scenario that
was introduced in section 2.

6.1 Tasks for the administrator

In order to represent and utilize meta knowledge, the system
administrator has to meet some design choices. In particular, the
application-specific knowledge properties must be defined. In our
sample scenario, we consider three meta knowledge properties:
source, certainty, and timestamp. In the next step, the adminis-
trator defines the intended semantics of these properties in order
to facilitate query processing with complex expressions and pat-
tern combinations. Using the notion from Section 5.1, we assume
that corresponding definitions for meta-knowledge properties are
defined according to previously discussed example 5.9.

Finally, data and available associated meta-knowledge are rep-
resented in RDF using named graphs [1, 4], and imported into our
RDF+-based repository.

6.2 Processing performed by the System

We assume that the administrator manages the small sample
knowledge base introduced in section 2. As discussed in section
4, the internal representation of the knowledge in the RDF+-based
repository is as follows (assuming suitable namespace abbrevia-
tions).

E 6.1.
{

(G1, JamesHendler researchTopic SemanticWeb, θ1),
(G1, JamesHendler affiliatedWith RensselaerPI, θ2)
(G2 JamesHendler researchTopic KnowledgeDiscovery θ2)
...}

The associated meta knowledge is internally represented in the
following form:

E 6.2.
{

(θ1, mk:source, <www.rpi.edu/report.doc>),
(θ1, mk:certainty, 0.9)
(θ1, mk:timestamp, "5/5/2007") ... }

Following our sample scenario, we consider the query that re-
trieves names of Semantic Web experts together with their affilia-
tions.

E 6.3.
CONSTRUCT {?x worksAt ?z}
WITH META Gx
FROM NAMED G1,G2
WHERE {

{ GRAPH ?h1 {?x researchTopic y .} AND
GRAPH ?h2 {?x affiliatedWith ?z .} }

FILTER {?y = "SemanticWeb"}
}

Internally, the query processor evaluates this query using graph
patterns discussed in 5.1. As a result, the following preliminary
variable assignment is produced:

E 6.4.

?h1 ?h2 ?x ?y A3
G1 G1 JamesHendler RensselaerPI θ1 ∧ θ2
G1 G2 JamesHendler UnivMaryland θ1 ∧ θ4
G2 G2 RudiStuder UnivKarlsruhe θ5 ∧ θ6

It contains possible variable assignments, and the how-provenance
(A3) that explainshowthese source statements have been used.

By combining this information with definitions for meta knowl-
edge properties and available meta knowledge statements, the query
processor constructs the result as follows:

E 6.5.
{

(Gnew, JamesHendler, worksAt , RensselaerPI, θnew1)
(Gnew, JamesHendler, worksAt , UnivMaryland, θnew2)
(Gnew, RudiStuder, worksAt , UnivKarlsruhe, θnew3)}

{

(θnew1, mk:fuzzy, 0.9),
(θnew1, mk:time, "5/5/2007"),
(θnew1, mk:source, <www.rpi.edu/report.doc>),
(θnew2, mk:time, "6/6/2001") ... }

This result is then serialized in RDF.

6.3 Benefits for the user/developer

The user or application developer can access the knowledge
stored in the RDF+-based repository in different ways. On one
hand, the repository does not change the existing SPARQL se-
mantics and thus fully supports common SPARQL queries. This

is an important advantage for compatibility with existing applica-
tions and interfaces. On the other hand, the repository supports
the advanced SPARQL syntax with metaknowledge support (sec-
tion 5.1). To this reason, the user obtains additional access to the
valuable meta knowledge that can be used for relevance ranking,
conflict resolution, or other similar applications in connection with
retrieved knowledge.

In our application scenario, the user may realize that the query
answer is potentially contradictive (James Hendler is affiliated with
Rensselaer PI and University of Maryland). By inspecting the as-
sociated meta knowledge, he would realize that the second fact
was generated by mistake. In fact, it is based on outdated informa-
tion (knowledge from the document “survey.pdf” with timestamp
“6/6/2001”) that was wrongly combined with knowledge from a
more recent source (namely document “report.doc” with timestamp
“5/5/2007”). It turns out that the affiliation of James Hendler has
actually changed from U Maryland to Rensselaer PI, and the erro-
neous tuple can be safely excluded from further processing.

7. Complexity

In this section we analyze how the construction of the annota-
tions influences the complexity of the decision problem related to
SPARQL. The decision problem associated with the evaluation of
a SPARQL query can be stated as following [11]:Given an RDF
dataset D, a graph pattern P and a mappingµ, determine whether
µ is in the result of P applied to D.For this decision problem,
which we denote by E, an analysis of the complexity is pre-
sented in [11, 12]. In the context of RDF+ datasets and annotated
variable assignments we have a slightly different decision prob-
lem: Given an RDF+ dataset D+, an RDF+ graph pattern P+, a
variable assignmentµ and an annotationα determine whetherα
is the correct annotation ofµ. We denote this problem by E+.
An annotation is correct iff it is identical to the formula obtained
by evaluatingP+ as defined in section 5.

Sinceµ must have an annotationα , ⊥ iff µ is in the result the
second decision problem includes the first one. The key difference
is to constructdifferentannotations for mappings which are in the
result. With the following two theorems we show that for pattern
which do not use the OPTIONAL operator E+ has the same
complexity as E. For both theorems the RDF counterparts have
been established by [11, 12].

T 7.1. E+ can be solved in time O(|P| · |D|) for graph
pattern expressions constructed by using only AND and FILTER
operators.

T 7.2. E+ is NP-complete for graph pattern expres-
sions constructed by using only AND, FILTER and UNION oper-
ators.

The theorems indicate that our treatment of meta knowledge
does not add to the computational complexity of SPARQL. A proof
for each of the theorems can be found at
http://isweb.uni-koblenz.de/Research/MetaKnowledge.

8. Implementation

The framework described in this paper has been implemented
and is available as an initial prototype. The prototype is available

as an open source implementation at
http://isweb.uni-koblenz.de/Research/MetaKnowledge

together with example queries using artificial data from the LeHigh
benchmark4.

9. Related Work

The importance of better understanding the ways by which the
result came about is fundamental to many Semantic Web applica-
tions and scenarios. The specification of the Semantic Web proof
layer was discussed in [10, 14, 9]. Our approach is focused on
a different language model (RDF) and provides fine-grained meta
knowledge management for retrieval queries with SPARQL that is
not directly comparable with proof traces for OWL reasoning.

In the area of database systems, meta knowledge is often rep-
resented using an extension of the relational data model, coined
annotated relations. Its purpose is primarily the description of
data origins (provenance) and the process by which it arrived as a
query answer [5, 2, 3, 6]. Basically, our methodology follows the
same idea. However, our approach is specially designed for RDF
graph models and not directly comparable to metadata models for
relational database systems. The same holds for the query lan-
guage (SPARQL instead of SQL) and its semantics. An important
difference to isolated database solutions is the serialization abil-
ity of RDF and thus seamless exchanging and utilization of meta
knowledge from our framework across the Semantic Web.

10. Conclusion and Future Work

In this paper, we presented an original, generic, formalized and
implemented approach for managing many dimensions of meta
knowledge, like source, authorship, certainty, and others, for RDF
repositories. Our method re-uses existing RDF modeling possi-
bilities in order to represent meta knowledge. Then, it extends
SPARQL query processing in such a way that given a SPARQL
query for data, one may request meta knowledge without modify-
ing the query proper. We achieve highly flexible and automatically
coordinated querying for data and meta knowledge, while com-
pletely separating the two areas of concern. Our approach remains
compatible to existing standards and query languages and can be
easily integrated with existing applications and interfaces.

In the future, we will investigate the meta knowledge support
for OWL-based knowledge bases with advanced reasoning capa-
bilities. Due to the substantially higher complexity of inferencing
and retrieval algorithms (e.g. reasoning in OWL-DL vs. RDF
querying with SPARQL) and the distributed nature of knowledge
sources in the Semantic Web, the notion of meta knowledge will
require further, non-trivial justification. Another interesting re-
search issue is the support fornestedmeta knowledge (i.e. con-
struction of meta knowledge for the result with respect to addi-
tional informationaboutmeta knowledge of its origins).

Our long-term objective is the generic, efficient and effective
infrastructure for meta knowledge management as an integral part
of the proof layer of the Semantic Web.

4available athttp://swat.cse.lehigh.edu/projects/lubm/

11. REFERENCES
[1] Christian Bizer and Jeremy J. Carroll. Modelling context

using named graphs. InW3C Semantic Web Interest Group
Meeting, Cannes, France, 2004.

[2] Peter Buneman, Sanjeev Khanna, and Wang Chiew Tan.
Data Provenance: Some Basic Issues.20th Conference on
Foundations of Software Technology and Theoretical
Computer Science (FSTTCS), New Delhi, India, pages
87–93, 2000.

[3] Peter Buneman, Sanjeev Khanna, and Wang Chiew Tan.
Why and Where: A Characterization of Data Provenance.
8th International Conference on Database Theory (ICDT),
London, UK, pages 316–330, 2001.

[4] Jeremy J. Carroll and Patrick Stickler. Trix: RDF triples in
XML. In Proceedings of the Extreme Markup Languages
2004, Montreal, Canada, 2004.

[5] Y. Cui and J. Widom. Practical Lineage Tracing in Data
Warehouses.16th International Conference on Data
Engineering (ICDE), San Diego, USA, 2000.

[6] Li Ding, Pranam Kolari, Tim Finin, Anupam Joshi, Yun
Peng, and Yelena Yesha. On homeland security and the
Semantic Web: A provenance and trust aware inference
framework. InProceedings of the AAAI Spring Symposium
on AI Technologies for Homeland Security, 2005.

[7] Todd J. Green, Gregory Karvounarakis, and Val Tannen.
Provenance semirings. InPODS, pages 31–40, 2007.

[8] Turtle Terse RDF Triple Language.
http://www.dajobe.org/2004/01/turtle/.

[9] D. McGuinness and P. Pinheiro da Silva. Explaining
Answers from the Semantic Web: the Inference Web
Approach.J. Web Sem., 1(4):397–413, 2004.

[10] W. Murdock, D. McGuinness, P. Pinheiro da Silva,
C. Welty, and D. Ferrucci. Explaining Conclusions from
Diverse Knowledge Sources.International Semantic Web
Conference (ISWC), Athens, USA, pages 861–872, 2006.

[11] Jorge Perez, Marcelo Arenas, and Claudio Gutierrez.
Semantics and complexity of SPARQL. InISWC, volume
4273 ofLNCS, pages 30–43, 2006.

[12] Jorge Perez, Marcelo Arenas, and Claudio Gutierrez.
Semantics and complexity of SPARQL.
arXiv:cs/0605124v1 [cs.DB], May 2006.

[13] Jorge Perez, Marcelo Arenas, and Claudio Gutierrez.
Semantics of SPARQL. Technical Report
TR/DCC-2006-17, Universidad de Chile, October 2006.

[14] P. Pinheiro da Silva, D. McGuinness, and R. Fikes. A Proof
Markup Language for Semantic Web services.Inf. Syst.,
31(4-5):381–395, 2006.

[15] Eric Prud’hommeaux and Andy Seaborne. SPARQL query
language for RDF. Working draft, W3C, March 2007.
http://www.w3.org/TR/rdf-sparql-query/.

[16] M. Schraefel, N. Shadbolt, N. Gibbins, S. Harris, and
H. Glaser. CS AKTive Space: Representing Computer
Science in the Semantic Web.13th International
Conference on World Wide Web (WWW), New York, USA,
pages 384–392, 2004.

[17] Bernhard Schueler, Sergej Sizov, and Steffen Staab.
Management of Meta Knowledge for RDF Repositories. In
Int. Conf. on Semantic Computing (ICSC), pages 543–550,
Irvine, CA, September 2007.

