
Seminar im SS 2014

Optimierung in der angewandten Informatik

Vorbesprechung, 07. Februar 2014

Hartmut Schmeck, Pradyumn Shukla, Christian Hirsch

Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB), Fakultät für Wirtschaftswissenschaften

Organisatorisches

- Vorträge wöchentlich
 - Mittwochs 9:45 11:15 Uhr, Geb. 11.40, Raum 202
- Regelmäßige, aktive Teilnahme am Seminar wird erwartet (Anwesenheitspflicht)
- Jedes Thema wird durch einen Mitarbeiter betreut
- Melden Sie sich frühzeitig bei Ihrem Betreuer, um Thema, Literatur und Ansatz zu besprechen!
- Abgabe der finalen Folien: Eine Woche vor dem Vortrag
- Abgabe der Ausarbeitung: Zwei Wochen nach dem Vortrag
- Vorträge werden im VAB zum Download bereit gestellt

- Seminarwebseite
 - http://www.aifb.kit.edu/web/Lehre/Seminar_Optimierung_in_der_Angewandten_Informatik

Ihr Vortrag

- Vortrag: 45 Minuten
- Ausarbeitung: 10 Inhaltsseiten
- Benotungsgrundlage: Ausarbeitung, Vortrag (1:2)
- Material
 - Sollte den aktuellen Stand der Technik repräsentieren
 - Wissenschaftliche Beiträge des AIFB können genannt werden, der Schwerpunkt des Vortrags sollte aber auf den Arbeiten anderer Forschungsgruppen liegen!
 - Themenbeschreibungen enthalten Literatur-Vorschläge, eigene Recherchen sind jedoch notwendig
 - Vorlagen, Styleguide und Termine im VAB
- Seminarwebseite
 - http://www.aifb.kit.edu/web/Lehre/Seminar_Optimierung_in_der_Angewandten_Informatik

Anmeldung

- Teilnehmerzahl auf 14 beschränkt
- Optimierungsverfahren bei zu vielen Bewerbern
- Präferenzangabe für Themen bei Anmeldung (1–3 Sterne)
- Anmeldezeitraum vom 10.02. 00:00 Uhr bis 17.02. 17:00 Uhr
- Link zur Anmeldung: https://wiwi.kit.edu/go/aifbseminar2014
- Themenvergabe am 19.02. bis 15:00 Uhr
- Wichtig: Zustimmung bis 24.02. 15:00 Uhr erforderlich
- Bei fehlender Zustimmung werden Themen an Nachrücker vergeben

- Seminarwebseite
 - http://www.aifb.kit.edu/web/Lehre/Seminar_Optimierung_in_der_Angewandten_Informatik

1 - Automated Timetabling

Erstellen eines validen Stundenplans unter Berücksichtigung multipler

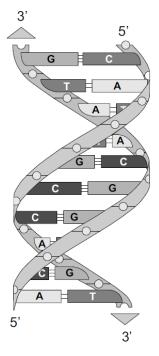
Nebenbedingungen

Bekanntes Problem aus Schulen und Universitäten

- Themen dieses Vortrags
 - Was ist Timetabling
 - Wo wird es verwendet/gebraucht
 - Historische Herangehensweisen
 - Ansätze zur Automatisierung
 - Komplexität und Probleme
 - Bekannte Lösungen

Bildquelle: http://www.flickr.com/ photos/stephendann/5 555331090

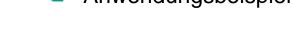
- [1] Werra: An introduction to timetabling. European Journal of Operations Research, 1983.
- [2] Schaerf: A survey of Automated Timetabling. Artificial Intelligence Review, 1999.
- [3] Burke, Petrovic: Recent research directions in automated timetabling. *European Journal of Operations Research*, 2002.
- [4] Lach, Zorn: Ein Algorithmus für das Raumplanungsproblem an Universitäten. TU Berlin, Institut für Mathematik, GML, 2008.


2 – Alignment von DNS-Sequenzen

- Vergleich zweier oder mehrerer Strings
- Schlüsselkomponente der Bioinformatik: effiziente Alignment-Algorithmen
- Themen dieses Vortrags
 - Biologische Grundlagen: Aminosäuren, DNS, Gene
 - Datenbanken in der Biologie
 - Dynamische Programmierung
 - Optimales Alignment zweier Sequenzen (DNS und Aminosäuren)
 - Parameter des Sequenzalignment
 - Heuristische Algorithmen für das Sequenzalignment großer Datenbanken
 - Multiples Alignment
 - Anwendungsbeispiel für Sequenzalignment

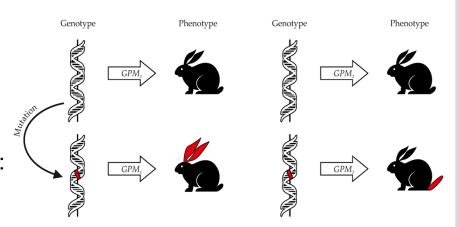
Literatur

[1] Hütt, Dehnert: Methoden der Bioinformatik. Springer, 2006.



Bildquelle: [1]

3 - Evolution und genotypische Kodierung



- Evolutionäre Verfahren dienen der Lösung von (Optimierungs-) Problemen
- Wichtiges Ziel: "Evolvability" herstellen (stetige Verbesserung)
- Themen des Vortrags
 - Genotypische Kodierung
 - "Expressibility", "Compactness" [1]
 - Meta-Evolution durch Anpassung der evolutionären Parameter (bspw. Evolutionäre Strategien [2])
 - Orientierung an natürlicher Evolution: Evolution der Genotyp-Phänotyp-Abbildung [1, 3]
 - Anwendungsbeispiel [4]

- [1] Nolfi, Floreano: Evolutionary Robotics. MIT Press, 2001, Kapitel 9.
- [2] Beyer, Schwefel. Evolution Strategies: A Comprehensive Introduction. Natural Computing, 2002.
- [3] Futuyma: Evolution. Palgrave Macmillan, 3. Auflage, 2013.
- [4] Beurier, Michel, Ferber: A Morphogenesis Model for Multiagent Embryogeny. 2004.

4 – Optimale Strategien im wiederholten Gefangenendilemma

Evolutionäre Algorithmen bieten ein neues Paradigma für die Suche nach optimalen Strategien und Gleichgewichten

Themen des Vortrags

- Wiederholtes Gefangenendilemma
 - Kein Nullsummenspiel
- Codierung der Strategien
- Maximierung eigener Gewinn
- Minimierung des Gegnergewinns

Optimierung in der angewandten Informatik

Literatur

Bildquelle: http://www.lifl.fr/ipd/ipd.html

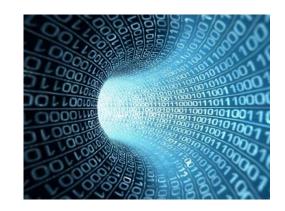
- [1] Ishibuchi et al.: Evolution of Strategies With Different Representation Schemes in a Spatial Iterated Prisoner's Dilemma Game. IEEE Tran. on Computational Intelligence and AI In Games, 2011.
- [2] Mittal et al.: Optimal Strategies of the Iterated Prisoner's Dilemma Problem for Multiple Conflicting Objectives. *IEEE Tran. on Evolutionary Computation*, 2009.

5 – Konvergenz- und Stabilitätsbetrachtungen von Particle-Swarm-Optimization-Algorithmen

- Optimierung angelehnt an Sozialverhalten von Herden und Schwärmen
- Individuen mit einfachen Regeln und wenigen Parametern
- Entstehung eines übergeordneten Verhaltens
- Themen des Vortrags
 - Particle-Swarm-Optimization (PSO)
 - Emergenz
 - Konvergenz
 - Stabilität
 - Verknüpfung der Ansätze, um konvergierende bzw. stabile PSO-Algorithmen zu erhalten

Optimierung in der angewandten Informatik

Anwendungsmöglichkeiten


Bildquelle: Wikimedia Commons. Matthew Hoelscher, 2007

- [1] Kennedy, Eberhart: Particle Swarm Optimization. IEEE International Conference on Neural Networks, 1995.
- [2] Clerc, Kennedy: The Particle Swarm—Explosion, Stability, and Convergence in a Multidimensional Complex Space. IEEE Transaticons on Evolutionary Computation, 2002.
- [3] Trelea: The particle swarm optimization algorithm: convergence analysis and parameter selection. *Information* processing letters, 2003.

6 – Optimierung der Bearbeitung und Analyse großer Datenmengen mittels MapReduce

- Wissenschaftliche Experimente erzeugen immer größere Datenmengen
 - → deren Handhabung erfordert besondere Ansätze und Methoden
- Themen des Vortrags
 - Geeignete Probleme und Anwendungsfälle
 - Vorstellung MapReduce
 - Beispielhafte Anwendung von MapReduce auf ein geeignetes Problem
 - Vorstellung Hadoop
 - Weitere Entwicklungen

Literatur

- [1] Dean, Ghemawat: MapReduce: Simplified Data Processing on Large Clusters. Sixth Symposium on Operating System Design and Implementation, 2004.
- [2] Apache Hadoop, http://hadoop.apache.org/

Optimierung in der angewandten Informatik

7 – Optimierung von Web Interfaces auf verschiedenen Geräten

- PC, Smartphone und Tablet unterscheiden sich u. a. durch Auflösung,
 Bildschirmgröße, Tastatureingabe und Prozessorgeschwindigkeit
- Unterschiedliche Darstellung und Bedienung
- Themen des Vortrags
 - Anforderungen an Interfaces
 - Optimierung des Layouts
 - Reorganisierung
 - Ranking Algorithmen
 - Genetische Algorithmen

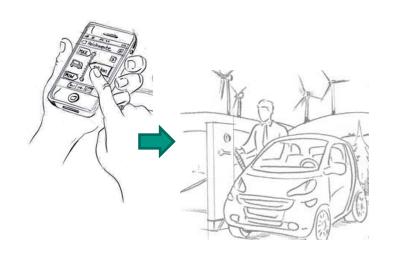
Bildquelle: mygadgetic.com

Literatur

- [1] Peñalver, González, Merelo: Optimizing web page layout using an annealed genetic algorithm as client-side script. *Parallel Problem Solving from Nature PPSN V*, 1998.
- [2] Yin, Lee: Using Link Analysis to Improve Layout on Mobile Devices. *Proceedings of the 13th International Conference on World Wide Web*, 2004.
- [3] Hinz, Zoltán, Wehner: Personalization-Based Optimization of Web Interfaces for Mobile Devices. Mobile Human-Computer Interaction, 2004.

11

8 - Datenschutz bei verteilter Optimierung


- Lösung eines kollektiven Optimierungsproblems mit Nebenbedingungen durch ein Multiagentensystem
- Möglichst wenig Informationen über private Nebenbedingungen jedes Agenten sollen preisgegeben werden
- Themen des Vortrags
 - Definition Datenschutz
 - Verteiltes Optimierungsproblem darstellen
 - Bewertung hinsichtlich des Datenschutzes

- [1] Greenstadt et al.: Analysis of Privacy Loss in Distributed Constraint Optimization. *Proceedings of the 21st national conference on Artificial intelligence*, 2006.
- [2] Maheswaran: Privacy Loss in Distributed Constraint Reasoning: A Quantitative Framework for Analysis and its Applications. *Autonomous Agents and Multi-Agent Systems*, 2006.
- [3] Faltings: Privacy Guarantees through Distributed Constraint Satisfaction. Web Intelligence and Intelligent Agent Technology, 2008
- [4] Brun: Self-assembly for discreet, fault-tolerant, and scalable computation on Internet-sized distributed networks. Dissertation, 2008.

9 – Reservierung von öffentlichen und halböffentlichen E-Ladesäulen

- Elektroautos benötigen mehrere "Tankstopps" für Langstrecken
- Automatische oder manuelle Reservierung von E-Ladesäulen, um Akzeptanz und Nutzung von E-Fahrzeugen zu steigern
- Themen des Vortrags
 - Dienste in der Elektromobilität
 - Intelligente Scheduling Strategien
 - Simulationen von Ansätzen

- [1] Lee, Park, Kim: Reservation-Based Charging Service for Electric Vehicles. *Algorithms and Architectures for Parallel Processing*, 2011.
- [2] Qin, Zhang: Charging scheduling with minimal waiting in a network of electric vehicles and charging stations. *Proceedings of the Eighth ACM international workshop on Vehicular internetworking*, 2011.

10 – Vorhersagealgorithmen für ein intelligentes Energiemanagement im Gebäude

- Im Smart Grid werden Energiebereitstellung und -bedarf intelligent aufeinander abgestimmt
- Auf lokaler Ebene erledigen dies Gebäude-Energiemanagementsysteme
- Themen des Vortrags
 - Bestimmung von Daten mit Potential für ein intelligentes Energiemanagement im Gebäude
 - Überblick über Vorhersagealgorithmen
 - Gemeinsamkeiten und Unterschiede der Ansätze

- [1] Shann, Seuken: An active learning approach to home heating in the smart grid. *Proceedings of the 23rd Int. Joint Conference on Artificial Intelligence*, 2013.
- [2] Howard, Hoff: Forecasting building occupancy using sensor network data. *Proceedings of the 2nd Int. Workshop on Big Data, Streams and Heterogeneous Source Mining*, 2013.

11 – Betriebsoptimierung thermischelektrischer Anlagen in Gebäuden

- Anlagen wie Gasmotor-BHKW oder Kompressionswärmepumpen sind sowohl in das Wärmenetz als auch in das Elektrizitätsnetz integriert
- Die optimale Fahrweise dieser Anlagen ist abhängig von verschiedenen Parametern
- Themen des Vortrags
 - Lastverschiebungspotenziale von thermischen Anlagen im Gebäude

Optimierung in der angewandten Informatik

- Optimierungsverfahren für den Betrieb dieser Anlagen
- Vergleich und Bewertung der Optimierungsverfahren

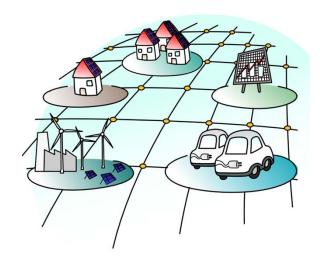
Bildquelle: http://www.evo-oelde.de

- [1] Pedersen et al.: Using Heat Pump Energy Storages in the Power Grid. *Proceedings of the IEEE Conference on Control Applications*, 2011.
- [2] Wille-Haussmann: Decentralised optimisation of cogeneration in virtual power plants. *Solar Energy*, 2008.

12 – Ökonomisch rationale Blindleistungsbereitstellung in Verteilnetzen

- Bereitstellung von Blindleistung ist ein essentieller Bestandteil für einen sicheren Betrieb von elektrischen Energienetzen
- Optimierungsansätze zur effizienten Einsatzplanung von Blindleistungsquellen nötig, um Netzbetrieb ökonomisch rational durchzuführen
- Themen des Vortrags
 - Technische Rahmenbedingungen
 - Optimierungsdarstellung
 - Problem
 - Lösungsverfahren

- [1] Ströbele, Pfaffenberger, Heuterkes: *Energiewirtschaft: Einführung in Theorie und Politik*. Oldenbourg Wissenschaftsverlag, 2012.
- [2] Schwab: Elektroenergiesysteme. Springer, 2012
- [3] Lee, Bai, Park: Optimization Method for Reactive Power Planning by Using a Modified Simple Genetic Algorithm. *IEEE Transactions on Power Systems*, 1995.



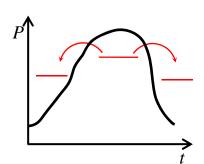
Bildquelle: Wikimedia; Yummifruitbat

13 – Lastflexibilität im Smart Grid

- Fluktuierende Erzeugung aus erneuerbaren Energien
- Paradigmenwechsel: Flexibilisierung der Energienachfrage
- Themen des Vortrags
 - Analyse verschiedener Energieverbraucher
 - Charakterisierung von Flexibilität
 - Modellierungsansatz für Flexibilität
 - Beschreibung der Lastflexibilität verschiedener Energieverbraucher
 - Übersicht über Mechanismen, um Flexibilität optimal zu nutzen

- [1] Petersen et al.: A Taxonomy for Modeling Flexibility and a Computationally Efficient Algorithm for Dispatch in Smart Grids. *The 2013 American Control Conference*, 2013.
- [2] Sioshansi: OR Forum Modeling the Impacts of Electricity Tariffs on Plug-In Hybrid Electric Vehicle Charging, Costs, and Emissions. *Operations Research*, 2012.

14 - Dezentrales Demand-Side-Management


- Änderung von Verbrauchsmustern, nicht des Gesamtenergieverbrauchs
- Viele zu optimierende Einheiten, hohe Komplexität

- Zeitliche Steuerung der Stromnachfrage
 - Verlagerung des Verbrauchs von Spitzenlastzeiten in Schwachlastzeiten
 - Anpassung an volatile Einspeisung
- Ziele der Lastoptimierung
- Fokus: Dezentrale Optimierungsansätze

- [1] Hinrichs, Vogel, Sonnenschein: Approaching Decentralized Demand Side Management via Self-Organizing Agents. *Proceedings of 10th International Conference on Autonomous Agents and Multiagent Systems*, 2011.
- [2] Li, Poulton, James: Coordination of Distributed Energy Resource Agents. *Applied Artificial Intelligence*, 2010.

Themenübersicht

Thema		Datum
(1)	Automated Timetabling	16.04.2014
(2)	Alignment von DNS-Sequenzen	23.04.2014
(3)	Evolution und genotypische Kodierung	30.04.2014
(4)	Optimale Strategien im wiederholten Gefangenendilemma	07.05.2014
(5)	Konvergenz und Stabilität von Particle-Swarm-Optimization-Algorithmen	14.05.2014
(6)	Optimierung der Bearbeitung und Analyse großer Datenmengen	21.05.2014
(7)	Optimierung von Web Interfaces auf verschiedenen Geräten	28.05.2014
(8)	Datenschutz bei verteilter Optimierung	04.06.2014
(9)	Reservierung von öffentlichen und halböffentlichen E-Ladesäulen	11.06.2014
(10)	Vorhersagealgorithmen für intelligentes Energiemanagement im Gebäude	18.06.2014
(11)	Betriebsoptimierung thermisch-elektrischer Anlagen in Gebäuden	25.06.2014
(12)	Ökonomisch rationale Blindleistungsbereitstellung in Verteilnetzen	02.07.2014
(13)	Lastflexibilität im Smart Grid	09.07.2014
(14)	Dezentrales Demand-Side-Management	16.07.2014