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Abstract

Service-oriented computing provides the right means for
building flexible systems that allow dynamic configuration
and on-the-fly composition. In order to realize this vision,
the system must be able to choose the most suitable service
from a large and constantly changing number of providers.
We present an approach for selecting services based on a
coherent conceptual policy model and a service utility mea-
sure. Our framework is capable of capturing technical and
application specific aspects of services and incorporates
them into the decision making process. We assist the user in
establishing the utility measure from existing policies by at-
taching value function patterns to the individual attributes.
Drawing from the areas of utility theory, foundational on-
tology, and electronic markets, our work is a promising ap-
proach for unifying the heterogeneous methodologies in the
service selection process.

1 Introduction

Service Oriented Architecture (SOA) is an architectural
style of developing systems, where services are loosely cou-
pled amongst each other. Loose coupling implies, that it is
possible for a requestor to substitute one service with an-
other one or even select a service dynamically. In context
of the SOA, policies have recently received a lot of atten-
tion and several standards like WS Policy, WS Security,
XACML, and others have emerged. The rationale for these
languages is that off-the-shelf policy engines enforce poli-
cies and use them in the service selection process.

Our work is motivated by the following three observa-
tions: Firstly, today’s policy languages are driven by very
heterogeneous communities, resulting in policy languages
with different syntax, semantics, and underlying concep-
tual models. The multiplicity of description languages in
the SOA domain even coined the term WS* which refers to
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this collection of languages'. For instance, the EPAL and
XACML specifications greatly overlap and do very similar
things in slightly different ways. As a consequence, the user
has to learn the different approaches and work with differ-
ent policy tools. Furthermore, it is not possible to specify
a policy that combines privacy and communication security
concerns such as: send sensitive content over secured lines
only. WS Policy aims at solving this problem by providing a
container structure and simple logic framework that allows
other policy assertions to be plugged in. Nevertheless, the
supported assertions are very simplistic in nature and still
require the respective native policy interpreters.

Secondly, it is unclear where policies end and application
concerns start. Clearly, security and transactional settings of
a service would be specified as policies. Delivery times of
a supplier might still be policies, but the cost of an item or
even product-specific details such as megapixels measures
of digital cameras are definitely considered to be application
specific attributes. Nevertheless, when choosing a supplier,
all of the attributes mentioned above will play a role in de-
termining a provider and the technical means of invoking
its system. For instance, one might choose a more expen-
sive provider over one with a flaky technical infrastructure.
However, today’s policy frameworks only focus on the low-
level technical aspects of a service.

Thirdly, we look at the area of electronic negotiations.
In order to negotiate, the value of a trading object has to be
derived (e.g. for bidding in an auction). Therefore, more
fine-grained preference information than provided by exist-
ing policy frameworks is needed. Often multi-attribute util-
ity theory is used to represent preferences and calculate the
user’s service valuation. In order to define the service util-
ity, theoretically one would have to provide a value for every
combination of the service attributes in a n-dimensional
space. Clearly, this is not feasible and suitable approxima-
tions need to be identified.

Before the three problems outline above are addressed,
section 2 introduces the scenario of policy based web ser-
vice selection in more detail. In section 3 different classes

Uhttp://www-106.ibm.com/developerworks/views/webservices/standards.jsp
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Figure 1. Architecture

of policies are distinguished. In order to express these pol-
icy classes by means of a consistent conceptual model, sec-
tion 4 borrows ideas and methodologies from the area of
formal ontology. Basing on this foundation, section 5 intro-
duces a utility model for service offers that allows to express
the valuation of application specific and technical attributes.
According to Kephart, policies can be viewed as high-level
guidelines or directives from human users that influence the
behavior of (complex) autonomous systems [13]. Thus,
policies implicitly reveal some parts of the human prefer-
ence structure, which can be transformed into low-level ac-
tions in the system. We pick up this idea and show how
the value function can be approximated from user policies
and weighting information. Thus, policies can be used not
only for a pure boolean decision regarding the suitability of
a service, but also for estimating the degree of suitability.
We provide an example and related work in sections 7 and
8 before concluding.

2 Service Selection

In this section the scenario of dynamic web service se-
lection is introduced. This is a central problem when deal-
ing with service oriented architectures. Figure 1 shows the
architecture of the system. On the left side we see the re-
questor’s application, visualized as a workflow. The appli-
cation also contains information about the weights that rep-
resent the relative importance of attributes and policies that
define how the application should behave. From within this
flow, an external service is requested at step D. Together
with the first service request, policy as well as attribute
weighting information is sent to the service bus. Policies
and weights are converted into a requestor-specific utility
function. Note that this step only has to happen once for the
initialization of the system. Based on this function the ser-
vice bus is able to take over the duty of selecting between
the potential providers A and B.

Once a request from an application arrives, the service
bus first queries a UDDI registry for suitable providers. In
the second step, offers from the providers are collected in
parallel. In the third step, the service bus selects the opti-
mal service by evaluating the offers according to the utility
function and calls the respective provider.

In this paper utility functions are approximated from
policies in the context of service selection. However, our
approach could be also a useful instrument in many other
scenarios.

3 Policy Classes

In this section three major aspects of policy statements
are introduced: The deontic modality (section 3.1), the pol-
icy constraint (section 3.2), and the scale of the attribute
values (section 3.3). This classification can be used to cat-
egorize policies and is employed later on in order to draw
conclusions about the preference structure that is imposed
by a policy. Such a preference structure can be conceived
as the set of possible preference relations between different
alternatives (e.g. attribute values or services).

3.1 Deontic Modality

Policies are used to control the behavior of a system and
therefore, a modal description has to be part of each policy
statement. Basically, deontic modalities are normative rela-
tions, such as rights, obligations, privileges, non-rights, im-
plicit or explicit permissions, etc.? In order to specify guide-
lines for a system, obligations and recommendations are the
most important concepts. Depending on the system archi-
tecture, authorizations such as rights or permissions might
also be necessary, but they are not the focus of this paper.
Our usage of the terms obligation and recommendation is
in line with RFC 22193,

Obligation: Obligations define constraints that must be met
by a system in order to behave properly. E.g. an attribute
must have a specific value, otherwise the service does not
meet the requirements and cannot be chosen.

Recommendation: Recommendations are policies that do
not necessarily have to be met, but the user definitely prefers
an offer that complies with a recommendation. That means
recommendations can be seen as soft constraints. In con-
trast to obligations, recommendations also accept attribute
values that violate the constraint stated in the policy.

3.2 Policy Constraint

Policies narrow the range of values an attribute may
adopt. Therefore, two components are required: operators
and constants. Policy operators are comparative predicates
such as <,>,==,#,> < that divide the set of possible
attribute values into two distinct sets by comparing attribute
values with a specific constant: One set containing the al-
lowed values of an attribute j (denoted by P;) and one set

2A detailed discussion about the modalities is given in [9, 17, 8].
3http://sunsite.iisc.ernet.in/collection/rfc/rfc2119.html



of attribute values that violate the policy (denoted by W;).
In this context, the set of all attribute values X; is defined
by X; = W; U P; and the equation W; N P; = () must
hold.

3.3 Scale of Attribute Values

When analyzing policy statements, the scale of the un-
derlying attribute plays an important role. For instance, de-
pending on the type of the scale, some operators cannot be
applied in a policy statement or the meaning of operators
may change.

In this section we introduce the four main scales used to
express the attributes of a service.

Nominal scale: The attribute values are represented by mu-
tually exclusive categories. The categories do not have any
mathematical significance. An example for such a scale
is the color-attribute of a product which can be valued by
black, red, or blue. Because the scale lacks an inherent or-
der, only the policy operators =="and ’#’ can be used.

Ordinal scale: The attribute values are assigned to cate-
gories which have an inherent order of magnitude, i.e. the
order of the categories is defined, but not the exact distance
between the categories. The distance between different cat-
egories does not have to be uniform. E.g. the quality of
a service could be represented by the ordered categories
‘very good’, ‘good’ and ‘bad’. While all policy operators
can be used, no concrete statement can be made about the
distance between the attribute values (at least without any
background knowledge).

Interval scale: In addition to the properties of the ordinal
scale, the interval scale requires equal differences between
the categories. However, an interval scale does not have an
absolute zero point. A typical example for such a scale is
expressing dates where no absolute zero point can be de-
fined. Using this scale a concrete statement about the dif-
ference between two categories can be made.

Ratio scale: Using a ratio scale, attribute values are or-
dered, the distances between the values are equal, and there
is an absolute zero point. Examples are attributes like
weight, length, etc.

The scale of the constrained attribute determines, to-
gether with the deontic modality and the policy constraint,
the class of a policy. In the next section we describe a frame-
work that can be used to model the different policy classes
using a uniform formalism.

4 A generic policy description framework

We express policies via an ontology. Ontologies formal-
ize concepts and concept relationships (associations) very

Top-level ontology (domain-independent)

DOLCE+
{Object, Process, Time, Location, ...}
I inherits-from
Core ontology (specific domain-independent) | | cLO
{Norm, Obligation, Right, Policy, Scale,...} CPO
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Domain ontology

{Security, Service,...}

Figure 2. Structure of Policy Description
Framework (cf. [8])

similar to conceptual database schemata or UML class di-
agrams [19]. However, ontologies typically feature logic-
based representation languages. Those languages come
with executable calculi that allow querying and reason-
ing during run-time. Besides, such formalisms facilitate
the conceptual integration of heterogeneous policy efforts
by providing well-defined and machine understandable se-
mantics. In this section we present our generic policy de-
scription framework that is based on foundational ontolo-
gies. Foundational ontologies capture typical ontology de-
sign patterns (e.g. location in space and time). By providing
precise concept definitions they facilitate the conceptual in-
tegration of different policy efforts.

As figure 2 shows, the policy description framework
used for this work consists of 3 layers: (i) A domain-
independent upper-level ontology that provides basic con-
cepts and associations for structuring and formalization of
application ontologies. (ii) A Core Legal Ontology that rep-
resents basic concepts for modeling legal norms. (iii) A
Core Policy Ontology that extends the core legal ontology
by introducing concepts and associations to formalize poli-
cies in a well-defined way. The first two components are
off-the-shelf ontologies that are used as modeling basis for
the construction of domain specific ontologies [6]. Below
the three components are described in more detail.

(i) DOLCE+

The foundational ontology DOLCE (Descriptive Ontology
for Linguistic and Cognitive Engineering) provides the ba-
sis for the policy description framework used in this paper.
Foundational ontologies are high-quality formalizations of
domain independent concepts and associations that contain
a rich axiomatization of their vocabulary. D&S is an on-
tology module that extends DOLCE. DOLCE together with
D&S is referred to as DOLCE+ and introduces the basic dis-
tinction between descriptive and ground entities (as shown
in figure 3). A detailed description of DOLCE and D&S
can be found in [15] and [7], respectively.
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Figure 3. Core Policy Ontology

(ii) Core Legal Ontology.

The Core Legal Ontology (CLO) is a further extension of
DOLCE and organizes juridical concepts and relations on
the basis of formal properties defined in the DOLCE foun-
dational ontology [8]. The content of a legal regulation,
norm, etc. is modelled as a Description*, while a legal
case can be regarded as a concrete Situation in terms of
DOLCE-+.

Policies and the legal domain deal with similar ques-
tions, e.g. the question whether an action is allowed or
not. Both, policies as well as legal norms, define general
rules which constrain the behavior of complex systems (cf.
[5]). Hence, the basic concepts of the Core Legal Ontol-
ogy meet our requirements of expressing policies and are
general enough to harmonize existing policy efforts such as
WS-Policy or XACML which all introduce their own vo-
cabulary. Especially important for modeling policies is the
fact that Core Legal Ontology supports a wide range of nor-
mative relations that can be used to represent the deontic
modality of policies.

(iii) Core Policy Ontology.

In order to express policies we have to extend the basic vo-
cabulary with policy specific concepts and relations, while
reusing the foundational ontologies as far as possible. This
core ontology contains the basic building blocks needed for
modeling policies.

Figure 3 sketches the Core Policy Ontology (CPO) in a
simplified way. The framework can be used to express the
different classes of polices introduced in section 3. Addi-
tionally, the application area for each policy has to be de-
fined. The application area states in which situation a policy
is relevant and has to be considered.

As shown in figure 3, all concepts of the CPO are sub-
classes of DOLCE top-level concepts. A policy descrip-
tion consists of the concepts Agent, Task, Object, and At-

4Concepts and associations of the ontology are written in sans serif.

tribute. The entities Agent, Task, and Object allow to de-
fine the application area of the policy, while Attribute de-
fines the property of a service that is constrained by the
policy. The chosen property is then valued-by a Region
(called Constraint Value) that defines the overall range of
the attribute values. Regions contain values that are repre-
sented by one of the scales described in section 3 (omitted
in figure 3). By using the policy constraints (also defined
in section 3), the Regions can be specialized in a way that
only attribute values are contained, which are valid accord-
ing to the policy. Thus, the set of valid attribute values P;
and the set of forbidden attribute values WW; represent new
subordinate regions and P; defines the Constraint Value
in the policy statement.

Similar to WS-Policy our ontology allows to specify a
collection of policies (not shown in figure 3). A collec-
tion consists of several policies interpreted together. Our
framework allows to combine policies with boolean (and,
or) and implication operators (logical and reverse implica-
tion). This makes it possible to specify, for instance, that in
order to get a positive decision all policies must be valid or
alternatively, the validity of one policy from the collection
might be enough.

For the identification of the preference structure implied
by a policy the class of a policy plays an important role.
For policies modelled by means of the framework presented
above we can easily determine the class of the policy. This
is done by analyzing the relation between Agent and Task,
the scale of the Region (e.g. Ordinal Region, Nominal
Region, ...), and the way the Region is constrained (e.g.
which operator). By using the Core Policy Ontology we
can express a limited number of policy classes in a well-
defined and unambiguous way. This makes it a lot easier to
draw conclusions regarding the underlying preference struc-
ture. Before we show how policy classes and preference
structures can be related, we introduce the term preference
structure formally and show how such a structure can be
modelled by means of utility theory.



5 Utility Model

In order to make appropriate decisions a way to repre-
sent user preferences is required. For this purpose we em-
ploy a basic utility model similar to those used in [12, 4].
The properties of a service are described by a set of at-
tributes X = {X;...X,}. This set of attributes should
cover all important aspects of the service. Attribute val-
ues are either discrete, x; € {;1,...,%;m}, or continu-
ous, z; € [min;j, maxz;]°. Based on the Cartesian Product
Q= {X1, x---x,X,} of the attributes, the potential out-
come space that has to be considered when making a deci-
sion can be defined as O C 2. Hence, a service is described
by one of the possible outcomes o5 € O. Service selection
deals with finding the service s where o4 is optimal accord-
ing to user’s preferences.

In this context a preference structure is defined by the
complete, transitive, and reflexive relation >. E.g. the ser-
vice 01 € O is preferred to 02 € O if 01 > 0. The prefer-
ence structure can be derived from the value function v*(0)
of a user 7.

Ya,b € O: o, = o < v'(a) > v'(b) (1)

The function v*(a) represents the utility defined by the re-
lation > in a sense that the attribute values can be ranked
by comparing the numeric values of the value function. Ba-
sically, we could also perform decision making directly in
terms of preference orders and avoid the concept of value
functions, but multi-attributive utility theory offers advan-
tages regarding compactness and analytic manipulability
[21]. It allows to decompose complex outcome spaces
into complex utility functions composed of several lower-
dimension functions. Thus, we can describe the preference
structure for the attributes relevant to a specific service sep-
arately and then combine them using a complex utility func-
tion.

Based on these definitions the valuation of a service de-
pends on the preference structure of a user ¢ derived from
the value function of the attributes X. Hence, the overall
valuation can be approximated by using the following addi-
tive value function.

Vi) =Y Nvi(x;) 2)
j=1

For the additive value function above we assume mutual
preferential independence between the attributes [12]. Un-
der this assumption we can easily aggregate the utility func-
tions v’;(x;) of the individual attributes j to obtain the over-
all valuation of a service. However, additive value func-
tions are valid in many real world scenarios and might still

SWe can treat a range of numeric values as a finite vector of discrete
values or a infinitely long vector representing a continuum of values [11, 3]

provide a good approximation, even when mutual preferen-
tial independence does not hold exactly [16]. The weight-
ing factor A’ is normalized in the range [0, 1] and allows to
model the relative importance of an attribute j for a specific
agent 7.

In the following section we describe an approach to ap-
proximate the preference structure of a user based on the
polices that are applied in the system. Knowing this struc-
ture we can not only determine if a service complies with
the polices, but we can also estimate the degree of com-
pliance. Based on the individual value function of the at-
tributes, the overall valuation of service can be derived by
applying equation 2. Because we only consider the service
valuation of one (and the same) user we omit the parameter
1 in the following considerations.

6 Preference Elicitation from Policies

As discussed above, policies guide the behavior of a sys-
tem by constraining attributes. Thus, policies define prefer-
ence relations between the attribute values x ;. We suggest
to analyze these relations in order to generate a value func-
tion v; for the attribute X;. This allows to make the step
from a pure boolean-centered view that is usually adopted
when talking about policies to a more quantitative perspec-
tive. Doing this helps us to draw conclusions not only about
the suitability of a service, but also about the influences of
policy violations on the user’s service valuation.

Firstly, we introduce the concept of value function pat-
terns and describe how such patterns can be deduced from
policies (Section 6.1). Secondly, it is outlined how value
function patterns can be combined (Section 6.2). Finally,
we address the estimation of the free parameters in such
patterns (Section 6.3).

6.1 Value Function Patterns

Looking at the individual attributes x;, a policy could
have significant influences on the characteristics of the
value function v;. As mentioned above, our policy descrip-
tion framework allows to express a limited number of policy
classes in a formal and explicit way. Each of these policy
classes indicates a preference structure with specific charac-
teristics. We represent these characteristics by value func-
tion patterns. Value function patterns are predefined, para-
meterized utility functions which have fixed characteristics,
but the concrete valuations are parameterized.

In the following we present for each policy class the cor-
responding utility function pattern. Afterwards, these pat-
terns can be adapted to get a concrete value function by de-
termining the free parameters.
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Figure 4. Value Function Patterns for Obliga-
tions

Obligation: Obligations define requirements that have to
be met in any case. This means, an attribute j must be val-
ued by the attribute value x;, € P;. Values nearby are
considered as policy violation.

In case of an ordered scale (i.e. ordinal, interval, or ratio
scale) we also have to consider the operators such as greater
than, smaller than, etc. That means a policy could also state
that only attribute values greater than x;,, are valid. In this
case the Region P; is defined by P; = {z,x|Vk > p}, i.e.
all x5, with £ > p are valid. Other operators can be handled
similarly by redefining the sets P; and W;.

Due to the fact that a service must not be selected if an
obligation is violated, the function value has to be set to
vj(zk) = —oo in this case. Otherwise, i.e. the obligation
is met by the service, the function is valued by the parame-
ter a. The following function represents the value function
pattern for a policy that requires an attribute j to be valued
by ;1 € Pj.

w@mz{amﬁgig_ 3)
In case of a negative obligation the inverted policy operator
has to be applied (e.g. ‘#’ instead of ‘="). Thus, we simply
replace the definition of the sets P; and W, by each other.
For instance, an attribute X; must not be valued by x;,, re-
defines the sets in the following way: P} = {z;x|k # p}
and W} = {zi|k = p}. Consequently, we reuse the for-
mula 3 with the revised sets Pj{ and Wj’ respectively. Both
options are visualized in figure 4.

Recommendation: Recommendations introduce some
fuzziness, i.e. a policy violation of a service does not lead
directly to the disqualification of the service, but to a lower

valuation by the agent. Therefore, the utility will never be
—oo. For defining the value function patterns we have to
distinguish between nominal, ordinal and continuous scales.

In case of a nominal scale we get two utility levels: The
parameter a represents the valuation if the policy is not vi-
olated, and b the valuation in case of a violation. For a pol-
icy stating that the attribute X; should be valued by z;;,,
P = {x;k|Vk = p}, the value function pattern is defined
similarly to equation 3:

W@W:{Ziﬁ;% )

Having an ordered scale, i.e. ordinal, interval, or ratio,
the function gets more complex, because the utility de-
creases with the degree of the policy violation. This rate
is determined by the ‘distance’ between the attribute val-
ues x;, € P; expected by the policy and the real value
Z;k € Xj in a system.

Ordinal scales do not contain any information about the
distances between the categories. Thus, we have to assume
that all distances are equal and the only information avail-
able is the ranking of the categories. From policies we can
acquire information about which end of the scale contains
attribute values with high valuation and which contains the
values with low valuation. Therefore, we first have to deter-
mine the next valid attribute value x5 of x .

o { min(P) ifk < pAzj; =min(P) )
P max(P) ifk > pAx; =max(P)
Then, we get the following function for the attribute val-
ues . In case there is no policy violation we get a utility
of a otherwise we have a valuation between 0 and a depend-
ing on the distance to a valid attribute value ;.

5 ifk—p<0
vi(in) = a if z;, € P (6)
ab (m — k), ifk—p>0

3
Sl

Continuous ratio and proportional scales with range
[minj, max j], in contrast, contain concrete information
about the distance of two attribute values that can be used
to determine the valuation. Therefore, we have to redefine
equation 6 in the following way:

a—b
xjp—ming

vi(wr) =4 @

Zjk, if ;5 < min(P)
if max(P) > x;, > min(P)
(max; — i), if xj, > max(P)
(7
As you can see in equation 6 ordinal scales (with dis-
crete values) are represented by step curves, whereas ratio
and proportional scales can be represented by continuous
curves. For the sake of compact presentation we do not dis-
tinguish between the two types of scales in figure 5. Never-

)
(a=b)
max;—=Tjp
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Figure 5. Value Function Patterns for Recom-
mendations

theless, one should be aware that between the different or-
dered scales (ordinal, interval, and ratio) the patterns differ
slightly.

6.2 Combination of value function pat-
terns

In the previous section it is outlined how we can obtain
value function patterns for an attribute based on single poli-
cies constraining this attribute. In this section we deal with
the fact that there might be more than one policy about the
same attribute. Therefore, we derive several different pat-
terns describing the agent’s preference structure of the at-
tribute. Figure 6 shows an example for such a scenario. Ad-
ditionally, there could be already existing value functions
about an attribute not derived from policies that also have
to be considered when making a decision (e.g. background
knowledge). In order to get one integrated value function
pattern that represents the different sources we need to find
a way to aggregate the different patterns.

As mentioned in section 4, the ontology supports the
integration of several policies into collections by relating
them with boolean and implication operators. These logical
relations between the policies we can use for the aggrega-
tion of the value function patterns. Policies 1...q with the
corresponding value functions v;; ...v;, and the collec-
tion operators op valued by ‘A’ for a logical and-relation
and “V’ for a logical or-relation can be combined by the fol-
lowing formula:

vi(w50) = max (v (Tjk), - - - vjq(v5k))  ifop =V’
I\Lik min(vj 1 (xik), -, vjq(zik))  ifop =N
(®)

In case of an collection with a logical and-relation we

take the minimal value to make sure that a violated obliga-
tion (valued by —o0), cannot be overruled by another policy.
In case of a logical or-relation we take the maximal valua-
tion of an attribute value x;;, because here we can choose
freely between the alternatives. Of course, depending on the
scenario also other aggregation functions might be useful.

Implications allow to express dependencies between
policies, e.g. messages have to be encrypted with a 128
bit key if they contain sensitive data (data = ‘sensitive’ —
key length = 128). In this context, we have to distinguish
between the head and the body of the implication. Only
the policy statement in the body contains information about
the preference structure of an attribute and thus, indicates a
value pattern. The head is only used to define in which case
this pattern should be considered. In our framework this can
be modelled by a simple rule that states if a pattern should
be considered or not.

6.3 Parameter Estimation

In this section we outline how the parameters of the util-
ity function patterns can be determined. Thereby, we want
to minimize the amount of additional information gathered
from the user of the system directly, because we think com-
plex and time-consuming customization of the system is a
major obstacle regarding user adoption.

Therefore, we strongly limit the scope of requests to the
following questions:

(1) What is the willingness to pay v,,,; of the desired ser-
vice in case all requirements are met by the service? While
answering such a question is difficult for users, defining an
upper bound is absolutely necessary in real-world scenar-
ios. It is very doubtful that human users will hand over their
decisions to autonomous machines without defining an up-
per limit for the costs that could arise. We can regard this
also as a mandatory policy about the attribute ‘price’. vopt
is typically expressed in monetary units.

(2) What is the relative importance w; of an attribute 5?
Such information can be gathered efficiently by using a tax-
onomy that organizes the attributes of a service. To mini-
mize the user input we can ask for the weights on a higher
level in the taxonomy and then propagate this information
down to the leaves. We call these more general attributes
that are not directly attributes of the service, but rather clas-
sify the service attributes, meta-attributes. Using this meta-
attributes provides several advantages: It reduces the num-
ber of attributes that must be weighted by the user; it is a
lot easier for the user to judge these general attributes; the
information gathered is basically more general and thus, it
could be used for a greater variety of service types.

In order to predict the exact values of the parameters
we have to make some simplifying assumptions. To rep-
resent the valuations of the individual attributes we use the



range v; € [0, 1]. We assign the full willingness to pay, i.e.
vj(z;p) = 1, to the most preferential attribute value x;,, and
vj(z;1) = 0 to the least preferential attribute value z ;;, that
is not forbidden by an obligation (in this case it is —o0).
Under this assumption we can easily define the parameters
a and b in our value function patterns, because a represents
always the most preferential attribute value and b the least

preferential.
a=1 9)

b=0 (10)

Secondly, we assume that all attributes contribute to the
value of a service according to their relative importance, i.e.
we can calculate a normalized weighting factor \; = Ewiv _

j J

that represents the proportion of the overall willingnesjs to
pay contributed by an attribute j. The proportional result
V(z) = >J_; Ajuj(a;) can be easily transformed to a
monetary value ¢ by using the following formula:

YV = vop * V() an

Based on the functions above service offers can be analyzed
and compared regarding the utility they provide to the cus-
tomer.

7 An Example

In this section we outline a concrete example of our ap-
proach. Therefore, we consider the following four policies
which all have to be met by the selected service:

e PI: Invoke only services that are ISO 9000 certifi-
cated.

e P2: Only services which have a credit rating of A and
B should be invoked.

e P3: Generally, all outgoing messages have to be en-
crypted with a key length of at least 64 bit.

o P4: A key length should be at least 128 bit if the pay-
ment method is credit card.

Specification of policies. Policy P! constrains the at-
tribute Certificate which belongs to the meta-attribute QoS.
The attribute has a nominal scale and can be valued by
{‘ISO’, ‘TUEV’, ‘DNV’, ‘other’, ‘non’}. The policy states
that the attribute Certificate must be valued by ‘ISO’ (Op-
erator: =). That means in this case the set P; is defined by
P, ={I150}.

Policy P2 gives a recommendation about the credit rating
of a service provider. The attribute CreditRating is valued
by an ordinal scale with the attribute values {‘A’, ‘B’, ‘C’,
‘D’, ‘E’}. All values ‘A’ and ‘B’ are considered as unprob-
lematic and form the set P5. But because the policy is only

X,: Certificate V4(x)

g 1

L obligation 1,ifx, =150

2 Scale: Nominal Vi(Xq)=

K : non | 1S0 [other certifcate x;, -0, else
Operator: ‘=* Bl

o Xe CreditRating v2)

1

Q. Recommendation  if k<=2

g : Ordi > V)07 413 (5:k), else

35 Scale: Ordinal ABCDE ratings Xy,

A operator: ‘<* b
X;: KeyLength V34(X)

g e T — 3<x)

Q. Obligation

3 )

35 Scale: Ratio 4 128 number

& operator: >* il of bits Xs\

Ny number
Payment Method = | Va2(X) of bits Xy
(Oradi ; 1
CreditCard / 1, Fxy>=128

5 s KeyLength Vi(Ke) = X 17128 gy, if 64<= 3, <128

Q; Recommendation 64 128 number -0, else

[9) of bits Xy,

5 Scale: Ratio V32(X),

o L f x>
Operator: *>* 17 — Va(xax)=vs|={ 1, if Xy >=64
Payment Method €4 128 -0, else
= ‘BankTransfer’ number

of bits Xy

Figure 6. Example: Derived value functions

a recommendation, a service with a credit rating below ‘B’
might also be selected (especially, if the relative importance
of CreditRating is very low).

P3 says that all considered services must support a key
length of at least 64 bit, i.e. the attribute KeyLength is val-
ued by using a ratio scale with the numeric range [0,2048].
Therefore, the set of valid attribute values is defined by
P31 ={64,...,2048}.

The fourth policy is a recommendation that com-
bines two attributes: KeyLength and PaymentMethod. A
KeyLength above 128 bit will be preferred if Payment-
Method is valued by ‘CreditCard’, otherwise all key lengths
are allowed. For PaymentMethod only two options are pos-
sible, ‘CreditCard’ or ‘BankTransfer’. Thus, we have a
nominal scale here and the set Py = {‘Credit Card’, ‘Pay-
mentMethod’ }. There is already a constraint on the attribute
KeyLength and we have to generate a second one that results
in the set P3 o = {128,...,2048}. This constraint has to
be considered only if one pays with credit card.

Identifying value function patterns. Policy aspects that
are relevant for classification and thus, for determining the
value patterns are summarized in figure 6. The policies
above indicate preference structures for the attributes Cer-
tificate, CreditRating, and KeyLength. We do not have any
information about the preference structure of attribute Pay-
mentMethod. By analyzing the policy class defined by the
policy constraint, scale, and modality we can identify a suit-
able value function pattern reflecting the policy statement.
As mentioned above the attribute Certificate is valued by an
nominal scale and the policy P is an obligation towards
the task invoke. Thus, we have to chose the first pattern of
figure 4, i.e. the only attribute value with an valuation that
isnot —oo is ‘ISO’.

The attribute CreditRating is valued by an ordinal scale.



The policy P2 is only a recommendation and uses the com-
parison operator ‘<’. Therefore, we have to chose in figure
5 the third pattern in the right column.

The third attribute KeyLength uses a ratio scale and is
addressed by two policies. P3 is a simple obligation with
a ‘>’-operator. This leads to the third pattern in the right
column of table 4. ‘P4’ constrains the attribute KeyLength
with a recommendation that uses the ‘>’-operator in case
PaymentMethod = ‘CreditCard’. Thus, if this is the case
we have to use the last pattern represented in column two
of figure 5. For the additive value function (equation 2)
we need one integrated pattern for each attribute. For at-
tribute KeyLength (j = 3) we have two patterns and both of
them have to be met. Therefore, we have an ‘all’-operator
in terms of WS-Policy that connects them. As outlined in
section 6.2, combination of patterns can be done by using
the formula 8: vs(z3x) = min(vs1(xsk),vs 2(zsk)). The
result of this ‘merge’ you can see in figure 6.

Estimating the free parameters. In order to adapt the
patterns to the concrete policy examples, information about
the relative importance w; of the attributes and the price
Vopt an agent is willing to pay for a service with a optimal
set of attribute values is required. Under the assumptions
mentioned in section 6.3 we can use the equations 9 and 10
to set the parameters a and b: a = 1 and b = 0. Here, we
assume a valuation for the optimal service of v,,; = 80 and
a weighting vector for the attributes Certificate, CreditRat-
ing, and KeyLength of w = (40, 40, 20). Consequently, we
get normalized weights of A = (0.4,0.4,0.2). The formu-
las we get after inserting the parameters a and b are shown
in figure 6.

The overall valuation of a service can be approximated
by the additive value function, where & represents an of-
fered service.

V(z) =0.4%vi(x1) + 0.4 % va(z2) + 0.2 x v3(x3) (12)

This means, for two offers z! = (‘ISO’,‘A’, 128, ‘Credit-
Card’) and 22 = (‘ISO’,‘C’, 64, ‘BankTransfer’) the valu-
ations would be V(2!) = 04 %1 +04%1+02x1 =1
and V(2?) = 0451+ 04 %2 +0.2x1 = 12, respec-
tively. Hence, the service with offer ! should be preferred.
In case monetary valuations are needed, formula 11 can be
used: This results in ' = 80 and 92 = 80 * }—g = 69.33.

Figure 6 summarizes the example by showing graphi-
cally how a policy statement can be used to derive a value
function.

8 Related Work

Many policy languages such as WS Policy, WS Secu-
rity, EPAL, XACML, and others emerged in the SOA com-
munity. Our work differs from these languages in that we

base on a clean and extensible conceptual model. Further-
more, the WS* languages base on discrete reasoning or only
vaguely define the semantics.

Like our work, KAoS [20] and Rei [10] are also based on
formal ontologies. However, both apply a discrete reason-
ing approach that allows for pure boolean decisions only
and do not aim at unifying policy languages via founda-
tional ontologies.

In economics, similar work is done in the area of prefer-
ence elicitation [1] and utility analysis. The goal here is to
collect information about the user’s preference structure in
order to support the system in making the appropriate deci-
sions. We suggest to harvest this information from policies,
which seems like a natural way for users to express their
preferences. Obviously, a combination of different methods
is feasible here. Additionally, in multi-attribute utility the-
ory alternative models for expressing utility functions can
be applied as done in [11], for instance.

Current approaches in service selection usually focus on
quality of service and apply community-based approaches
by introducing reputation systems as done in [18, 2, 14].
Our approach, in contrast, extends service selection be-
yond QoS-attributes and approximates the user’s preference
structure explicitly without the need of community data.

In policy-based systems often hybrid approaches are ap-
plied, where in a first step policies are enforced to determine
which services can be invoked at all. In a second step, ap-
plication specific concerns are handled by continuous valu-
ations. Our approach allows a single step decision process,
thus, enabling obligations and recommendations to be in-
cluded in the decision directly.

9 Conclusion and Outlook

We presented a utility based approach for policy driven
service selection. Our work addressed several major prob-
lems of today’s policy based systems, namely the hetero-
geneity of policy languages, the problem of combining tech-
nical and application specific attributes, and the challenge to
coming up dynamically with a ranking and valuation of the
available services. Drawing from a wide range of fields, our
approach fits into service oriented architectures, integrates
existing policy languages seamlessly, and allows the user to
specify his valuation in a natural way via policies. Although
the approach is applied to service selection in this paper, it
can be applicable to various other scenarios.

We are going to extend our framework in the following
directions. We are currently in the process of developing
a prototype system and plan to evaluate the approach by
feeding policies into the system and having users verify the
calculated utility manually. From a methodological point of
view we plan on relaxing some of our assumptions such as
the attribute independence. We are also going to extend the



expressiveness of the ontology (e.g. priorities for policies)
and refine the value function patterns. Last but not least,
our approach can be extended to the provider side and can
be used for policy debugging.
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