
Automatic Matchmaking of Web Services

Sudhir Agarwal and Rudi Studer
Institute of Applied Informatics and Formal Description Methods (AIFB),

University of Karlsruhe (TH), Germany.
{agarwal, studer}@aifb.uni-karlsruhe.de

Abstract

Web services help in achieving increased automa-
tion across organizational boundaries. In this paper, we
present an approach for annotating WSDL documents
with semantically rich descriptions. We also present an
algorithm that considers such annotations in addition to
just the types of input and output parameters.Ourmatch-
making algorithm not only returns match/no-match an-
swers but in case of a match a set of conditions under
which a web service offers the desired functionality.

1. Introduction

Web services have primarily been designed for pro-
viding interoperability between business applications.
Current technologies assume a large amount of human
interaction, for integrating two applications. This is
primarily due to the fact that business process integra-
tion requires understanding of data and functions of the
involved entities. Semantic Web technologies, powered
by description logic based languages like OWL [12],
aim to add meaning to Web content, by annotating the
data with ontologies. This allows agents to get an un-
derstanding of users’ Web content and greatly reduces
human interaction for meaningful Web searches. A sim-
ilar approach can be used for adding meaning to Web
service descriptions, which will in turn, allow more au-
tomation, by reducing human involvement for under-
standing the data and functions of the services.

WSDL [17] operations however offer minimal seman-
tics (types of input and output parameters) of the func-
tionality of a web service. Since the actual functional-
ity of a web service is described in natural language
within the WSDL documentation tags, a lot of human
effort for discovering and using web services is needed.
In order to achieve more automation in web service us-
age life cycle, at least the relationship between inputs

and outputs need to be modeled. This leads to vari-
ous semantic web services efforts.

Web service discovery is one of the most important
tasks, that needs more automation. Existing match-
making approaches based on semantically rich descrip-
tions hardly consider more information than just the
types of input and output parameters, although the
underlying language or the ontology typically allows to
model much more properties of a web service than just
the input and output types. That is, existing match-
making approaches do not exploit the expressiveness
of the semantic web service modeling languages.

In this paper, we introduce a novel approach for
modeling and reasoning about web services. We model
semantic, temporal and security constraints in a unified
way and present a matchmaking algorithm that consid-
ers all three types of information than just the types in-
put and output parameters of a web service. Further,
our matchmaking algorithm not only returns a yes/no
answer but a set of conditions under which a web ser-
vice offers the desired functionality.

The paper is structured as follows. In section 2, we
show how web services can be modeled semantically.
In section 3, we show how different types of requests
can be specified. In section 4, we present a matchmak-
ing algorithm that given a request specified in our re-
quest specification formalism, automatically finds web
services descriptions that offer the desired functional-
ity. For each match, the algorithm identifies the condi-
tions under which the match offers the desired function-
ality. In section 5, we give a brief introduction of our
prototypical implementation. After discussing some re-
lated work in section 6, we conclude in section 7.

2. Specification of Web Services

If the web is seen as a huge database, web services
are like stored procedures. Like stored procedures, web
service work on a schema and data. Hence, in order to
enable automation in the usage of web services, schema

and data (static aspects) as well as the behavior of a
web service (dynamic aspects) must be modeled for-
mally.

While the static aspects can be modeled with set
description languages like description logics[5], the dy-
namic aspects of web services can be modeled with
the help of an appropriate process algebra, like π-
calculus [13, 15] or Petri nets to name the most com-
mon. While set description languages cannot capture
the semantics of the dynamics aspects, process alge-
bras typically abstract from the semantics of the data
objects that are communicated among processes.

Therefore, in order to specify web services seman-
tically, we need to combine a process description lan-
guage with a set description language. Considering our
analogy with stored procedures, we need to have some-
thing like formal PL/SQL for the web. In our case, we
choose description logics as set description language
and π-calculus as process description language.

In this section, we give short introductions to de-
scription logics and π calculus. Then, we present our
approach for modeling web services.

2.1. Introduction to Description Log-
ics with Concrete Domains

Description logics are a family of knowledge repre-
sentation formalisms closely related to first-order and
modal logic. They are useful in various application
fields, such as reasoning about database conceptual
models, as the logical underpinning of ontology lan-
guages, for schema representation in information inte-
gration systems or for metadata management [5].

One of the drawback of the description logic ALC
is that all the terminological knowledge has to be de-
fined on an abstract logical level. In many applications,
one would like to be able to refer to concrete domains
and predicates on these domains while defining con-
cepts. For example the domain of integers or real num-
bers with predicates like equality, inequality etc. In [6]
a scheme for integrating such concrete domains into
description logics is presented. The scheme introduces
partial functions that map objects of the abstract do-
main to values of the concrete domain, and can be used
for building complex concepts. Further research on de-
cidability, computational complexity, and reasoning al-
gorithms for different DLs with concrete domains has
influenced the design of the Ontology Web Language
(OWL), which supports a basic form of concrete do-
mains, so-called datatypes.

In the following, we give the basic definitions regard-
ing description logics with concrete domains and refer
to [6] for more details.

Definition 1 Aconcrete domainD = (dom(D), pred(D))
consists of a set dom(D) (the domain) and a set
of predicate symbols pred(D). Each predicate sym-
bol P ∈ pred(D) is associated with an arity n and an
n-ary relation PD ⊆ dom(D)n.

Definition 2 In addition to the concepts expres-
sions in ALC, ALC(D) allows expressions of the
form P (u1, . . . , un) as concept descriptions, where
P ∈ pred(D) is an n-ary predicate and u1, . . . un are fea-
ture chains. The semantics of such concepts expressions
is defined as follows:

P (u1, . . . , un)I = {d ∈ ∆I |(uI1 (d), . . . uIn(d)) ∈ PD},

where for u = f1 . . . fm a feature chain,

uI(a) = fIm(fIm−1(. . . (f
I
1 (a) . . .).

Definition 3 A concrete Domain D is called admissi-
ble iff (1) the set of its predicate names, pred(D) is closed
under negation, (2) pred(D) contains a unary predicate
>D for dom(D), and (3) the satisfiability problem for fi-
nite conjunctions over pred(D) is decidable.

Subsumption and satisfiability of ALC(D) is decidable
iff the concrete domain D is admissible [6].

2.2. Introduction to Pi-Calculus

In this section, we give a short introduction to π-
calculus and refer to [13, 15] for details. The syntax of
an agent can be summarized as follows:

P ::= 0
| P1 + P2

| yx.P | y(x).P | τ.P
| P1 ‖ P2

| [x = y]P
| A(y1, . . . , yn)

Summation
∑

i∈I Pi, where the index set I is fi-
nite. This agent behaves like one or other of the Pi.
We write 0 for the empty summation, and call it in-
action; this is the agent which can do nothing. Hence-
forward, in defining the calculus, we confine ourselves
just to 0 and binary summation, written P1 + P2.

Prefix form yx.P , y(x) or τ.P . yx is called a neg-
ative prefix. y may be thought of as an output port of
an agent which contains it; yx.P outputs the name x
at port y and then behaves like P . y(x) is called a pos-
itive prefix. A name y may be thought of as an input
port of an agent; y(x).P inputs an arbitrary name z at
port y and then behaves like P{z/x}. The name x is

bound by the positive prefix ’y(x)’. (Note that a neg-
ative prefix does not bind a name). τ is called a silent
prefix. τ.P performs the silent action τ and then be-
haves like P .

Composition P1 ‖ P2. This agent consists of P1

and P2 acting in parallel. The components may act in-
dependently; also, an output action of P1 (resp. P2) at
any output port x may synchronize with an input ac-
tion of P2 (resp. P1) at x, to create a silent (τ) action
of the composite agent P1 ‖ P2.

Match [x = y]P . This agent behaves like P if the
names x and y are identical, and otherwise like 0.

Defined agent A(y1, . . . , yn). For any agent iden-
tifier A (with arity n) used thus, there must be a
unique defining equation A(x1, . . . , xn) def= P , where
the names x, . . . , xn are distinct and are the only names
which may occur free in P . Then A(y1, . . . , yn) behaves
like P{y1/x1, . . . , yn/xn} (see below for the definition
of substitution). Defining equations provide recursion,
since P may contain any agent identifier, even A it-
self.

Definition 4 A substitution is a function σ from N to
N which is almost everywhere identity. If xiσ = yi for all
i with 1 ≤ i ≤ n (and xσ = x for all other names x).

Definition 5 ProcessesP andQ areα-convertible,P ≡
Q, if Q can be obtained from P by a finite number of
changes of bound names. α-convertibility can be seen as
syntactic identity between processes.

Let Pσ denote the process obtained by simultane-
ously substituting zσ for each free occurrence of z in P
for each z, with change of bound names to avoid cap-
tures. In particular the following hold, when the bound
name y is replaced by the name y′.

(x(y).P)σ ≡ xσ(y′).P{y′/y}σ
((y)P)σ ≡ (y′)P{y′/y}σ

2.3. Modeling Web Services

π-calculus has a similar drawback as the description
logic ALC. Namely, it requires to specify all the pro-
cess knowledge at the abstract logical level. In practi-
cal settings however specification of well known opera-
tions like ”add”, ”subtract” etc. does not bring much
added value. Rather, it makes the specification of pro-
cesses very tedious. In order to overcome this prob-
lem, we assume a set of agents the functionality of
which does not need to be defined further. For exam-
ple, add, subtract, select, insert, update etc., and propose

to use the simulation relation for such agent analo-
gous to subsumption relation of concrete domain pred-
icates in ALC(D). For example, service1B.P simulates
service2A.P if A v B, in case the services service1 and
service2 are query answering services. Note, that such
simulation relationships also provide simple process
mediation.

Another important issue that we need to resolve be-
fore we can specify web services as π-calculus processes,
is the connection between domain ontologies, seman-
tics of data in the messages and process description.
For this purpose, we use the following restrictions:

• Inside ”[]”, we write DL concrete domain predi-
cates [6] to model conditions semantically. For ex-
ample, the expression instanceOf(x,C) inside ”[]”
specifies the condition ”x is an instance of C.

• We assume that names that are communicated be-
tween processes are description logic expressions.
We use a special symbol valueOf inside a DL ex-
pression to refer to the value of a bound name
(variable).

The concrete agents mentioned above and other web
services run concurrent to a web service process. To
keep the things a little simpler, we assume that a web
service has a communication channel with an agent a.
We denote the channel also by a. Further, we assume
a process user also running concurrent to the web ser-
vice process to denote the user. To keep the specifica-
tions short and better readable, we will only consider
the specification of the web service process and not all
the concurrent running processes, since they are often
obvious from the context.

In the following, we discuss some examples to illus-
trate the strength of our formalism.

2.3.1. Only Output The simplest kinds of web ser-
vices are web services that provide some information
and do not require any inputs.

Example 1 Consider a web service that returns the list
of professors working in a university in Germany. The
web service does not require any inputs.

select “Professor u ∃worksIn.(Universityu
∃locatedIn.{Germany})′′.select(x).user x

Example 2 Consider a web service that returns the list
of (Professor, University) pairs, where the professor P
works in the university U, if the pair (P,U) belongs to the
output. Again, the web service does not require any in-
puts.

To model this web service, the web service
provider needs to model a new concept, say
Affiliation v ∃employee.Professor u ∃institution.University.
The web service can now be modeled as:

select “Affiliation′′.select(x).user x

2.3.2. Output dependent on input This type of
information providing web services provide some infor-
mation that is dependent on the input. The input must
be provided by the user.

Example 3 Consider a web service that returns the list
of all professors working in a certain university. The user
has to provide the value of the university, for which he
wishes to have the list of professors working in the uni-
versity.

user(u).{[valueOf(u) instanceOf University]
select “Prof u ∃worksIn.{valueOf(u)}′′.select(x).user x}

Example 4 Consider a web service that returns the list
of all (professor, university) pairs, such that if professor
P works in university U, then the pair (P,U) is in the out-
put. The web service requires the list of universities as in-
put.

user(u).select “Affiliation u ∃employee.Professor u
∃institution.{valueOf(u)}′′.select(x).user x

2.3.3. Conditional Outputs In some cases, a web
service may offer different types of output depending
on the value of the input.

Example 5 Consider two disjoint concepts C1 and C2

and a web service that expects an input u and depending
on if the value of u is less than 100 or not the web service
returns either an instance of C1 or an instance of C2.

user(u).[P<(valueOf(u), 100)]{select ”C1”.select(x).user x}
+[P≥(valueOf(u), 100)]{select ”C2”.select(x).user x}

2.3.4. Services with inputs at runtime Until
now, we had examples, where the inputs of a web ser-
vice are provided at the beginning. In some cases, a
web service may not require all the inputs at the begin-
ning but only at run time, depending on the execution
path it takes. With our approach, it is straightfor-
ward to model this artifact.

Example 6 Consider a web service that requires an in-
put parameter u in the beginning and then depending on
the condition c1 (may be dependent on the value of u) ei-
ther asks for another input v and then does the activities
in P or if the condition c1 is not satisfied it just performs
the activities in Q.

user(u).[c1]user(v).P + [¬c1]Q

2.3.5. Web Services with Access Control Se-
mantic web services promise automation in dynamic
business that can be offered and carried out in the Web.
In such an open market, access control, which means
the users must fulfill certain conditions in order to ac-
cess certain functionality plays an important role.

Many existing approaches view security related
properties of a web service and non-functional proper-
ties and treat them separately from (typically on top
of) functional properties. However, often it is not pos-
sible to separate them as the following example shows:
Consider a library web service that sends a book via sur-
face mail and a confirmation as the output of the web
service, if the user is member of the library. Other-
wise, the web service sends a failure message to the
user. Now, in order to prove his eligibility to gain ac-
cess to the web service, a user has to show a set of cer-
tificates. The functionality of the web service can
not be modeled independent from the access condi-
tions.

In [3], we have shown, how access control policies can
be modeled with ontologies in order to achieve better
interoperability between certification authorities, web
service providers and end users. In [2], we have shown
how access control policies can be composed.

We foresee an input parameter for the set of certifi-
cates a user has to show in order to prove his eligibility
to access a web service. Further, we use a special pred-
icate CCD(C,P), that is true iff the set C of certificates
fulfills the access control policy P according to the cer-
tificate chain discovery algorithm [7].

Example 7 Consider the web service from example 1
with the slight modification that only the employees of a
university have access to it.

user(C).[CCD(valueOf(C),UniEmployee)]
select “Professor u ∃worksIn.(Universityu
∃locatedIn.{Germany})′′.select(x).user x

In this section, we have seen how various for prac-
tice useful aspects of web services can be specified with
our formalism.

3. Request Specification

We now turn our attention to request specification.
With a request a user specifies conditions a web service
must fulfill in order to be considered as a match.

Conditions on Output A requester specifies with

select query.select(x).userx

conditions on the output x.
Conditions on Input Depending on what a user

exactly wants, inputs of a web service can sometimes
mean restriction, sometimes flexibility. To understand
this, consider the web services from example 2 and
example 4. The only difference between the two web
services is that the latter requires a list of univer-
sities as input. The service in example 2 returns a
list of (Professor, University) pairs. If a user does not
want to have all (Professor, University) pairs but only
those for certain universities that he wishes to deter-
mine, he should be able to specify this wish. Con-
sidering such a constraint, the service in example 2
should not be detected as a match. If a requester wishes
to provide an input, the request can be defined as
user(u).select query.select(x).userx, where query may be
dependent on the value of u.

Conditions on the sequence of operations
Sometimes, a requester wishes to define constraints on
the sequence of certain actions. For example, credit
card should not be charged before the order has been
placed. However, a web service may or may not per-
form some tasks after the order placement and before
the action for charging the credit card. To model such
constraints, we use a symbol 2 to denote a set of don’t-
care activities.

If a user wants that the credit card should be
charged immediately after the order has been placed,
the request can be defined as follows1:

user(Order).user(ChargingInfo).
placeOrder Order.chargeCC ChargingInfo

In case, a user only wants that the credit card is
charged some time after but not necessarily immedi-
ately after the order has been placed, the request can
be defined as follows:

user(Order).user(ChargingInfo).
placeOrder Order.2.chargeCC ChargingInfo

Conditions on multiple outputs As shown in one
of the examples, there are web services that offer more
than one output. If a user wishes to have more than
one output, he may or may not be interested in a par-
ticular sequence the outputs are delivered. While the
desired sequence of outputs can be described as shown
above, we need a mechanism to describe the request in
which the sequence of the outputs is not important.

To model such conditions on the behavior of a
web service, we use the symbol Σ. Σ(a1, . . . , an) with

1 Note, that the agents placeOrder and chargeCC do not have to
be necessarily the same agents as described as components of
some web service, but may have simulation relationships with
the components of a potential match.

a1, . . . , an being sets of activities means that the sets
of activities a1, . . . , an may be performed in any or-
der; however, the activities in a particular set ai must
be performed in the defined order.

Suppose a user needs a web service that places a lap-
top order, charges the credit card and sends the con-
firmation to the user. In addition to this, the web ser-
vice should also close an insurance policy for the main-
tenance of the laptop after the order has been placed
successfully. However, it does not matter for the user
whether the credit card is charged (for the laptop pur-
chase) before or after closing the insurance policy.

user(Order).user(ChargingInfo).
placeOrder Order.Σ(2.chargeCC ChargingInfo,

closePolicy PolicyInfo, user Confirmation)

4. Matchmaking

In the first step, a requester defines a request de-
scribing conditions on outputs, e.g. type constraints
and conditions on the structure of the web service. or
wish to provide an input. The matchmaking algorithm
returns the set of matches together with the conditions
for each match under which the match can offer the re-
quired functionality.

4.1. Matchmaking Algorithm

Our matchmaking algorithm not only yields yes/no
answers, but in case of yes answers, it also yields con-
ditions a user has to fulfill in order to achieve the de-
sired functionality with a match.

(1) Since the request may contain Σ expressions to
describe that the order of the execution of activity sets
is not important, we need to preprocess the request.
Consider a request R that contains k Σ expressions. For
a Σ(a1, . . . , an), we generate n! new requests r1, . . . , rn!

for each possible execution sequence of the activities
a1, . . . , an. Now, each of the ris contains k − 1 Σ ex-
pressions. This step is performed for each ri to obtain
the set of requests that have only k − 2 Σ expression
and so on until all the Σ expressions have been treated
yielding a set of Σ expression free requests r1 . . . , rΩ.
Let us call this set RΩ.

(2) The request R may contain variables, i.e. bound
names. In this step, we calculate the set of variables
in the request R and denote it by V (R). (3) Consider
a web service description W . (4) Calculate the set of
bound names of W and denote it by V (W).

(5) Calculate substitution functions σ1, . . . , σk from
V (R) and V (W) for each possible renaming of the
bound names in V (W) by bound names V (R).

(6) For each substitution function σ ∈ {σ1, . . . , σk}
calculate with α-conversion Wi from W by renaming
the bound names in W according to σ. This step deliv-
ers a set of descriptions Wi that are syntactically equiv-
alent to the W except for variable renaming. While
changing a bound name x by y, we replace each occur-
rence of valueOf(x) by valueOf(y). It has been shown
in [8] that α-conversion is decidable.

(7) Each description Wi is a sequential process with
conditions. For each process description Wi, calculate
the set of sequential process descriptions Wij with-
out conditions and remember the conditions in C(Wij).
That is, from [A]P infer P and add A to the set of con-
ditions.

(8) For every r ∈ RΩ and every Wij , check which ac-
tivities in r are syntactically same to which activities of
Wij . While doing so, do not consider don’t care (2) ac-
tivities in r. Further, if there are any expressions denot-
ing predefined agents, e.g. select, then add the condi-
tions under which the agent simulates the correspond-
ing expression in r to C(Wij).

(9) Consider those r ∈ RΩ for which there exists a
Wij such that all the non-don’t-care activities in r have
a syntactical equivalent activity in Wij . If there is no
such r, the web service W is not a match for the re-
quest R.

(10) Check whether Wij can become syntactically
equal to the r by considering possible values for 2 ac-
tivities. If a possibility is found then the web service
W is a match for the request R. Add W to the re-
sult set along with the corresponding set of conditions
C(Wij).

4.1.1. Examples Consider the request R =

select “Professor u ∃worksIn.(Universityu
∃locatedIn.{Germany})′′.select(answer).user answer

that asks for all professors that work in a univer-
sity in Germany and the web services from our ex-
amples. Since, the request does not contain any Σ ex-
pressions, step 1 will yield RΩ = {R}. Step 2 yields
V (R) = {answer}. Consider the web service from ex-
ample 1 as W . The set of bound names V (W) of the
web service W is {x}. Step 5 yields only one possi-
ble substitution σ1 = {(answer, x)}. Step 6 yields

W1 = select “Professor u ∃worksIn.(Universityu
∃locatedIn.{Germany})′′.select(answer).user answer

Steps 7 yields W11 = W1. Steps 8 and 9 do not change
W11 any further. Steps 10 detects that W11 and the re-
quest are syntactically same. Hence W is a match.

Performing the same steps with the web service from
example 2 will not lead to syntactically equal expres-
sions, since the web service has a different query than

the request. Also, the web service from example 3 will
not be detected as a match, since it requires an input
variable u. Now, consider a slightly different request

R = 2.select “Professor u ∃worksIn.University′′.
select(answer).user answer

Steps 1 to 5 are easy to follow. Suppose, the algorithm
is considering the web service from example 3. Step 6
yields

W1 = user(answer).{[valueOf(answer) instanceOf University]
select “Professor u ∃worksIn.{valueOf(answer)}′′.
select(x).user x}

W2 = user(u).{[valueOf(u) instanceOf University]
select “Professor u ∃worksIn.

{valueOf(u)}′′.select(answer).user answer}
W3 = user(answer).{[valueOf(answer) instanceOf University]

select “Professor u ∃worksIn.{valueOf(answer)}′′.
select(answer).user answer}

In step 7, let us consider W2. W21 =

user(u).{select “Professor u ∃worksIn.University′′.
select(answer).user answer}

with C(W21) = {”instanceOf(valueOf(u),University)”}
Step 8 does not modify the set of conditions C(W21).

Step 9 produces a positive answer, since all the non-
don’t-care activities of the request have an equivalent
in W21. Finally, step 10 detects that setting the activ-
ity user(u) at the place of 2 will make W21 syntacti-
cally same as the request. So, W , that is the web service
from example 3 is a match with conditions C(W21). It
is easy to see that W1 and W2 will not be detected as
match since they fail the test in step 9.

The result of the matchmaking algorithm is a set of
web service descriptions along with the conditions for
each match under which it offers the required function-
ality. On receiving such a result, a user has to check
for each match, whether and how he can fulfill the
corresponding conditions. We believe that automatic
composition techniques can be useful for performing
this task by considering the conditions returned by the
matchmaking algorithms as goal for an automatic com-
position algorithm.

Consider the last example from the previous
section that illustrates the matchmaking algo-
rithm. The algorithm yields that the web ser-
vice from example 3 is a match if the condition
”instanceOf(valueOf(u),University)” is fulfilled. This
condition can be automatically converted to the fol-
lowing request to find web services that can fulfill the
condition: select”University”.select(x).userx.

5. Implementation

We have a prototypical implementation of a server
that maintains a large number of web services descrip-
tions described with our formalism. Our matchmaking
algorithm is implemented in Java and uses the KAON2
reasoner2 for reasoning with DL ontologies.

A client sided tool allows a web service annotator to
load a WSDL document, annotate it with our formal-
ism and upload it to the server. Roughly, when a WSDL
file is loaded, the tool converts the information inside
WSDL types tags into a DL ontology and WSDL op-
erations to process descriptions. The client sided tool is
connected with the server and allows an annotator to
relate and edit/correct already existing ontologies on
the server.

The client sided tool also allows users to specify their
requests and send them to the server. The server per-
forms the matchmaking and sends the matches to the
client, which shows the matches together with the con-
ditions to the user. The reason of offering this func-
tionality in the client sided tool too, is that we plan
to extend the client sided tool for automatic checking
of the fulfillment of the conditions by using simple au-
tomatic composition algorithm, e.g. the one presented
in [1]. Note, that in order to evaluate how the condi-
tions can be satisfied, access to user’s local knowledge
is required. Hence, it is more practical and realistic to
perform such evaluations at the client side.

6. Related Work

Recently, automatic matchmaking of web ser-
vices has gained tremendous importance and new
approaches are introduced frequently. In the follow-
ing, we will discuss some of the most widely known
approaches.

Consider the text ”The service advertised is a car
selling service which given a price reports which cars
can be bought for that price” in section 3.2 of [14]. The
reason for describing the meaning of the web service
functionality in natural language is that OWL-S still
does not mandate a logic for describing pre- and post-
conditions though OWL-S suggest SWRL as possible
candidates. As a consequence, OWL-S based match-
making approaches can not consider the relationships
between inputs and outputs [14, 16] but only the types
of input and output parameters. Further, note that
matchmaking algorithms that consider only the types
of input and output parameters do not actually require

2 http://kaon2.semanticweb.org

OWL-S profile, since the required information is avail-
able in a WSDL document.

WSDL-S proposes to extend WSDL by adding pre-
and post conditions for operations [4]. However, sim-
ilar to OWL-S, WSDL-S also does not fix the logic
for describing such conditions. As a consequence, it is
not possible to develop matchmaking algorithms that
can consider such conditions. Note, that the decidabil-
ity and complexity of the matchmaking algorithms de-
pends on the logic that is used for describing the con-
ditions.

The WSMO initiative addresses the issue of goal def-
inition and web service discovery in much more de-
tail than the above mentioned approaches [11]. The
WSMO web service discovery approach differentiates
between service and web service discovery. WSMO also
addresses the issue of heterogeneity of descriptions of
requesters and providers. Similar to OWL-S match-
maker, WSMO differentiates between different types of
matches. For example, exact-match, subsumes-match,
plugin-match and intersection match.

In [10], it is argued that subsumption based match-
making can be too strong and thus may not find some
matches. The authors suggest entailment of concept
non-disjointness instead of subsumption to overcome
this shortcoming. Section 4.3 of [10] says ”The re-
quester accepts shipping from Plymouth or Dublin and
the provider accepts shipping from UK cities. Since
Dublin is not in the UK, neither of the two associated
sets of service instances fully contains the other in every
possible world.”. That is, matching based on subsump-
tion will not detect the service as a match, but match-
ing based on entailment of concept non-disjointness
will. Provided with only a positive boolean answer a re-
quester may believe that the service also accepts ship-
ping from Dublin.

Major difference of our approach to all other cur-
rently existing approaches is that the existing ap-
proaches produce only yes/no answers. That is, they
either do not consider the conditions while performing
matchmaking or do not provide the client with condi-
tions under which a web service offers the desired func-
tionality. Note, that our conditions regarding the func-
tionality of a web service should not be confused with
the result of OWL-S based matchmaker in case of par-
tial matches [14, 16], since the latter only lets the user
know which inputs (or outputs) did not match and as
we discussed above input and output types do not ac-
tually describe the functionality of a web service.

Another difference between our approach and exist-
ing approaches is that our request specification tech-
nique is more expressive than the existing approaches.
With our request specification formalism, a user can

specify semantic constraints, security constraints and
temporal constraints in a unified way. The matchmak-
ing approaches discussed above consider only semantic
constraints. [9] presents an approach for checking secu-
rity constraints. To the best of our knowledge, there is
no existing approach that can handle (specify and rea-
son over) all the three types of constraints in a unified
way.

7. Conclusion and Outlook

In this paper, we have introduced a simple and
powerful approach to describe web services semanti-
cally. We have identified different types of web services
and showed how their semantic, security and tempo-
ral properties can be described with our approach. We
have also identified different types of requests a user
may wish to specify and showed how they can be spec-
ified.

Unlike most of the existing approaches that may
provide expressive formalism for describing web ser-
vices but do not provide matchmaking algorithms that
make use of the expressivity, our matchmaking ap-
proach can use all the available semantic information.
The main feature of our matchmaking algorithm is not
only to provide a match/no-match answer as it is the
case with most of the existing approaches, but a set
of conditions, that a user has to fulfill in order to ob-
tain the required functionality from a web service. Fur-
ther, we have implemented our approach prototypically
and tools are available for public use soon.

The presented matchmaking algorithm is exponen-
tial in the number of condition-expressions. In future,
we intend to investigate whether incremental construc-
tion of only relevant models in step (7) and optimiza-
tion techniques known from “Ordered Binary Decision
Diagrams” can be useful to optimize the algorithm.

Acknowledgments This work was supported
by the Federal Ministry of Education and Re-
search (BMBF) under the Internetökonomie-SESAM
project and the European Commission under con-
tract IST-2003-506826 SEKT.

References

[1] S. Agarwal, S. Handschuh, and S. Staab. Annotation,
Composition and Invocation of Semantic Web Services.
Journal of Web Semantics, 2(1):1–24, 2005.

[2] S. Agarwal and B. Sprick. Access Control for Semantic
Web Services. In 2nd International Conference on Web
Services, 2004.

[3] S. Agarwal and B. Sprick. Specification of Access Con-
trol and Certification Policies for Semantic Web Ser-

vices. In 6th International Conference on Electronic
Commerce and Web Technologies, August 2005.

[4] R. Akkiraju, J. Farrell, J.Miller, M. Nagarajan,
M. Schmidt, A. Sheth, and K. Verma. Web Service Se-
mantics - WSDL-S, ” A joint UGA-IBM Technical Note,
version 1.0,. Technical report, April 2005.

[5] F. Baader, D. Calvanese, D. McGuinness, D. Nardi,
and P. F. Patel-Schneider, editors. The Description
Logic Handbook: Theory Implemenation and Applica-
tions. Cambridge University Press, 2003.

[6] F. Baader and P. Hanschke. A Schema for Integrating
Concrete Domains into Concept Languages. In Proceed-
ings of the Twelfth International Joint Conference on
Artificial Intelligence (IJCAI-91), pages 452–457, Syd-
ney, 1991.

[7] D. E. Clarke, J.-E. Elien, C. M. Ellison, M. Fredette,
A. Morcos, and R. L. Rivest. Certificate chain discovery
in SPKI/SDSI. Journal of Computer Security, 9:285–
322, 2001.

[8] M. Dam. On the Decidability of Process Equivalences
for the pi-Calculus. Theor. Comput. Sci., 183(2):215–
228, 1997.

[9] G. Denker, L. Kagal, T. Finin, M. Paolucci, and
K. Sycara. Security For DAML Web Services: Anno-
tation and Matchmaking. In D. Fensel, K. Sycara, and
J.Mylopoulos, editors, 2nd International SemanticWeb
Conference, volume 2870 of LNCS, pages 335–350, San-
dial Island, Fl, USA, October 2003. Springer.

[10] S. Grimm, B. Motik, and C. Preist. Matching seman-
tic service descriptions with local closed-world reason-
ing. In In 3rd Annual European Semantic Web Confer-
ence. Springer, Budva, Montenegro, June 2006. (to ap-
pear), 2006.

[11] U. Keller, R. Lara, A. Pollers, I. Toma, M. Kifer, and
D. Fensel. WSMO Web Service Discovery, November
2004. http://www.wsmo.org/TR/d5/d5.1/v0.1.

[12] D. L. McGuinness and F. van Harmelen (eds.). OWL
Web Ontology Language. Technical report, W3C,
March 2003.

[13] R. Milner, J. Parrow, and D. Walker. A Calculus of Mo-
bile Processes, Part I+II. Journal of Information and
Computation, pages 1–87, September 1992.

[14] M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara.
Semantic Matching of Web Service Capabilities. In
I. Horrocks and J. A. Hendler, editors, Proceedings of
the First International Semantic Web Conference: The
Semantic Web (ISWC 2002), volume 2342 of Lecture
Notes in Computer Science (LNCS), Sardinia, Italy,
2002. Springer.

[15] D. Sangiorgi and D. Walker. PI-Calculus: A Theory
of Mobile Processes. Cambridge University Press, New
York, NY, USA, 2001.

[16] K. Sycara, M. Paolucci, A. Ankolekar, and N. Srini-
vasan. Automated Discovery, Interaction and Composi-
tion of Semantic Web Services. Journal of Web Seman-
tics, 1(1):27–46, December 2003.

[17] W3C. Web Service Description Language (WSDL) Ver-
sion 1.2, March 2003. http://www.w3.org/TR/wsdl.

