ORAKEL: A Natural Language Interface
to an F-Logic Knowledge Base

Philipp Cimiano

Institute AIFB, University of Karlsruhe

Abstract. In this paper we present ORAKEL, a natural language in-
terface which translates wh-questions into logical queries and evaluates
them with respect to a given knowledge base. For this purpose, ORAKEL
makes use of a compositional approach in order to construct the seman-
tics of a wh-question. The system is in principle able to deal with ar-
bitrary logical languages and knowledge representation paradigms, i.e.
relational models, frame-based models, etc. However, in this paper we
present a concrete implementation based on F-Logic and Ontobroker as
underlying inference engine.

1 Introduction

For many applications it is desirable to query knowledge stored in a database
or knowledge base through a natural language interface. Actually, this is an im-
portant research problem which has received special attention in the mid 80’s
(see [1] or [6] for two good surveys of the field). Certainly it is possible to query
a knowledge base by using some logical query language, but it is not feasible to
assume that non-computer-scientists will find such a language intuitive to use.
Another option is to make use of boolean queries such as those used in WWW
query interfaces as for example Google! or Altavista?. This sort of queries are
certainly much more intuitive than logical ones, but suffer from a very reduced
expressiveness. In this sense the challenge is to use an expressive logical query
language in the background while at the same time hiding the complexity of such
a language to the user by allowing him to formulate queries in natural language.
In this paper we present ORAKEL, a natural language interface for a knowledge
base which implements a compositional semantics approach in order to trans-
late wh-questions into logical form (compare [3]). In particular, motivated by
the growing importance of object-oriented database systems, we present a trans-
lation into F(rame)-logic [12]. F-Logic is a fully-fledged first order logic with a
model-theoretic semantics. The logic was originally defined to account for the
logical properties of object-oriented systems such as frames, inheritance etc. As
underlying F-Logic inference engine we make use of Ontobroker [7].

The remainder of this paper is organized as follows: Section 2 presents the ar-
chitecture of the system and describes its main components. In Section 3 we

! http://www.google.de
% http://www.altavista.com

show some results of the lexicon generation component. Section 4 concludes the
paper.

2 System Architecture and Main Components

The main features of ORAKEL are on the one hand that it makes use of a
compositional semantic construction approach as in the JANUS question an-
swering system ([10]) thus being able to handle questions involving quantifica-
tion, conjunction and negation in a classical way. On the other hand, ORAKEL
automatically generates the lexicon needed to interpret the wh-questions from
the knowledge base itself. In this respect it differs from earlier systems in which
either general-purpose lexicons were used ([2]), developed by the interface engi-
neer or database expert with support of tools as in TEAM ([9]) or developed and
incrementally refined through interaction with the users as in RENDEZVOUS
([5]). The architecture of ORAKEL is depicted in Figure 1. In brief, the user
asks a wh-question which is parsed by the parsing and semantic construction
component which uses the general and domain lexicons as resources. The latter
is automatically generated out of the F-Logic knowledge base by a lexicon gener-
ation component. The resulting F-Logic query is sent to the Ontobroker inference
engine ([7]) which evaluates the query and directs the answer to the user. The
two core components, i.e. the parsing and semantic construction as well as the
lexicon generation component are described in the following sections.

Wh-question -
Parsing General
feedback | Semantic Construction Lexicon

T

Answer Domain
Logical Lexicon
Query
T Lexicon Generation
F-Logic
Ontobroker KB

Fig. 1. System Architecture

2.1 Parsing and Semantic Construction

In order to translate wh-questions into F-logic queries we make use of a composi-
tional semantic construction approach presented in [3]. As underlying syntactic
theory we build on a variant of Lezicalized Tree Adjoining Grammar (LTAG)
[11] introduced in [13]. LTAG is especially interesting in this context because of
its extended domain of locality and thus the natural way in which subcatego-
rization is treated. However, we extend the formalism to also include ontological
information (compare [4]). For further details about the approach to semantic
construction the reader is referred to [3]; in this paper we focus in particular on
the system’s lexicon generation component.

2.2 Lexicon Generation

An important question for any natural language interface and in general any
syntax-semantics interface is where the necessary lexical entries come from.
ORAKEL is novel in this respect in the sense that it automatically generates
the lexicon - i.e. the elementary trees - out of the knowledge-base in question.
First of all, it is important to mention that the parser makes use of two different
lexicons: the general lexicon and the domain lexicon (compare Figure 1). The
general lexicon includes closed-class words such as determiners i.e. the, a, every,
etc., as well as question pronouns, i.e. who, what, which, where, etc. and thus is
domain independent. The domain lexicon varies from application to application
and is generated out of the knowledge base. For this purpose, ORAKEL makes
use of subcategorization information automatically acquired from a big corpus,
in our case the British National Corpus (BNC). In particular, we parse the cor-
pus with LoPar ([15]), a statistical left-corner parser and extract the following
syntactic frame types: intransitive, transitive, intransitive+PP, transitive + PP
for verbs and N+PP and N+PP+PP for nouns. For each verb or noun and for
each frame, we then take the synset from WordNet ([8]) which best generalizes
the selectional preferences at each argument position in line with [14].

At a second step, we then take each method name in the knowledge base and
look for a subcategorization frame with the same arity. We then check if the
concepts are compatible, i.e. if there is a mapping M from the arguments in
the subcategorization frame to the ones of the F-Logic method signature such
that the concepts specified in the method are more special than the ones in the
subcategorization frame with regard to the WordNet lexical hierarchy. Out of
these compatible subcategorization frames we choose the one maximizing the
product AvlvN(c(z'),c(j)) x p(s,|v), where (i,j) € M says that position i

2greM
of the subc(zi‘Jc)ezegorization frame has been mapped to position j of the method
signature and c¢(i) is the value of the concept at position 7 in the method and
¢(j) is the ID of the WordNet synset best generalizing the argument at position
Jj in the subcategorization frame. Further, Aw n(c(7),¢(j)) is then the distance
with regard to WordNet between the two concepts and p(s,|v) is simply the
conditional probability of the frame s, given the predicate (verb) v. In fact,
there are different syntactic frames with an appropriate arity for the method
own[person = company] for example, so we take the one with the mapping
maximizing the above product, i.e. the transitive use of own in this case. The
synset IDs of the subject and object position both refer to the synset to which
entity and something belongs. As person and company are both hyponyms of this
synset, it is a valid syntactic frame according to our method. In this particular
case, the overall distance remains the same independently of which frame argu-
ment is mapped to which method argument, so that we keep the argument order
thus mapping the subject to the first and the object to the second position of
the own-method. Then, we automatically generate the corresponding elementary
trees to be able to ask for the subject as in Who owns every company?, the ob-
ject as in What/Which company does Bill Gates own? as well as both, i.e. Who
owns what?. In addition, we also generate the passive forms of own such that

dpT:company np*:company npt :organization
o = AP.P(microsoft) o = \x.company(x) o = Az.organization(x)

microsoft company organization

Fig. 2. Elementary trees in the domain lexicon

we can also ask: What/Which company is owned by Bill Gates? or What/Which
company is owned by whom?. For this purpose, we look up the derived forms of
own (past participle, 3rd person singular present tense) in the lexicon provided
with LoPar.

Additionally, for the method names we look up the WordNet-synonyms of the
most frequent sense and repeat the same procedure as above for the synonyms in
WordNet. For own, WordNet contains two synonyms in the most frequent sense,
i.e. have and possess. As expected, the corresponding subcategorization frames
are quite similar to the ones of own, such that we automatically create similar
elementary trees as above for have and posses mapping to the own-method.
Though the mapping as well as generation of elementary trees for method names
corresponding to a noun - for example boss - works basically along these lines,
there is one further complication to take into account. In fact, for such type of
methods, there will always be one argument position which is not realized in a
noun+PP or noun+PP+PP frame as it is the argument which is typically spec-
ified in a copula construction such as The boss of Microsoft is Bill Gates. Thus,
if the method name corresponds to a noun as in companylboss = person],
we search for compatible frames without considering the last method argu-
ment and choose the mapping maximizing the above product. Take for exam-
ple the boss method. As synonyms in WordNet we find: foreman, chief, gaffer,
honcho. If we then apply our approach we map the subcategorization frames
boss(0f:100001740) and chief(of:100017954) to the boss-method, thus being able
to ask Who is the boss/chief of Microsoft?. It is important to mention that it can
not be assumed that all method names are so ’pure’, so that in case the method
name does not match a verb or noun we have subcategorization information for,
we first substitute punctuation symbols from the method name by spaces, i.e.
wine-region becomes wine region and we consult the subcategorization lexicon
again. In case this also doesn’t produce any result, we then take the word at the
end of the expression, wine in our case and consult the lexicon again.

Finally, we derive the entities and np’s from membership/subclass statements
such as microsoft:company or company::organization thus yielding the elemen-
tary trees depicted in Figure 2.

3 Evaluation

We conducted a small experiment to assess the quality of our lexicon generation
component. For this purpose, we selected 5 rather general ontologies from the

Ontology |#Properties|Domain+Range|Non-Composite|Correct|% Correct
Beer 9 4 3 2 66.67%
Wines 10 10 9 6 44.44%
Personal |25 10 8 6 75%
General (28 17 6 6 100%
University |27 11 2 1 50%
Total 99 42 28 21 75%

Fig. 3. Results of the Lexicon Generation Component Evaluation

DAML Ontology Library® about the following topics: beer?, wine®, general in-
formation about organizations®, personal information” and university activities®.
From all these ontologies we took the properties (binary relations) and tested if
we could find an appropriate subcategorization frame with our lexicon genera-
tion component from which to generate appropriate elementary trees. Table 3
gives the following figures: (1) the ontology in question, (2) the number of DAML
properties in the ontology, (3) the number of properties in the ontology with a
domain and a range specified, (4) the number of properties from (3) with a non-
composite name, (5) the number of the relations from (4) for which our method
found a correct subcategorization frame and (6) the percentage of correct an-
swers for the properties in (4). The results show that for 3/4 of the properties in
(4) we get correct subcategorization frames. Of course, these results are limited
as we have only tested binary properties. It is also clear that the approach needs
to be extended to also handle properties with composite names to achieve better
results. Nevertheless, these first results are encouraging.

4 Conclusion and Outlook

We have presented ORAKEL, a natural language interface to an F-Logic knowl-
edge base which makes use of a compositional semantics approach to translate
wh-questions into F-Logic queries. For this purpose, we have assumed the declar-
ative formulation of LTAG in [13] as well as the extension in [4] as underlying
syntactic theory. The approach has been implemented in Java as a parser opera-
tionalizing the calculus in [13] and taking into account ontological information as
described in [4]. Further, we have presented in detail and evaluated the system’s
lexicon generation component.

We are currently devising several experiments to evaluate our system. First we

3 http://www.daml.org/ontologies/

* http://www.cs.umd.edu/projects/plus/DAML/onts/beer1.0.daml

® http://ontolingua.stanford.edu/doc/chimaera/ontologies/wines.daml
5 http://www.cs.umd.edu/projects/plus/DAML/onts/generall.0.daml
7 http://www.cs.umd.edu/projects/plus/DAML /onts/personall.0.daml
8 http://www.cs.umd.edu/projects/plus/DAML /onts/univ1.0.daml

intend to acquire typical wh-questions in a Wizard-of-Oz style experiment, man-
ually translate them into F-Logic queries and then evaluate our system in terms
of precision/recall with regard to them. This will show how good our system is
in dealing with typical questions. Second, we intend to evaluate the usability of
the system by comparing the number of successful /failed questions, elapsed time
etc. between people asking wh-questions and people directly formulating logical
queries to the Ontobroker system.

References

1.

2.

®

10.

11.

12.

13.

14.

15.

I. Androutsopoulos, G.D. Ritchie, and P. Thanisch. Natural language interfaces to
databases—an introduction. Journal of Language Engineering, 1(1):29-81, 1995.
B.K. Boguraev and K. Sparck Jones. How to drive a database front end to
databases with evaluative feedback. In Proceedings of the Conference on Applied
Natural Language Processing, 1983.

P. Cimiano. Translating wh-questions into f-logic queries. In R. Bernardi and
M. Moortgat, editors, Proceedings of the CoLogNET-EIsNET Workshop on Ques-
tions and Answers: Theoretical and Applied Perspectives, pages 130-137, 2003.

P. Cimiano and U. Reyle. Ontology-based semantic construction, underspecifi-
cation and disambiguation. In Proceedings of the Prospects and Advances in the
Syntaz-Semantic Interface Workshop, 2003.

E.F. Codd. Seven steps to RENDEZVOUS with the casual user. In J. Kimbie and
K. Koffeman, editors, Data Base Management. North-Holland publishers, 1974.
A. Copestake and K. Sparck Jones. Natural language interfaces to databases.
Knowledge Engineering Review, 1989. Special Issue in the Applications of Natural
Language Processing Techniques.

S. Decker, M. Erdmann, D. Fensel, and R. Studer. Ontobroker: Ontology Based
Access to Distributed and Semi-Structured Information. In Database Semantics:
Semantic Issues in Multimedia Systems, pages 351-369. Kluwer, 1999.

C. Fellbaum. WordNet, an electronic lexical database. MIT Press, 1998.

B.J. Grosz, D.E. Appelt, P.A. Martin, and F.C.N. Pereira. Team: An experiment
in the design of transportable natural language interfaces. Artificial Intelligence,
32:173-243, 1987.

EW Hinrichs. The syntax and semantic of the janus semantic interpretation lan-
guage. Technical Report 6652, BBN Laboratories, 1987.

A K. Joshi and Y. Schabes. Tree-adjoining grammars. In Handbook of Formal
Languages, volume 3, pages 69-124. Springer, 1997.

M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and frame-
based languages. Journal of the Association for Computing Machinery, May 1995.
Reinhard Muskens. Talking about trees and truth-conditions. Journal of Logic,
Language and Information, 10(4):417-455, 2001.

Philip Resnik. Selectional preference and sense disambiguation. In Proceedings of
the ACL SIGLEX Workshop on Tagging Text with Lezical Semantics: Why, What,
and How?, 1997.

Helmut Schmid. Lopar: Design and implementation. In Arbeitspapiere des Son-
derforschungsbereiches 340, number 149. 2000.

