Age Based Controller Stabilization in Evolutionary Robotics

Sabrina Merkel
Institute AIFB
Karlsruhe Institute of Technology
76128 Karlsruhe, Germany
sabrina.merkel @kit.edu

Abstract—Evolutionary Robotics is a collection of heuristics
where robotic control systems are developed by following the
example of natural evolution. An evolutionary run is performed
by mutating the robots’ controllers randomly and selecting for
some desired behavioral properties. Overall, these properties
should be improved over time leading to a stable increase of
fitness. However, random mutations on critical controller parts
can lead to a rapid degradation lowering the performance of
evolution. This paper presents an approach to reduce the loss of
desirable behavior during an evolution process. A notion of age
is introduced as a quality criterion to indicate the contribution
of parts of a controller to the robot’s overall behavior. To
preserve the behavior evolved so far, mutations are channeled
to affect controller parts with a lower age more than those
with a higher age. As a result, controller parts that contribute
to a good behavior are stabilized and the evolved desirable
behavior is maintained. Experiments have been performed in
a decentralized online evolutionary scenario with controllers
based on finite state machines (FSMs). The results show an
improvement in the number of successful evolutions and the
number of successfully evolved robots compared to previous
studies.

Keywords-Evolutionary Robotics; Stabilization; Age; Evolu-
tionary Robotics, Finite State Machine, Decentralized, Online,
Stabilization, Age.

I. INTRODUCTION

Manual programming of robots is a challenging task [1].
Evolutionary Robotics (ER) is a technique to handle the
search for an optimal robot controller to support a specific
goal behavior. ER is known to be effective in developing
robot controllers for various different scenarios [2] [3], it
represents a search strategy for robot controllers following
the example of nature based on Darwin’s theory of evolution.
Mutation operators are used to scan through the space
of all possible controllers, whereas a reproduction process
selects better performing controllers from a set of available
controllers. The performance of a controller is measured by
a fitness function that evaluates the current robot’s behavior
with respect to a given target.

During the evolution process the controller is continuously
altered by mutations. As mutations occur randomly and
fitness evaluation takes some time to observe the con-
sequences of mutations (delayed fitness, cf. [4]), already
evolved desirable behavior can disappear again.

Lukas Konig
Institute AIFB
Karlsruhe Institute of Technology
76128 Karlsruhe, Germany
lukas.koenig @kit.edu

Hartmut Schmeck
Institute AIFB
Karlsruhe Institute of Technology
76128 Karlsruhe, Germany
hartmut.schmeck @kit.edu

In our earlier work [5] an approach to prevent the loss
of good evolved behavior called Memory Genome was
introduced. Each automaton gets a storage containing a
copy of the automaton’s genome that up until then had the
highest fitness value. After a constant interval the current
genome gets replaced by the Memory Genome in case the
automaton’s current fitness lies below a predefined threshold.
Experiments showed that the Memory Genome already leads
to a significant improvement in performance. Nevertheless, it
can only prohibit that the automaton loses complex behavior
for trivial one. It does not take into account which part
of a controller might be responsible for the performance
loss, therefore, it does not work as a preventive method but
rather interferes when the damage is already done. In [5] a
second method was used to minimize the chance of losing
already evolved good behavior. If a mutation can lead to
large behavioral changes in few manipulations, it is more
likely that previously good behavior turns into a worse one
before being selected through the evolution process. Thus,
the mutations are defined so that they are smooth, i.e., to
make small steps in the search space. There, a process of
hardening is achieved which decreases the probability of
losing good evolved behavior to a certain amount. However,
as the loss of good evolved behavior still can occur both
approaches, while supportive, do not solve the issue.

This paper introduces an approach called Age Based
Stabilization that aims to channel mutations so that they
tend to affect parts of the controller that are less likely
to contribute to a positive performance, thus, preserving
good behavior. Therefore, Age is introduced as a quality
criterion representing the number of reproduction cycles a
controller part has survived unchanged. During reproduction
the fitness of several robots is compared, and the relatively
better controllers are selected for the next generation. If a
controller part still exists unchanged after several reproduc-
tion processes, it very likely contributes to a relatively good
behavior compared to others that were sorted out earlier.
Thus, if the mutations occur less likely on older controller
parts, good behavior may be protected.

The term age has been used in several other Evolutionary
Computing (EC) scenarios. In [6] it also describes the num-
ber of offspring events a gene has survived. The paper [6]

deals with problems that occur during open-ended evolution.
The age is used to lock genes from further mutations when
a certain maximum age is reached. Thus, it results in a
constant mutation rate per gene and maintains the degree
to which new complexity is explored. Here the age is used
for a different purpose, but its characteristic to represent
survived offspring events and to channel mutations to newer
genes is very similar to the concept of age in this paper.

In [7] an Innovation Number is introduced and assigned
to each transition allowing to find corresponding transitions
across the evolved neural networks. This is done to line-up
corresponding genes to combine them during reproduction.
Even though, the innovation number does not represent the
quality of its correspondent transition, it is also used as an
index to keep track of the number of evolution cycles a
specific connection already exists within the network. The
lower the innovation number is, the older the corresponding
transition, so it could be seen as some kind of reverse age.
The main difference is that the innovation number does not
allow a cardinal comparison and is not used to channel
mutations during evolution or to prevent good behavior loss.

Age Based Stabilization has been tested in a decentral-
ized and online scenario using a controller representation
based on FSMs. A decentralized evolution is characterized
by the lack of a central administration unit [8]. A robot
only has its own observations and knowledge as a base to
make decisions. A decentralized technique can be necessary
when there is no possibility to implement a centralized
architecture, for example if the robots act in an operational
area that is not accessible for humans or global observers,
or in which there is a lack of communication possibili-
ties, so that the robots cannot exchange their information.
Performance issues are a second aspect. The decentralized
approach scales a lot better to large robot swarms where
a centralized technique would need a bigger computational
capacity to process the amount of information. During an
online evolution the robot already stands and acts within the
target environment while learning the desired behavior. This
has the advantage that no simulated environment is needed
and the evolved behavior exactly fits to the requirements
of the robot’s real surroundings. Thus, the robot can adapt
quickly to a changing or unknown environment.

In ER, so far, Artificial Neural Networks (ANNs) are
used more frequently as architecture for controllers than
FSMs [9], but their benefits, such as easy implementation
and well-studied learning operations, come at a cost. The
resulting controllers have complicated structures and are
often hard to interpret. This is due to the randomized changes
to the controller introduced by mutation. The consequence
is that evolved controllers are hard to analyze from a
controller point of view — although it may seem plausible
by observation that they have learned a certain behavior.
For a large set of desired swarm robotic applications such
as rescue missions, bomb disposals or in a more futuristic

scenario even medical operations inside the human body this
is insufficient. There, only observing the behavior of the
robots and hoping that it will be correct can lead to major
failures and fatal damage. An alternative controller repre-
sentation derived from FSMs is used here. FSMs are more
comprehensible and can be checked automatically for many
kinds of behavioral properties. Even though this advantage
comes at the price of a lower degree of expressiveness, most
existing controllers learned with ANNs could as well be
represented as FSMs [5].

Two behaviors have been evolved using the Age Based
Stabilization approach, namely Collision Avoidance and
Gate Passing. Both target behaviors have been previously
used for experiments, thus, it was possible to compare the
results. Throughout this paper it is shown that Age Based
Stabilization leads to a performance improvement compared
to evolutionary approaches without this stabilization.

Forward movement

(@) (b)

Figure 1. Jasmine IIlp robot, forward direction marked by arrows.
(a) Schematic view on placement of sensors around a robot. Sensors 2 — 7
use an infra-red light source with an opening angle of 60 degrees to
detect obstacles in every direction. Sensor 1 has an opening angle of
20 degrees which allows for detection of more distant obstacles in the
front. (b) Photography of a real robot.

II. FOUNDATIONS

General Course of Evolution. In this paper, the basic
exploration mechanism of the evolution process is driven
by the mutation operator which induces random changes
into the robot controllers. For the purpose of selection, at
fixed time intervals a reproduction action takes place where
every robot r is compared to a certain number of spatially
close neighbors. There, r’s controller is replaced by the
best neighbor’s controller at this time according to a fitness
function that evaluates each robot’s current behavior with
regard to the target behavior. The reproduction process is
purely selective and does not induce any new diversity into
the population. Note that the reproduction as applied does
not work in a decentralized way, but can be transformed into
a fairly similar decentralized version (cf. discussion in [5]).
The Jasmine IIIp Robot and its Characteristics. The
Age Based Stabilization approach was implemented and
tested on a simulated Jasmine IIIp robot, cf. Fig. 1 but it is

h3 =20 | true

W &

h4 > h2

Figure 2. Example Moore Automaton for Robot Behavior.

defined in a general way so it is applicable on different robot
platforms as well. The Jasmine IIIp robot can process simple
movement commands like driving forwards, backwards, left
or right, stop and idle. It has seven infra-red sensors that are
placed in a circular fashion around the center of the robot,
cf. Fig. 1(a). The sensors return values from 0 to 255 in
order to measure distances to obstacles; the values become
greater the nearer the robot gets to an obstacle (cf. [5] and
www.swarmrobot.org). The sensor variables are denoted by
hi,...,h7. In one simulation step, a robot moves 4 mm
straight forward (Move-command) or turns left or right by
an angle of 10 degrees (Turn-command). A crash with an
obstacle (i. e., a wall or another robot) is simulated by
placing the robot at a random free place within a 4 mm
radius from its last position, and turning it by a random
angle (if it is possible without a new collision) [10].

The Controller Representation. To represent robot con-
trollers, a model based on a FSMs (Moore Machines [11]),
called Moore Automaton for Robot Behavior (MARB), is
used. In the MARB model the transitions are not defined
for all possible input symbols separately but bundled with
the help of conditions. A change of states is performed if
a condition evaluates to true for a combination of sensor
values A1, ..., h7. Conditions are built as conjunctions and
disjunctions of (1) atomic comparisons over sensor variables
and constant byte values, (2) the atomic constants true
and false, and (3) recursively other conditions. Example:
(((hy < 3 AND hy = hs) OR false) OR h; < 255).
Obviously, due to the evolutionary process, conditions are
not minimized but may contain redundant components.

At every MARB state a command/parameter combina-
tion is executed when the state is entered. The command
¢ € {Move,TurnLeft, TurnRight, Stop, Idle} corre-
sponds to the robot’s movement capabilities, the parameter
p € {1,...,255} tells for Move the distance in mm, and
for T'urnx how many degrees the robot should turn.

A MARB A is defined as: A = (Q,%,9,0,,qo)-
@ corresponds to the set of states, the input alphabet X
represents all possible combinations of the sensor variables,
the output alphabet 2 consists of the available operations,
the transition function § returns the next state ¢’ that is
connected to ¢ through a satisfied transition respecting the
current sensor values, the output function A that returns the
respective operation assigned to a state and the initial state
qo € Q. See Fig. 2 for an example automaton.

Two special cases have to be considered to make the

model complete and deterministic. If for a state g none of the
outgoing transitions evaluates to frue, the model implicitly
defines a transition from q to the initial state. If there is
more than one condition that evaluates to true, the first one
is taken according to the chronological order in which they
have been inserted into the automaton during the evolution.
Evolutionary Operators. The evolution framework along
with its operators as developed in [5] has been taken as
a basis to implement the Age Based Stabilization process.
Where not stated otherwise, the parameters and operators
defined there have been left unchanged.

The Mutation Operator: The probability distribution
for the single mutations is shown below.

o u1: Insert a state without incoming or outgoing transi-
tions, with random operation and a random parameter.

e [2: Remove a random state with no incoming transi-
tions (except the initial state which can only be deleted
if it is the only state in the automaton).

o u3: Remove a random state associated with an Idle-
operation and no outgoing transitions.

e u4: Insert a transition with a false condition between
two arbitrary states.

o L5: Remove a random transition with a false condition.

o s Change a state’s output by adding a number from
{-5,...,0,....;5} drawn by uniform distribution to the
parameter and changing the command to another one by
uniform distribution if the parameter would get below
zero (do not change the parameter in that case).

e p7: For a condition ¢ change: (¢ AND true) — ¢, (¢
AND false) — false, (c OR true) — true, (¢ OR false)
—c.

o ug: For a condition ¢ change: ¢ — (c AND true), ¢ —
(c OR false).

e [ig: An atomic part of a condition can be moved in
small steps closer to frue or false. “P <> (”” means that
P can get changed to) and vice versa. When mutating
true and false into atomic comparisons, a, b are chosen
randomly. Let a,b € NU H where H\{a,b} # H:

a<b<a<b

false<ra=b+ax~b a>bsa>b

S a®beaFbeo true

e f10: Change a number ¢ € N within a condition to
i+ rand({-5,...,5}).

o 11: Change a sensor variable h € H within a condition
to rand(H).

We divide the set of single mutations M into two subsets:

Definition II.1 (Syntactic Mutations) The set of syntactic
mutations Mgy, = {pi1, p2, i3, pa, s, fiz, pig} C M are
mutations that change the controller’s structure, leading to
another entity in the genotypic search space, but do not have

any impact on the robot’s behavior, mapping to the same
entity within the phenotypic search space.

Definition II.2 (Semantic Mutations) The set of semantic
mutations Mgep, = {Nﬁ: M9, H10, ,UJ11} =M \ M@yn are
mutations that potentially result in a change of the robot’s
behavior. Thus, these mutations can influence both the
genotypic representation and the phenotype.

The Fitness Function: The fitness function f provides
information about how well a robot performs with regard
to a given target behavior. To calculate the robot’s current
fitness in a decentralized way its sensor values have to be
watched over time, not just at a specific moment. This leads
to a delayed fitness value that reflects the robot’s behavior in
the recent past. To do so, the fitness is calculated here as a
sum of several fitness snapshots snap,(t). A fitness snapshot
can be positive or negative and is added every t,,,;, time
steps to a robot’s current fitness. The snapshot corresponds
to a problem-specific fitness function f. Additionally, to
lower the influence of old behaviors the fitness is divided
by 2 every 300 simulation cycles; the latter is called fitness
evaporation. A detailed description can be found in [5].

The Reproduction Operator: For reproduction with m
mates every robot c selects the m — 1 spatially closest robots
as mates. The robot with the currently highest fitness value
in that group is determined and its genome replaces the
controller of c¢. The reproduction operator is triggered at
a constant time interval for every robot in the population
(this is a centralized operation, however, it can be transferred
easily into a decentralized version that is very similar [5]).

III. AGE BASED STABILIZATION

The main idea of Age Based Stabilization is to direct
mutations in a way that they act less randomly. They should
rather protect parts that have already indicated to contribute
to good behavior and rather affect parts that have not. In
this way the loss of already found desirable behavior should
be reduced and the populations’ average fitness should be
less oscillatory over time leading to higher fitness values
during the same number of cycles compared to an approach
without Age Based Stabilization. The criterion used here to
indicate the quality of automaton parts is their Age, i.e., the
number of reproduction cycles they survived without being
changed. This measure is still based on fitness only, but
gives additional information about the contribution of each
controller component. During reproduction, fitness evaluates
the quality of a controller relative to the performance of
others. As this is a repetitive process, the number of re-
productions survived by a controller is a good estimate for
its quality relatively to the other robots of that population.
If a controller component has not changed during any of
these selection processes and actually influences the robot’s

behavior, it is likely to contribute to the relatively good
performance of that controller.

Given that most selection processes in ER are based on

fitness and the controller representation usually consists of
several atomic components, the usage of age as a quality
criterion is mostly independent from the specific controller
representation and not limited to FSMs.
The Aging Process. The atomic controller parts of MARBs
that are looked at here are its states () and transitions 7. A
function a : QU T — {1, ..., Gmaz t is defined that assigns
the age to a state or transition. Newly inserted states or
transitions have an age of 1. The maximum age is set to
Amaz = 255 meaning that parts that survived more than
255 reproductions are not mutated anymore. This leads to
an incremental effect where the controller core gets hardened
and mutates only on the other parts keeping the core stable
throughout the evolution process.

For any reproduction an automaton survives, the age of
all reachable parts of that automaton is increased by 1.
Mutations can lead to automaton parts that are not reachable
at all, for example, a state without incoming transitions or
conditions that are not satisfiable and, therefore, lead to an
unreachable state. These automaton parts have no impact on
the robot’s behavior and their age should not be incremented
even if the automaton survives the selection process. To
indicate if a condition is satisfiable, a random allocation
of sensor values is chosen and it is determined whether
or not the condition is satisfied for these values. This is
repeated 100 times; after that the condition is expected to be
(un)satisfiable depending on the outcome. Note that an exact
calculation is an instance of the NP-complete SAT problem.
A state q is expected to be reachable if there exists a path
from the initial state to ¢ where all conditions are expected
to be satisfiable with a minimal threshold probability . A
transition ¢ is expected to be reachable if there exists a path
from the initial state to ¢ where all conditions (excluding that
of t) are expected to be satisfiable with a minimal threshold
probability .

The aging function is defined as follows:

Definition III.1 (Aging Function) Let () be the set of
states and T be the set of transitions of a MARB A and
a: (QUT) — {1,...,amax} return the current age of a
state or transition. Let further Ry(q) and Ry(t) return true
if and only if the state q or the transition t is expected to
be reachable with a minimal threshold probability . The
Aging Function o™ is defined as:

aT(A) = A’ where A’ is the same as A except for the
age function o’ which is defined as follows: Vx € (Q"UT"),
where Q' is the set of states in A’ and T’ is the set of
transitions in A’:

a(x) = { a(z) +1 i Ry(x) = true,

otherwise.

a(x)

The Rejuvenation Process. Each time a semantic mutation
is performed the behavior of the concerned automaton
potentially changes. Thus, the age of the specific state or
transition should be reduced to make it more accessible
for new mutations, as its performance contribution might
have changed as well. If the performance is equally good
or even better than before the automaton has the chance of
surviving the next reproduction process. In doing so, the age
increases again and the state or transition gets substantiated
again. The rejuvenation can happen in two modes by either
decrementing the current age by one (dec) or completely
resetting it to one (reset).

Definition III.2 (Rejuvenation Function) Ler x € QU T
be a state or transition of a MARB A that is mutated by p
and a : (QUT) — {1,..., Gmaz } return the current age of
a state or transition. Let mode € {dec, reset}.

The Rejuvenation Function o, : (QUT) — (QUT),
given a mutation | € M is performed on the state or
transition x, is then defined as:

a, (z) = 2!, where x' is the same as x except for the age
function:

a(z)—1
a'(x) = 1

a(x)

Stabilization Through Age Based Mutation Probability.
As mentioned before, the idea is to decrease the probability
of mutations for states and transitions that have survived
several reproductions. More specifically, only the probability
of semantic mutations should be affected, as the syntactic
mutations have no impact on the automaton’s behavior
and, thus, good behavior cannot be lost due to a syntactic
mutation.

For this purpose, a function is introduced that decreases
with growing age and assigns a mutation probability. For the
experiments, a linear function has been used:

if W € Mgep, and mode = dec,
if @ € Mgep, and mode = reset,
otherwise

Definition IIL.3 (Linear Decay Function - ¢;;,cqr)
age — 1
(blinear(age) =1- <gl>

Amaz —

Depending on the probability returned by the function
Olinear fOr an automaton part p it is determined if a semantic
mutation that is chosen to be applied on p should really be
conducted or not. For all syntactic mutations the probability
is set to 1.

As described before, each time a mutation is performed, a
specific mutation rule is selected from the set of all available
mutations M according to a predefined probability function.
So far, this distribution was designed to emphasize syntactic
mutations rather than semantic ones, so that the changes
in robot behavior would not get too significant during
few evolution cycles. Now, as the probability for semantic

mutations is already decreased with progressing age, this
distribution has to be reconsidered. For the experiments
changes were made to this distribution to see if semantic
mutations should even be emphasized more than syntactic
ones. Tab. I shows the original distribution as well as the
two new distributions used for the experiments. The First
probability distribution (see column “original”) is the one
developed in [5]. This distribution is called MutDistOriginal.
The second distribution (see column “inverse”) emphasizes
the particular mutation with exactly inverse weights, this dis-
tribution is called MutDistInverse. The third one (see column
“linear”) simply distributes the probability for each mutation
uniformly, this distribution is called MutDistInverse.

Table I
ORIGINAL, INVERSE AND LINEAR SINGLE MUTATION PROBABILITIES.

Mutation | Original | Inverse | Linear
“wi 0.0816 | 0.0918 | 0.0909
1) 0.0612 | 0.0939 | 0.0909
"3 0.0612 | 0.0939 | 0.0909
m 0.1429 | 0.0857 | 0.0909
s 0.1429 | 0.0857 | 0.0909
e 0.0204 | 0.0980 | 0.0909
wr 0.0816 | 0.0918 | 0.0909
18 0.1224 | 0.0878 | 0.0909
o 0.2041 | 0.0796 | 0.0909
K10 0.0612 | 0.0939 | 0.0909
M1 0.0204 | 0.0980 | 0.0909

Through Age Based Stabilization the automaton more
likely expands with new states and transitions during the
evolution than loosing existing ones and, therefore, im-
plicitly supports a more complex structure. The controller
gets the opportunity to evolve simple behavior first that is
rewarded with according fitness and stabilizes these parts,
which then are less likely to get lost when the controller tries
to increase its fitness by evolving a more complex behavior.

IV. EXPERIMENTS AND EVALUATION

Experiments to examine the Age Based Stabilization

were conducted with two different goal behaviors: Collision
Avoidance and Gate Passing. Collision Avoidance means
that the robots’ target behavior was to avoid collision both
with walls and other robots. The Gate Passing target behav-
ior means, that the robots’ were supposed to pass through a
gate in the middle of the field, which separated it into two
parts.
Experiment Settings. The parameter settings for all ex-
periments were derived from the ones in [5], and where
not stated otherwise they were the same. The experiments
conducted for this paper were repeated 4 times for every
parameter combination with different random seeds.

For both behaviors the experiments took place in a rect-
angular field sized 1440 x 980mm?. For the Gate Passing
behavior the field was symmetrically divided into two parts
by a wall with an opening of 190mm in the middle (gate).

(b)

Figure 3. Environments for (a) Collision Avoidance, (b) Gate Passing;
robots drawn to scale.

For Collision Avoidance the fitness snapshot snapcoiav
is calculated as follows:

SNaPeoilAv = moveReward — coll * coll Penalty

where moveReward is 2, if the last executed command
is a MOVE command, 0 otherwise, coll is the number
of collisions occurred since the last fitness snapshot and
coll Penalty is the penalty factor set constantly to 3 here.

The fitness snapshot for Gate Passing snapgqiepass 18
calculated as follows:

SNaAPgatePass = MoveReward + gatePassReward

where move Reward has the same meaning as before and
gatePassReward is 10 if the robot passed the gate since
the last snap shot, 0 otherwise.

Parameter Settings: For all experiments 26 robots were
placed randomly in the respective environment. Their initial
controller was set to be empty. Every experiment was
performed for 300,000 simulation cycles which corresponds
to about 50 minutes of real time.

Mutations were set to occur every 100 cycles (S = 100),
the reproduction took place every 200 cycles (1" = 200). The
fitness snapshot was taken every 50 cycles (F' = 50) and the
fitness evaporation happened every 300 cycles (V = 300),
whereby the division factor was set to 2 (E = 2). These
settings correspond to the values used in [5]. The probability
threshold to declare a node or transition reachable was set
to 0.2.

The influence of three parameters was tested leading to
12 different experimental settings:

o The number of mates (num,) was set to 4 and 8.

o The decrement age at mutations parameter
(decrpy¢) was set to true and false corresponding to
an age decrementation by 1 and an age reset to 1,
respectively, when a semantic mutation occurs.

o For the experiments three different probability distribu-
tions for the selection of a single mutation were tested,
cf. Tab. L.

Evaluation Criteria: To evaluate the experiment re-
sults the definition for a successful robot and a successful
experiment were taken from [5]. There, a robot is called
successful if it has a positive fitness in the last generation of

Successful Robots Collision Avoidance
125% s

115%
105%

95% m—

85%
75%
65%
55%
45%
35%

LI A T R T) I I R)
(K B B K K K K g o PO NN R W
o O 00 O O 0 0 O O O & O O 0o O O 0 O O O QO @
LI LI ELL TSI I LTI FL
O 0.0 .0 .00 QA A O O . .S OO QR A A
FEEEL LSS FPPPE LSS
o oS SRS P S

== Succ. Robots==Avg. = [KMS09] Comp. " Std. Dev

Successful Experiments Collision Avoidance
125%

115%
105%

95%

85%
75%
65%
55%
45%
35%

Succ. Exp. = Avg.=[KMS09] Comp. " Std. Dev

Figure 4. Successful robots and experiments for Collision Avoidance for
all parameters and comparable results from [5].

Successful Robots Gate Passing

Successful Experiments Gate Passing

125%
115%
105%

95%

85%
75%
65%
55%
45%
35%

S S N T Sl s S S o LS8 S . s S S o™
O o o O O 0 0o O O ¢ @ o O oo o O O @ @
Q" W27 9 9 WO WO 9 9 0N 2 2 QD7 N0 9 9 WO N 9 9 WO N2 2 2
0;6 o;b & & \P \‘b\@\@ AP 4‘64&4@ -qb Q,b @ & \? \P\&_& AP 4“64@4&
FFPEL L FEE S FPPEOEE &S
S S S &L

== Succ Robs == Avg. =~ [KMS09] Comp." Std. Dev

Figure 5. Successful robots and experiments for Gate Passing for all
parameters and comparable results from [5].

an evolutionary run. A run is called successful if it includes
at least one successful robot.
Results and Discussion. Fig. 4 and 5 show the results for
the conducted experiments. When looking at the results for
collision avoidance it is noticeable that in all, but one ex-
amined parameter setting 100% of the runs were successful,
and the number of successful robots outperformed the results
from [5]. The only exception is the parameter constellation
(Linear Single Mutation Probability, decrement age, 8 mates)
with 60% success rate for both experiments and robots.
This deviation is due to two unsuccessful experiments.
Nevertheless, the results consistently outperform those of
the previous conducted experiments where the percentage
of successfully evolved robots lies between 74.0% and
88.7% and the number of successful experiments ranges
from 92.7% to 99.6% for collision avoidance.

The results for Gate Passing are similar. They also

h5 > 162

h2 > 173

(h4 1~222 & h2 = 12)
(h5 1~ 251 & (h7 ~ 82 | ha = 247))

Figure 6. Example automaton of an unsuccessful robot.

Succ. Exp. = Avg.=[KMS09] Comp. " Std. Dev

outperform those of the previously conducted experiments
where the percentage of successfully evolved robots lies
between 65.0% and 84.0% and the percentage of successful
experiments ranges from 83.3% to 100.0% for Gate Passing.

The unsuccessful experiments that occurred during the
experiments conducted for this paper have one significant
difference to the ones in [5]. Looking at the respective
automata the reason for failure was mostly not due to trivial
automata without a moving or turning state. The unsuc-
cessful populations here almost all had complex automata
with at least one move or turn state. The problem usually
was that they had a stop or idle state with high age and a
transition pointing back to itself which also had a high age
assigned. Fig. 6 shows an example for such an automaton.
The red node represents the state which the automaton does
not leave. The condition of that loop transition usually was
very unlikely to be satisfied but still above the threshold
that determines if a condition is reachable. As the transition
was almost never taken and thus did not have any influence
on the robot’s fitness it survived the reproduction process
just like the rest of the automaton. As it was reachable the
transition got substantiated. At some point the robot then
reached the stop or idle state and the transition back to
itself was satisfiable. As the robot at that point did not move
its sensor values were unlikely to change so the transition
continued to be satisfiable and the robot stopped moving at
all. This leads to the assumption that the unsuccessful exper-
iments might be avoidable when increasing the probability
threshold for conditions to be stated as satisfiable. It could
also be thought of generally defining this threshold to be
higher if the subsequent node has a stop or idle command
assigned. Another possibility could be to adapt the mutation
probability functions for these states, so that there always
remains a possibility for them to get changed by mutation.

Looking at the average fitness reached by every robot
within a population throughout the whole evolution it is
remarkable that the difference between the robots with the
highest average fitness and the lowest average fitness is only
0.59 for Collision Avoidance and 1.16 for the Gate Passing
behavior. Considering the highest reached fitness throughout
the evolution instead of the robot’s average these values lie at
0.12 for Collision Avoidance and 15.63 for the Gate Passing.
Except for the spread in the highest fitness for Gate Passing
these values are very low which means, that the difference
between all robots of a population is very small over the
experiment. It indicates that the performance of all robots
in a population is quite similar, thus their behavior might
be similar too. This assumption is further confirmed when
looking at the evolved automata and their behavior. The
reason for the high spread in highest fitness for Gate Passing
is that some populations have a successful Gate Passing
behavior by randomly moving through the environment,
which leads to some robots passing the gate much more
often than others. (See Fig. 10).

Conditions:

1) (h1 =146 |
. ((h5 1= 165
~.3) &h2 < hl)

1) _ & h5=21) |
‘ 2) ‘

h5 ~ 116))
2)h1=90
Figure 7. Similar automata in the final Population: (1) automaton
consisting of states 1, 2, transition 1.); (2) automaton additionally including

3.)h4>h2
4.)h4 =92

state 3, transitions 2.), 3.); (3) automaton including all depicted states and

transitions.

(b)

Figure 8. Trajectories of evolved robots from two different populations
performing Collision Avoidance (a) by driving rather close to the wall and
other robots, and (b) by keeping more distance.

1) Evolved Behavior: It was observed that at the end of
a run either all robots have the same automaton or their
structure is very similar. Fig. 7 shows an example for three
different automata within a population that is also shown in
Fig. 10 at the end of a Gate Passing run. The first automaton
consists of the states 1 and 6 and the transitions between
them, the second automaton has the additional state 12 and
the respective connections and the third automaton has the
additional state 1 including the respective transitions.

This is consistent with the evolved behavior in many
cases being a population wide similar behavior. This leads to
behaviors where the robots look almost coordinated. Fig. 8
shows some sample trajectories from robots that successfully
evolved Collision Avoidance. The trajectories in the middle
of the environment can be explained by the behavior when
a collision still happens, for example when a robot tries to
enter the queue. In that case the robots collide and often
both robots are kicked out of the queue. They then move
straight to the other end of the environment and try to find
a space there.

In Fig. 9 the trajectories of two successful gate passing
experiments are shown. Fig. 9 (c) shows the corresponding
MARB for the first population. The robots perform some
more or less intensive form of wall-following to achieve
the gate passing behavior. Other successful experiments for
gate passing when robots learned to move straight through
the environment and used the collisions to randomly pass
through the gate as shown in Fig. 10. This also leads to

(h3 <= h5 | h3 = 33)

(h4 =60 & h4 ~ 213)

Figure 9. Trajectories of evolved robots from two different populations
performing Gate Passing (a) by showing a wall following behavior, and (b)
by driving a shape formed like an 8 and circling a couple of times when
crossing the intersection, i.e., the gate, to gain more fitness points. Below
the MARB corresponding to (a) is depicted.

Figure 10. Trajectories of a robot evolved to perform a simple form of
Gate Passing by moving around randomly and passing the gate only by
chance.

good performance results for the gate passing behavior, but
it corresponds to an undesired local optimum as collisions
are a random element that in a real scenario can even damage
a robot. That can be avoided by introducing a penalty for
collisions, cf. [5].

V. CONCLUSION AND FUTURE WORK

Age is introduced as a quality criterion for the contribution
of a part of an FSM-based robot controller to the overall
behavior. This criterion is utilized to stabilize controller parts
during evolution by making them less mutable the older they
are. This approach is applied to an ER scenario and tested
with two target behaviors: Collision Avoidance and Gate
Passing. The conducted experiments show improvements
with respect to the number of successful robots and suc-
cessful runs. Overall, most of the tested parameter settings
achieved even the highest possible rating of 100% successful
runs. Furthermore, the average number of successful robots
in a successful population could be increased. Also, complex
behavior could be observed in many experiments.

The proposed usage of age as a quality criterion is appli-
cable in various scenarios. The approach presented here can
support stabilization of all genotypes that consist of atomic
parts that contribute to the overall performance. Evolutionary

algorithms outside the application field of robotics might
profit from Age Based Stabilization, too. The next step
to establish Age Based Stabilization as a generally useful
technique is testing the influence of the maximum age. As
the benchmark behaviors studied here have been solved
nearly perfectly, the approach should also be applied to more
complex target behaviors. Also, experiments with controllers
based on ANNs using Age Based Stabilization are planned.

REFERENCES

[1] V. Braitenberg, Vehicles: Experiments in Synthetic Psychol-
ogy. MIT Press, 1984.

[2] D. Floreano, P. Husbands, and S. Nolfi, Springer Handbook
of Robotics, B. Siciliano and O. Khatib, Eds. Springer, 2008.

[3] S. Nolfi and D. Floreano, Evolutionary Robotics. The Biology,
Intelligence, and Technology of Self-Organizing Machines.
MIT Press, 2001.

[4] Y. Jin, “A comprehensive survey of fitness approximation
in evolutionary computation,” Soft Computing - A Fusion of
Foundations, Methodologies and Applications, vol. 9, no. 1,
pp. 3-12, 2005.

[5] L. Konig, S. Mostaghim, and H. Schmeck, “Decentralized
evolution of robotic behavior using finite state machines,”
Int. Journal of Intelligent Computing and Cybernetics, vol. 2,
no. 4, pp. 695-723, 2009.

[6] N. Jakobi and M. Quinn, “Some problems (and a few solu-
tions) for open-ended evolutionary robotics,” in Evolutionary
Robotics, ser. Lecture Notes in Computer Science, P. Hus-
bands and J.-A. Meyer, Eds. Springer, 1998, vol. 1468, pp.
108-122.

[7] K. O. Stanley and R. Miikkulainen, “Efficient reinforcement
learning through evolving neural network topologies,” in
Proceedings of the genetic and evolutionary computation
conference. Morgan Kaufmann, 2002.

[8] V. Trianni, Evolutionary Swarm Robotics, ser. Studies in
Computational Intelligence, J. Kacprzyk, Ed. Springer, 2008,
vol. 108.

[9] J. Walker, S. Garrett, and M. Wilson, “Evolving controllers
for real robots — a survey of the literature,” Adaptive Behavior,
vol. 11, pp. 179-203, 2004.

[10] L. Konig and H. Schmeck, “A completely evolvable genotype-
phenotype mapping for evolutionary robotics,” in Int. Conf.
on Self-Adaptive and Self-Organizing Systems, 2009.

[11] E. J. Hopcroft and J. D. Ullman, Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley,
1979.

