1 On Knowledgeable Unsupervised Text
Mining

A. Hotho and A. Maedche and S. Staab and V. Zacharias

Forschungszentrum Informatik at the Univ. Karlsruhe,
D-76131 Karlsruhe, Germany
{maedche, zach}@fzi.de, http://www.fzi.de/WIM

Institute AIFB, Univ. Karlsruhe,

D-76128 Karlsruhe, Germany

{hotho, staab}@aifb.uni-karlsruhe.de,
http://wuw.aifb.uni-karlsruhe.de/WBS

Ontoprise GmbH
D-76131 Karlsruhe, Germany
staab@ontoprise.de, http://www.ontoprise.de

Abstract Text Mining is about discovering novel, interesting and useful patterns
from textual data. In this paper we discuss several means that introduce background
knowledge into unsupervised text mining in order to improve the novelty, the in-
terestingness or the usefulness of the detected patterns. Germane to the different
proposals is that they strive for higher abstractions that carry more explanatory
power and more possibilities for exploring the input texts than is achievable by
unknowledgeable means.

1.1 Introduction

Knowledge discovery is concerned with finding novel, interesting and useful
patterns in data. In order to successfully discover such patterns, it is neces-
sary that the data that is investigated is structured in a way accessible to
machine learning algorithms. Texts, however, do not show much structure
to the eye of the naive machine learning algorithm. Only in the eye of the
human beholder, text documents exhibit the rich linguistic and conceptual
structures that may let him discover patterns that are not explicit.! Based
on these considerations we may conjecture that in order to improve the ef-
fectiveness and utility of machine learning on texts, we must improve the
linguistic and/or the conceptual background knowledge available to machine
learning algorithms and we must actively exploit it. We argue that unsuper-
vised machine learning algorithms are greatly handicapped when trying to
detect patterns. In contrast to supervised machine learning methods, they

! In fact, in the eye of the linguist, texts show a much richer structure than
databases because texts are mostly self-explanatory, while databases typically
aren’t.

2 A. Hotho et al.

cannot even fall back to guidance coming from the training examples when
exploring the vast extents of words.

Therefore, we have investigated new methods that apply unsupervised
machine learning algorithms and take advantage of linguistic and concep-
tual background knowledge. In this paper, we focus on the description and
application of conceptual background knowledge given by ontologies.

The gist of our approaches can be described as combining shallow infor-
mation extracting methods in order to map (some) words to their concep-
tual descriptions, to use the ontology for abstracting text representations to
various higher levels of granularity and then to apply conventional machine
learning techniques. Finally, the ontologies are also used for communicating
and presenting the results to the users.

Organization. The organization of the paper is as follows. First, we provide
an introduction to our overall conceptual architecture. We introduce the main
components and their relationships. Furthermore, we give a short description
of the formal structures we use for defining the ontologies and instances and
their interrelationships with the lexicon. Section 1.3 gives a rough overview
of the preprocessing component used in all subsequently described proposals.
We continue with three different proposals for combining machine learning
techniques with ontologies (Section 1.4, viz. document clustering, clustering
of content information and discovery of new conceptual relations between
concepts. Section 1.5 explains why ontologies provide suitable means for sup-
porting postprocessing and result presentation and gives several examples.
Section 1.6 concludes with a summary and provides an outlook to future
research challenges.

1.2 OSEM - A Conceptual Architecture for
Ontology-based Text Mining

This section introduces OSEM, a conceptual architecture for using back-
ground knowledge in the form of ontologies within text mining. The idea
behind OSEM is that a domain- and application-specific ontology acts as a
backbone for all phases necessary when applying and using text mining in
real-world applications. In general we distinguish the following main phases:

e Preprocessing and Import & Background Knowledge Provision-
ing by User: Includes syntactic preprocessing (shallow linguistic process-
ing including tokenizer, morphology, POS-tagger, etc.) as well as semantic
preprocessing (viz. assigning concepts to words, defining conceptual re-
lationships between words). This phase is described in detail in section
1.3.

e Mining: Mining techniques are applied on properly preprocessed data. In
general we distinguish between mining on the document level or mining

1 On Knowledgeable Unsupervised Text Mining 3

on the object (instance) level. Both approaches take advantage of the
ontology as structuring background knowledge. This phase is described
in detail in section 1.4.

e Postprocessing & Refinement: Based on the structural backbone of
the ontology, results of the text mining algorithm are preprocessed and
refined. E.g. the ontology supports in pruning and focusing on specific
results of the text mining algorithm. This phase is described in detail in
section 1.5.

e Presentation: The postprocessing and refinement phase strongly relates
with presentation. Results are presented to the user in an appropriate
way, thus, using the ontology as a scaffold for the presentation interfaces.

Figure 1.1 depicts the overall architecture. We consider as input to the
overall process textual documents, structured data and existing ontologies.

documents
— (semi-)structured data

Eiltl) =

< S

‘ Syntactic and Semantic
Preprocessing and Import

l

|_p»
Presentation “7

pplication
Ontology

Annotated
Text
» q

Figurel.l. OSEM Conceptual Architecture

Instantiations of this architecture are described in section 1.4 focusing on
three unsupervised text mining techniques:

e Document clustering
e Instance clustering
e Discovery of conceptual relations

4 A. Hotho et al.

As ontologies play a central in OSEM, we provide in the following a defi-
nition of what exactly an ontology is constituted of. Furthermore, we describe
how instantiations of ontologies look like and give an example for the rela-
tionship between ontologies, instances and textual documents.

Ontologies. In the following we introduce a formal model of our notion of
ontologies and associated instances, where a specific focus is set on the inter-
action of ontology and instances with natural language. To this extend, we
have developed a layered architecture. We here only present the part of our
overall ontology and instance model that is actually used by OSEM.

Definition 1 (Ontology Layer). An ontology structure is a 6-tupel O :=
{C,P, A, H"P prop,att}, consisting of three disjoint sets C, P and .A whose
elements are called concept, relation and attribute identifiers, respectively,
a concept hierarchy H¢: HC is a directed relation H¢ C C x C which
is also called taxonomy. HC(C1,Cy) means that C) is a sub-concept of Cs,
a function prop : P — C x C, that relates conceptes non-taxonomically
(The function dom: P — C with dom(P) := II;(rel(P)) gives the domain
of P, and range: P — C with range(P) := Ilx(rel(P) give its range. For
prop(P) = (C1,C3) one may also write P(Cy,C5)). The relation hierarchy
HP: H” is defined analogously to the concept hierarchy. Thus, a directed
relation H” C P x P exists, where H” (P}, P,) means that P, is a sub-
relation of P,. The function att : A — C relates concepts with literal values
(this means range(A) := STRING)

As the text mining process typically operates on natural language docu-
ments, the core ontology layer presented above is augmented with a lexical
layer that facilitates the linking of textual documents to ontological entities.

Definition 2 (Lexical Layer for the Ontology). A lexicon for the core
ontology structure O is a 6-tupel £ := {£¢, L7, LA F,G, T} consisting of
three sets £¢, £F and £4, whose elements are called lexical entries for con-
cepts, relations and attributes, respectively, and three relations F C £ x C,
GCLP xPand J C LA x A called references for concepts, relations and
attributes, respectively. Based on F, let for L € LC, F(L) = {C € C|(L,C) €
F} and for F71(C) = {L € L°|(L,C) € F}. G, G, J and J~' are defined
analogously.

The definition allows n:m-relations between lexical entries and ontological
entities, that is a lexical entry may refer to several concepts or relations and
one concept or relation may be referenced by several lexical entries.

Definition 3 (Instance Layer). An instance structure is a 6-tupel MD :=
{0,Z, L,inst,instr,instl}, that consists of an ontology O, a set Z whose el-
ements are called instance identifiers (correspondingly C, P and I are dis-
joint), a set of literal values L, a function inst : C — 2% called concept

1 On Knowledgeable Unsupervised Text Mining 5

instantiation (For inst(C') = I one may also write C(I)), and a function
instr : P — 22T called relation instantiation (For instr(P) = {(I1, 2)}
one may also write {P(I1,I3)}). The attribute instantiation is described
via the function instl : P — 22*£ relates instances with literal values. (For
instl(A) = {(I1, L)} one may also write {A(I1,L)}).

Again, we also define a lexical layer for instances.

Definition 4 (Lexicon for the instance structure). A lexicon for the
instance structure KB := {O, Z,inst, instr, instl} is a tupel LMP = (LT, T)
consisting of a set £Z whose elements are called lexical entries for instances,
and a relation J C £ x T reference for instances, respectively. Based on
J, let for L € £%, J(L) = {I € Z|(L,I) € J} and for 7~ }(I) = {L €
LI|(L,T) e T}

/’/Ol’ganizatiOn in ,,,,,,,,,,,,,
works at ___ \ e ,Nteral)

organization i
i [1]

X4(izi1) Xs (ip,“Steffen Staab“)

Steffen Staab

Steffen Staab

Document D1

Figurel.2. Example of an instantiated ontology and instance structure

An Example. Let us consider a short example of an instantiated ontology
and instance structure as depicted in figure 1.2. Here C := { 1,22, 23},
R := {z4},A := {5}, the relation z4(x1,x3) with its domain/range restric-
tions and the attribute zs5(x2, Literal) are defined. The lexical layer is given
by L£E = {“Organization”, “Employee”, “Person” }, L= = {“works at organization” }
and £4 = {“name”}. The function F and G map the lexical entries to the con-
cepts and relations of the ontology. F is applied as follows: F(“Organization”) =
x3, F(“Employee”) = x5, F(“Person”) = w1, G(“works at organization”) = x4
and J(“name”) = x5. Based on this ontology, the following instances may

6 A. Hotho et al.

be defined: Assume Z := {ij,i2}. inst is applied as following: inst(i;) =
x3,inst(iz) = x2. The two instances are related by x4(i2,71), an attribute x5
for the instance is is defined. Similarly to the lexical entries of concepts and
relations the lexical entries of instances may have values, e.g. in this example
LT .= {“Uni Karlsruhe”}. J is applied as follows: J(“Uni Karlsruhe”) = ..

1.3 Preprocessing Towards a Conceptual
Representation

In order to be able to exploit conceptual background knowledge, the pre-
processing step requires a conceptual representation of the input texts. For
this purpose, we employ a common shallow preprocessing of input texts that
maps texts into semantic structures.

1.3.1 Shallow syntactic preprocessing

The mapping of terms to concepts in our approach relies on some modules
from third parties, e.g. SMES (Saarbrcken Message Extraction System), a
shallow text processor for German (cf. [11]).2 SMES components we exploit
comprise a tokenizer based on regular expressions and a lexical analysis com-
ponent including a word and a so-called domain lexicon (the domain specific
part of the lexicon partially defines F).

The tokenizer scans the text in order to identify boundaries of words
and complex expressions like “$20.00” or “United States of America”, and
to expand abbreviations. The word lexicon contains more than 120,000 stem
entries. Lexical analysis uses the word lexicon, (i), to perform morphological
analysis of terms, i. e. the identification of the canonical common stem of a set
of related word forms and the analysis of compounds and, (%), to recognize
named entities. Thus, £ as described in Definition 1 is a set defined by the
tokenizer, the word lexicon and the analysis procedures of the lexical analysis
component. The domain lexicon contains the mappings from word stems to
concepts, i.e. together with the other modules it represents the function F
as defined in Definition 1. By this way, e.g., the expression ”Hotel Schwarzer
Adler” is associated with the concept HOTEL. During the mapping process we
do not resolve ambiguities of terms. This means, if we find several concepts
with the same lexical entry we map the term to all related concepts.

1.3.2 Concept Vector Representation

Based on the syntactic input, one subsequent text mining variant represents
each document as a vector of concept instantiations. Each entry of each vector
specifies the frequency that a concept occurs in the document including the
frequency that subconcepts occur.

2 We also use a simple full form lexicon of our own, which we have derived from
WordNet, and GATE [10].

1 On Knowledgeable Unsupervised Text Mining 7

1.3.3 Instance Representation

Frequently, atomic documents do not constitut the right level of granularity
to base the text mining algorithm on. Therefore, as an alternative, we also
directly exploit the appeareance of instances and their semantic relationships.

In order to derive semantic relationships between instances found in the
document we use two strategies:

e Either a finite state machine has the semantic relationship hard-wired
into very specific linguistic constructs (e.g. useful for processing of dic-
tionaries).

e Or the establishment of a general syntactic relation triggers the search
for a corresponding semantic relation. The background knowledge is then
used to check the general availability of such a semantic relationship (cf.

[12]).

1.3.4 A Glimpse onto KAON

Ontologies as well as Vector and instance representations may be stored in
RDF and, hence, are accessible through our KAON framework [2] or directly
by SQL queries to a proprietary database. The core idea of the common
framework is that conceptual structures of different resources (such as dif-
ferent ontology resources) are integrated into a single framework and, thus,
easily re-usable for different text mining algorithms. In this sense, we do not
explicitly distinguish between data and text mining mechanisms.

1.4 Mining Component in OSEM

OSEM focuses on the application of unsupervised text mining techniques to
the two different data representation layers introduced earlier. In the following
section, we first describe a document clustering approach that is based on the
usage of a simple, core ontology for generating alternative representations of
the given document set such that from the various representations multiple
clustering result may be derived by the standard K-Means algorithm. Second,
we present an instance clustering approach that takes metadata statements
as higher level input for clustering. Third, we present an association rule
approach working on the conceptual level using the an ontology at various
stage within the mining process.

1.4.1 Document Clustering

A classical unsupervised text mining task is document clustering. With the
abundance of text documents available through the Web or corporate docu-
ment management systems, the dynamic partitioning of document sets into

8 A. Hotho et al.

previously unseen categories ranks high on the priority list for many appli-
cations, like business intelligence systems. However, current text clustering
approaches tend to neglect several major aspects that greatly limit their
practical applicability.

First, text document clustering is mostly seen as an objective method,
which delivers one clearly defined result, which needs to be “optimal” in some
way. This, however, runs contrary to the fact that different people have quite
different needs with regard to clustering of texts because they may view the
same documents from completely different perspectives (e.g., a business view
vs. a technical view). Thus, what is needed are document clustering methods
that provide multiple subjective perspectives onto the same document set.

Second, text document clustering typically is a machine learning task tak-
ing place in a high-dimensional space of word vectors, where each word, i.e.
each entry of a vector, is seen as a potential attribute for a text. Empirical
and mathematical analysis, however, has shown that — in addition to compu-
tational ineffiencies — clustering in high-dimensional spaces is very difficult
because every data point tends to have the same distance from all other data
points (cf. [3]).

Third, text document clustering per se is often rather useless, unless it is
combined with an ezplanation of why particular texts were categorized into a
particular cluster. I.e. one output desired from clustering in practical settings
is the explanation of why a particular cluster result was produced besides of
the result itself. A common method for producing explanations is the learning
of rules based on the cluster results. Again, however, this approach suffers
from the high number of features chosen for computing clusters.

Though there are of course different approaches for clustering, simple
ones like K-Means or sophisticated ones (like [4]), based on the considera-
tion just mentioned we found that virtually all algorithms working on large
feature vectors will eventually face the same principal problems regarding
high-dimensional space without really approaching the matters of subjectiv-
ity and explainability. Therefore, our objective has been the consideration of
different views of the data, i.e. different representations® of the same set of
text documents, from which alternative clustering results may be derived.

The principal idea of our approach, COSA (Concept Selection and Ag-
gregation), is based on the usage of a simple, core ontology for generating
alternative representations of the given document set such that from the vari-
ous representations multiple clustering result may be derived by the standard
K-Means algorithm. The single representations are construed by aggregating
the original word vector representation in various ways. More precisely, we
have compiled a heterarchy of concepts®. The heterarchy is navigated top-

3 Motivated by the database point of view, we also call derived text representations
“aggregations”.

4 A heterarchy of concepts is a kind of “taxonomy” where each term may have
multiple parents and — of course — multiple children.

1 On Knowledgeable Unsupervised Text Mining 9

down by COSA in order to select document features (i.e. concepts) for an
aggregated vector representation. Thereby, COSA considers that features are
neither too frequent (i.e. COSA would split them into their subconcepts) nor
too infrequent (i.e. COSA would abandon them in favor of more frequent
ones) to be meaningful for clustering.

Thus, a set of clustering results is produced without interaction by a
human user of the system. The user may then decide to prefer the one over
the other clustering result based on the actual concepts used for clustering
as well as on standard quality measures (such as the silhouette measure [7]).

Let us work through a detailed example to show you the problems and to
give you an intuition for the proposed solution. In Table 1.1 you find a sample
of (abbreviated) concept vectors representing the web pages. In Figure 1.3 one
may recognize the corresponding concepts in an excerpt of the ontology. Our
simplifying example shows the principal problem of vector representations of
documents: The tendency that spurious appearance of concepts (or terms)
rather strongly affects the clustering of documents. The reader may bear in
mind that our simplification is so extensive that practically it does not appear
in such tiny settings, but only when one works with large representations and
large document sets. In our simplifying example the appearance of concepts
HOTEL, PREMIERE, and CONCERT is spread so evenly across the different
documents that all document pairs exhibit (more or less) the same similarity.
Corresponding squared Euclidian distances for the example document pairs
(1,2), (2,3), (1,3) leads to values of 2, 2, and 2, respectively, and, hence, to
no clustering structure at all.

’ Document #‘1 (“Musical”)‘Z (“Sport Hotel”)‘S (“Conference Hotel”)

HoTEL 0 1 1
PREMIERE 2 2 1
CONCERT 1 0 1

Tablel.1. Concept vector representations

Root

Accommodation Events

Person

Hotel o

Premiére Concert

Figurel.3. A sample ontology

10 A. Hotho et al.

When one reduces the size of the representation of our documents, e.g.
by projecting into a subspace, one focuses on particular concepts and one
may focus on the significant differences that documents exhibit with regard
to these concepts. For instance, when we project into a document vector rep-
resentation that only considers the two dimensions HOTEL and PREMIERE,
we will find that document pairs (1,2), (2,3), (1,3) have squared Euclidean
distances of 1, 1, and 2. Thus, axis-parallel projections like in this example
may improve the clustering situation. In addition, we may exploit the on-
tology. For instance, we select features according to the taxonomy, choosing,
e.g., EVENTS instead of its subconcepts PREMIERE and CONCERT to built
our aggregation. Then, the entries for PREMIERE and CONCERT are added
into one vector entry resulting in squared Euclidean distances between pairs
(1,2), (2,3), (1,3) of 2, 0, and 2, respectively. Thus, documents 2 and 3 can
be clustered together, while document 1 falls into a different cluster.

The algorithm GenerateConceptViews described in [6] acts as a preprocess-
ing step for clustering. GenerateConceptViews chooses a set of interpretable
and ontology-based aggregations leading to modified text representations.
Conventional clustering algorithms like K-Means may work on these modi-
fied representations producing improved clustering results. Because the size
of the vector representation is reduced, it becomes easier for the user to track
the decisions made by the clustering algorithms. Because there are a variety
of aggregations, the user may choose between alternative clustering results.
For instance, there are aggregations such that event pages are clustered to-
gether and the rest is set aside or aggregations such that web pages about
PREMIERES are clustered together and the rest is left in another cluster. The
choice of concepts from the taxonomy thus determines the output of the clus-
tering result and the user may use a view like Figure 1.3 in order to select
and understand differences between clustering results.

1.4.2 Instance Clustering

In this subsection we present an instance clustering approach that takes in-
stances and instance relations extracted from documents as higher level input
for clustering objects. This approach pursues the idea introduced in [5], where
information extraction is considered as a preprocessing step before applying
text mining. This approach may be more suited for documents containing
many links between them or documents that adhere to a fixed structure that
is not exploited by the document clustering described algorithm above. In
the following we will show exemplary how such a instance structure could be
used for the mining step in OSEM.

Measuring Similarity on Ontology-based Instsances As mentioned
earlier, clustering of objects requires some kind of similarity measure that is
computed between the objects. In our specific case the objects are described
via ontology-based instances that serve as input for measuring similarities.

1 On Knowledgeable Unsupervised Text Mining 11

Our approach is based on similarities using the instantiated ontology struc-
ture and the defined instance structure as introduced earlier in parallel.

Definition 5 (Instance Similarity).
sim: (Z,Z) — [0,1]

Within the overall similarity computation approach, we distinguish the
following three dimensions:

e Taxonomy similarity: Computes the similarity between two instances
on the basis of their corresponding concepts and their position in HC.

e Relation similarity: Compute the similarity between two instances on
the basis of their relations to other objects.

e Attribute similarity: Computes the similarity between two instances
on the basis of their attributes and attribute values.

Taxonomy Similarity. The taxonomic similarity computed between in-
stances relies on the concepts with their position in the concept taxonomy
HC. The so-called upwards cotopy (SC) is the underlying measure to compute
the semantic distance in a concept hierarchy.

Definition 6 (Upwards Cotopy (UC)).
UC(Cy, HE) == {C; € C|H"(C;, C)) Vv C; = Cy}.
The semantic characteristics of HC are utilized: The attention is restricted
to super-concepts of a given concept C; and the reflexive relationship of C; to

itself. Based on the definition of the upwards cotopy (UC) the concept match
(CM) is then defined:

Definition 7 (Concept Match).
[(UC(Cy, HE) N (UC(Ca, HO))|
[(UC(Cy, HE)) U (UC(Co, HO)|

CM(CY, Cy =

Ezample A small example is given for computing CM based on a given con-
cept hierarchy HC. Figure 1.4 depicts the example scenario graphically. The
upwards cotopy UC(CHRISTIANISM, HC) is given by
(UC(({CHISTIANISM}), H¢)) = {CHRISTIANISM, RELIGION, ROOT}.
The upwards cotopy UC(({MUSLIM}), H¢) is computed by
UC(({MUSLIM}), H®) = {MUSLIM, RELIGION, ROOT}.

Based on the upwards cotopy one can compute the concept match CM be-
tween two given specific concepts. The concept match CM between MUSLIM

and CHRISTIANISM is given as %

Definition 8 (Taxonomy Similarity).

1 ifth =1

TS(I, 1) =
S(h, 1) {CM(C(IQI)’C(Iz)) otherwise

Thus, the taxonomy similarity between SHIA MUSLIM to PROTESTANT

results in %.

12 A. Hotho et al.

_—

./3\.

Figurel.4. Example for computing similarities

Relation Similarity. It is pretty save to assume that if two instances have
the same relation to a third instance, they are more likely similar than two
instances that have relations to totally different instances. We incorporated
this observation into our algorithm by changing the similarity of two instances
depending on the similarity of the instances they have relations to. The simi-
larity of the referred instances is once again calculated using taxonomic sim-
ilarity. For example, assuming we are given two concepts COUNTRY and
RELIGION and a relation BELIEVE(COUNTRY, RELIGION). The al-
gorithm will infer that specific countries believing in catholizism and protes-
tantism are more similar than either of these two compared to hinduism be-
cause more countries have both catholics and protestants than a combination
of either of these and hindis.

After this overview, let’s get to the nitty gritty of really defining the
similarity on relations. We are comparing two instances Iy and I, I1, I, € 7.
From the definition of the ontology we know that there is a set of relations
Py that allow instance I either as domain, as range or both (Likewise there
is a set P for I3). Only the intersection Pco = P; N Py will be of interest
for relation similarity because differences between P; and P, are determined
by the taxonomic relations, which are already taken into account by the
taxonomic similarity.

The set Peo of relations is differentiated between relations allowing I; and

I as range - P, T, and those that allow I; and I as domain - Py -

Definition 9 (Incoming P_, 1 and Outgoing P_., (relations).
for an ontology O := {C, 7D .A HEP prop, att} and instances I; and I; let

HTms = {(a, b): (Jay...ap € C: Hc(a,al)...HC(amb))}
Pco Il = {R RePA ((() range(R)) c Htrans)}
CO Ol = {R RePA((C(i),domain(R)) c Htrans)}

PcofI(Ih 1) := Peo1i(1i) N Peg 1(1;)

1 On Knowledgeable Unsupervised Text Mining 13

Peo-0WisIj) == Pey 0i(i) N P (L))

In the following we will only look at P., (, but everything applies to
P, 1 as well. Before we continue we have to note an interesting aspect: For
a given ontology with a relation P, there is a minimum similarity greater
than zero between any two instances that are source or target of an instance
relation - MinSimgp,) and MinSimyp,)°. Ignoring this will increase the sim-
ilarity of two instances with relations to the most different instances when
compared to two instances that simply don’t define this relation. This is
especially troublesome when dealing with missing values.

For each relation P, € PcofO and each instance I; there exists a set of
instance relations P, (I;, I;). We will call the set of instances I, the associated
instances A;.

Definition 10 (Associated Instances).
As(PI):={I,: I, € TNP(I,1,)}

The task of comparing the instances I; and Iy with respect to relation P,
boils down to comparing As(P,, ;) with As(P,, I2). This is done as follows:

Definition 11 (Similarity for one relation).

MinSimt(p) if AS(P, I1) = @ \ AS(P, 12) = @
P
max{sim(a,b)|bEAs(P,I .
OR(Il,IQ,P) = P(’J'EAS<Pa11)) ‘:Sgp’h()‘)bEAs(P,I2)} if ‘AS(P, Il)| > |AS(P, 12)‘
(a€As(P,I5)) max{sim(a,b)|b€EAs(P,I1)}
[As(P,I2)]

otherwise

Finally, the results for all P, € P., o and P, € P, 1 are combined by
calculating their arithmetic mean.

Definition 12 (Relational Similarity).

ZpePCO*I OR(Il7 I27p) + ZPGPCO* OR‘(Il7 IQap)

|Pcofl| + ‘P0070|

RS(Il,IQ) = 0

The last problem that remains is the recursive nature of process of calcu-
lating similarities that may lead to infinite cycles, but it can be easily solved
by imposing a maximum depth for the recursion. After reaching this max-
imum depth the arithmetric mean of taxonomic and attribute similarity is
returned.

5 Range and domain specify a concept and any two instances of this concept or
one of its sub-concepts will have a taxonomic similarity bigger than zero

14 A. Hotho et al.

Ezample. Figure 3 gives an ontology and a set of instance instances that
we can use for an example of relational similarity. Assuming we compare
FINNLAND and GERMANY, we see that the set of common relations only
contains the BELIEF relation. As the next step we compare the sets of in-
stances associated with GERMANY and FINNLAND through the belief re-
lation - that’s {ROMAN-CATHOLICISM, PROTESTANT} for GERMANY and
PROTESTANT for FINNLAND. The similarity function for PROTESTANT com-
pared with PROTESTANT returns one because they are equal, but the similar-
ity of PROTESTANT compared with ROMAN-CATHOLICSM once again depends
on their relational similarity.

If we we assume the the maximum depth of recursion is set to one, the
relational similarity between ROMAN-CATHOLICSM and PROTESTANT is 0.56.
So finally the relational similarity between FINNLAND and GERMANY in this
example is 0.75.

Attribute Similarity. Attribute similarity focuses on similar attribute val-
ues to infer the similarity between two instances. As attributes are very sim-
ilar to relations, most of what is said for relations also applies here.

Definition 13 (Compared attributes for two instances).
Pyi(l;) :={A: Aec ANA(I;, L)}
Pa(1;,I;) := Pai(I;) N Pai(I;)
Definition 14 (Attribute values).
Ag(A L) :={Ly : Ly € LANA(I;, Ly)}

Only the members of the sets A; defined earlier are not instances but
literals and we need a new similarity method to compare literals. Because
attributes can be names, date of birth, population of a country, income etc.
comparing them in a senseful way is very difficult. We decided to try to parse
the attribute values as a known data type (so far only date or number)” and
to do the comparison on the parsed values. If it’s not possible to parse all
values of a specific attribute, we ignore this attribute. But even if numbers

5 The set of associated instances for PROTESTANT contains FINNLAND and
GERMANY, the set for ROMAN-CATHOLICISM just GERMANY.

" For simple string data types one may use a notion of string similarity: The edit
distance formulated by Levenshtein [8] is a well-established method for weight-
ing the difference between two strings. It measures the minimum number of to-
ken insertions, deletions, and substitutions required to transform one string into
another using a dynamic programming algorithm. For example, the edit dis-
tance, ed, between the two lexical entries “TopHotel” and “Top_Hotel” equals 1,
ed(“TopHotel”, “Top_Hotel”) = 1, because one insertion operation changes the
string “TopHotel” into “Top_Hotel”.

1 On Knowledgeable Unsupervised Text Mining 15

are compared, translating a numeric difference to a similarity value [0,1] can
be difficult. For example comparing the attribute population of a country a
difference of 4 should yield a similarity value very close to 1, but comparing
the attribute “average number of children per woman” the same numeric
difference value should result in a similarity value close to 0. To take this into
account, we first find the maximum difference between values of this attribute
and then calculate the the similarity as 1 — (Difference/ max Difference).

Definition 15 (Literal similarity).
slsim(A, A) — [0,1]
misim := max {slsim(A41,As) : Ay € AN Az € A}
slsim(A;, A;)
mlsim(A)

And last but not least, unlike for relations the minimal similarity when
comparing attributes is always zero.

lszm(A“ Aj, A) =

Definition 16 (Similarity for one attribute).

P '
(a€Aq(A,1q)) max{lsim(a,b, A)[bEAs(A,I2)} '
[As (A T7)]

if |Ag(A, I1)| > |As(A, I
OA(Iy, Iy, A) i= [As(A,)| > |As(A, Ip)]|

%0 ifAg(AT]) =0V Ag(A, Ig) =0
P '
§ (a€A5 (A, Iy)) max{lsim(a,b,A)|bEAs(A,11)}

A (A T3)] otherwise

Definition 17 (Attribute Similarity).
ZaEPA(Il,b) OA(I1, Iy, a)
|PA(11,12)|

AS(Il,IQ) =

Combined Measure. The combined measure uses the three dimensions
introduced above in a common measure. This is done by calculating the
weighted arithmetic mean of attribute, relation and semantic similarity.

Definition 18 (Similarity Measure).

X tXTSIZ,I +7’XRSI,L'7I' +GXASIZ',I'
Slm(Ifi,Ij) = (]) t+r(+a]) (])

The weights may be adjusted according to the given data set the measures
should be applied on, e.g. within our empirical evaluation we used a weight
of 2 for relation similarity, because most of the overall information of the
ontology and the associated instance was contained in the relations.

The similarity measures introduced above allow to compute similarities
between a set of instances. We consider this step as a specific form of pre-
processing to generate a similarity matrix that may serve as input for a
hierarchical clustering algorithm, e.g. as described in [9].

16 A. Hotho et al.

Empirical Evaluation We have empirically evaluated our approach for
clustering ontology-based instances based on the different similarity measures
and the clustering algorithm introduced above. We used the well-known CIA
world fact book data set as input®. The data set is available in many dif-
ferent forms as MONDIAL databases?. Due to a lack of currently available
ontology-based instance on the Web, we converted a subset of MONDIAL
in RDF and modeled a corresponding RDF-Schema for the databases (on
the basis of the ER model also provided by MONDIAL). It has to be noted
that the MONDIAL database has a lot of missing and even wrong values.
Our subset of the MONDIAL database contained the concepts COUNTRY,
LANGUAGE, ETHNIC-GROUP, RELIGION and CONTINENT. Re-
lations contained where

SPEAK(COUNTRY,LANGUAGE),
BELONG(COUNTRY, ETHNIC-GROUP),
BELIEVE(COUNTRY,RELIGION),
BORDERS(COUNTRY,COUNTRY) and
ENCOMPASSES(COUNTRY,CONTINENT).

We also converted the attributes infant mortality and population growth of
the concept COUNTRY.

The task was now to calculate the hierarchical cluster structure for coun-
tries using the data set introduced above. As there is no pre-classification of
countries, we decided to empirically evaluate the cluster against the coun-
try clusters we know and use in our daily live (like european countries,
scandinavian countries, arabic countries etc). Sadly there is no further tax-
onomic information for the concepts RELIGION, ETHNIC-GROUP or
LANGUAGE available within the data set. Thus, the taxonomic similarity
measure could not be applied within this evaluation study. We first feed the
clustering algorithm with a similarity matrix that has been generated using
only relation similarity measures, than with a similarity matrix that has been
generated using only attribute similarity measures and finally with a similar-
ity matrix using a the combined relational and attribute similarity measure.
For our experiments we used the already introduced bottom-up clustering
algorithm with a single linkage computation strategy using cosine measure.

Using only relation similarity. Using only the relations of countries for mea-
suring similarities we got clusters resembling many real world country clus-
ters, like the european countries, the former soviet republics in the caucasus
or such small cluster like {AUSTRIA, GERMANY }. A particular interesting ex-
ample is the cluster of scandinavian countries depicted in Figure 1.5 because

8 http://www.cia.gov/cia/publications/factbook/
9 http://www.informatik.uni-freiburg.de/ may/Mondial/

1 On Knowledgeable Unsupervised Text Mining 17

our data nowhere contains a value like ”scandinavian language” or a ethnic

group ”scandinavian” .19

N SF S DK IS

Figurel.5. Example Clustering Result — Scandinavian Countries

Figure 1.6 shows another interesting cluster of countries that we know
as the Middle East'!. The politically interested reader will immediately rec-
ognize that Israel is missing. This can be easily explained by observing that
Israel, while geographically in the middle east is in terms of language, religion
and ethnic group a very different country. More troublesome is that Oman is
missing too and this can be only explained by turning to the data set used
to calculate the similarities, where we see that Oman is missing many values,
for example any relation to language or ethnic group.

]

Q KWT UAE SA JOR RL IRQ SYR YE

Figurel.6. Example Clustering Result — Middle East

Using only attribute similarity. When using only attributes of countries for
measuring similarities we had to restrict the clustering to infant mortality
and population growth. As infant mortality and population growth are good
indicators for wealth of a country, we got cluster like industrialized countries
or very poor countries.

10 The meaning of the acronyms in the picture is: N:Norway, SF: Finnland, S:
Sweden, DK: Denmark and IS:Island.

11 The meaning of the acronyms used in the picture is: Q:Quatar, KWT: Kuwait,
UAE: United Arab Emirates, SA: Saudi Arabia, JOR: Jordan, RL: Lebanon,
IRQ: Iraq, SYR: Syria, YE, Yemen.

18 A. Hotho et al.

Combining relation and attribute similarity. At first surprisingly the clusters
generated with the combination of attribute and relation similarity closely
resemble the clusters generated only with relation similarity. But after check-
ing the attribute values of the countries it actually increased our confidence
in the algorithm, because countries that are geographically close together,
and are similar in terms of ethnic group, religion and language are almost
always also similar in terms of population growth and infant mortality. In the
few cases where this was not the case the countries where rated far apart,
for example Saudi Arabia and Iraq lost it’s position in the core middle east
cluster depicted because of their high infant mortality'2.

Summarization of results. Due to the lack of pre-classified countries and due
to the subjectivity of clustering in general, we had to restrict our evaluation
procedure to an empirical evaluation of the cluster we obtained against the
country clusters we know and use in our daily live. It has been seen that using
our attribute and relation similarity measures combined with a hierarchical
clustering algorithm results in reasonable clusters of countries taking into
account the very different aspects a country may be described and classified.

1.4.3 Association Rules

Association rules have been established in the area of data mining, thus, find-
ing interesting association relationships among a large set of data items. Many
industries become interested in mining association rules from their databases
(e.g. for helping in many business decisions such as customer relationship
management, cross-marketing and loss-leader analysis. A typical example of
association rule mining is market basket analysis. This process analyzes cus-
tomer buying habits by finding associations between the different items that
customers place in their shopping baskets. The information discovered by
association rules may help to develop marketing strategies, e.g. layout op-
timization in supermarkets (placing milk and bread within close proximity
may further encourage the sale of these items together within single visits to
the store). In [1] concrete examples for extracted associations between items
are given. The examples are based supermarket products that are included in
a set of transactions collected from customers’ purchases. One of the classical
association rule that has been extracted from these databases is that “diaper
are purchased together with beer”.

For the purpose of illustration, an example is provided to the reader. The
example is based on actual experiments. A text corpus given by a WWW

2 Tt may be surprising for such a rich country, but according to the CIA world
fact book the infant mortality rate in Saudi Arabia (51 death per 1000 live born
children) much closer resembles that of sanctioned Iraq (60) than that of much
poorer countries like Syria (33) or Lebanon (28)

1 On Knowledgeable Unsupervised Text Mining 19

provider for tourist information has been processed!3. The corpus describes
actual objects referring to locations, accomodations, furnishings of accomo-
dations, administrative information, or cultural events, such as given in the
following example sentences.

(1) a. “Mecklenburg’s” schonstes “Hotel” liegt in Rostock. (“Mecklenburg’s”
most beautiful “hotel” is located in Rostock.)

b. Ein besonderer Service fiir unsere Géste ist der “Frisérsalon” in un-
serem “Hotel”. (A “hairdresser” in our “hotel” is a special service for
our guests.)

c. Das Hotel Mercure hat “Balkone” mit direktem “Strandzugang”. (The
hotel Mercure offers “balconies” with direct “access” to the beach.)

d. Alle “Zimmer” sind mit “TV”, Telefon, Modem und Minibar ausges-
tattet. (All “rooms” have “TV”, telephone, modem and minibar.)

Processing the example sentences (1a) and (1b) the dependency relations
between the lexical entries are extracted (and some more). In sentences (1c)
and (1d) the heuristic for prepositional phrase-attachment and the sentence
heuristic relate pairs of lexical entries, respectively. Thus, four concept pairs
— among many others — are derived with knowledge from the lexicon.

Tablel.2. Examples for Linguistically Related Pairs of Concepts

Ly Qi1 Lo a2
“Mecklenburgs” AREA hotel HOTEL
“hairdresser” HAIRDRESSER hotel HOTEL
“balconies” BALCONY access ACCESS
“room” ROOM TV TELEVISION

ishing

accomodation

Figurel.7. An Example Concept Taxonomy as Background Knowledge for Non-
Taxonomic Relation Extraction

The algorithm for learning generalized association rules uses the con-
cept hierarchy, an excerpt of which is depicted in Figure 1.7, and the con-

13 A detailed description of the text corpus and the overall application and evalua-
tion study is provided in section ?77?.

20 A. Hotho et al.

cept pairs from above (among many other concept pairs). In our actual ex-
periments, it discovered a large number of interesting and important non-
taxonomic conceptual relations. A few of them are listed in Table 1.3. Note

that in this table we also list two conceptual pairs, viz. (AREA, HOTEL) and
(ROOM, TELEVISION), that are not presented to the user, but that are pruned.

The reason is that there are ancestral association rules, viz. (AREA, ACCOMODATION)
and (ROOM,FURNISHING), respectively with higher confidence and support
measures.

Tablel.3. Examples of Discovered Non-Taxonomic Relations

Discovered relation Confidence Support
(AREA, ACCOMODATION) 0.38 0.04
(A ITOTRE 01 002
CAREAHOTRR) 61 8:03
(ROOM, FURNISHING) 0.39 0.03
/nnn\n PR UICTON) 0-2Q 002
(ROOM—FEREEVISION) - 6:02
(ACCOMODATION, ADDRESS) 0.34 0.05
(RESTAURANT, ACCOMODATION) 0.33 0.02

1.5 Postprocessing and Presentation

Even without background knowledge a major component of unsupervised
Text Mining is the postprocessing and presentation component. The reasons
essentially are that

e No algorithm can reliably predict what is novel, interesting and useful;

e The results are typically so complex that they cannot be represented in
a short phrase or formula or a small picture;

e Even fairly understandable results must be made digestable for a more
naive user who is typically not an expert in statistics or data mining, but
has an application background.

Background knowledge per se does not diminish any of these three prob-
lems. However, ontologies add one (or several) additional dimensions that
allow the user to explore the results in a way that corresponds to his way
of thinking in the application domain. For instance, in the skill management
scenario it is not very intuitive for the naive user to think in terms of distance
to a hyperplane in some high-dimensional space, but it is quite easy for him
to understand an explanation that says “these two clusters are the same on
all attributes, but this group of people also has foreign language skills”.

1 On Knowledgeable Unsupervised Text Mining 21

Techniques. Technically speaking, this sort of explanation is realized by some
core means: 4

e Navigation. Either navigation in the ontology may be used to select data
mining results or data mining results may be selected in order to focus
on some ontology parts.

e Exploiting hierarchical relationships of an ontology, e.g. the taxonomic
relation HC or some part-whole hierarchy (e.g., car-body being part of
a car). Different results may be sorted according to the branching of at-
tribute values into different parts of such a hierarchy. In addition, several
dimensions may be constructed from such attribute values resulting in a
lattice of different results.

e Focusing on the parts of the ontology that best explain a particular result.
For instance, when clustering concept vectors one finds that not all vector
entries are of similar value for producing the final clustering results. Thus,
the explanation can be focused to focal parts of the ontology. At the same
time hierarchies in the ontology may be split or aggregated depending on
which view is more promising to the user who explores the result.
While we have expanded only on a few mechanisms (e.g., navigation,

zooming into particular concepts, selection of data mining results), there is
plenty of work in visualizing ontologies and corresponding database entries
that may be reused for visualizing knowledgeable text mining results.'®

1.6 Conclusion

Text Mining is about discovering novel, interesting and useful patterns from
textual data. In this paper we have discussed several means that introduce
background knowledge into unsupervised text mining in order to improve
the novelty, the interestingness or the usefulness of the detected patterns.
Germane to the different proposals is that they strive for higher abstractions
that carry more explanatory power and more possibilities for exploring the
input texts than is achievable by unknowledgeable means.

Acknowledgments. The research presented in this paper has been partially
funded by DaimlerChrysler AG, Woerth in the HRMore project and by
Deutsche Telekom AG.

References

1. R. Agrawal, T. Imielinski, and A. Swami. Mining Associations between Sets
of Items in Massive Databases. In Proceedings of the 1998 ACM SIGMOD
International Conference on Management of Data, Washington, D.C., May
26-28, 1993, pages 688-692. ACM Press, 1993.

14 The means, of course, depend to some extent on the data mining techniques
exploited.
15 Cf. http://www.aidministrator.nl for some commercial tools.

22

10.

11.

12.

A. Hotho et al.

. Alexander Maedche, Steffen Staab, Rudi Studer, York Sure, and Raphael Volz.

Seal - tying up information integration and web site management by ontologies.
In IEEE Data Engineering Bulletin, volume 25, March 2002.

K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is ‘nearest
neighbor’ meaningful. In Proc. of ICDT-1999, pages 217-235, 1999.

P. Bradley, U. Fayyad, and C. Reina. Scaling clustering algorithms to large
databases. In Proc. of KDD-1998, pages 9-15. AAAT Press, August 1998.
Ronen Feldman, Yonatan Aumann, Moshe Fresko, Orly Lipshtat, Binyamin
Rosenfeld, and Yonatan Schler. Text mining via information extraction. In
Proceedings of PKDD-99, Prague, 1999. Springer, 1999.

A. Hotho, A. Maedche, and S. Staab. Ontology-based text clustering. In
Proceedings of the IJCAI-2001 Workshop “Text Learning: Beyond Supervision”,
August, Seattle, USA, 2001.

L. Kaufman and P.J. Rousseeuw. Finding Groups in Data: An Introduction to
Cluster Analysis. Wiley, New York, 1990.

I. V. Levenshtein. Binary Codes capable of correcting deletions, insertions, and
reversals. Cybernetics and Control Theory, 10(8):707-710, 1966.

C.D. Manning and H. Schuetze. Foundations of Statistical Natural Language
Processing. MIT Press, Cambridge, Massachusetts, 1999.

D. Maynard, V. Tablan, H. Cunningham, C. Ursu, H. Saggion, K. Bontcheva,
and Y. Wilks. Architectural elements of language engineering robustness. Jour-
nal of Natural Language FEngineering — Special Issue on Robust Methods in
Analysis of Natural Language Data, 2002.

G. Neumann, R. Backofen, J. Baur, M. Becker, and C. Braun. An information
extraction core system for real world german text processing. In In Proceedings
of ANLP-97, pages 208-215, Washington, USA, 1997.

S. Staab, C. Braun, A. Diisterh6ft, A. Heuer, M. Klettke, S. Melzig, G. Neu-
mann, B. Prager, J. Pretzel, H.-P. Schnurr, R. Studer, H. Uszkoreit, and
B. Wrenger. GETESS — searching the web exploiting german texts. In C1A4°99
— Proceedings of the 3rd Workshop on Cooperative Information Agents. Up-
sala, Sweden, July 31-August 2, 1999, LNCS 1652, pages 113-124, Berlin, 1999.
Springer.

