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Abstract—Commit messages (CMs) are an essential part of
version control. By providing important context in regard to
what has changed and why, they strongly support software
maintenance and evolution. But writing good CMs is difficult and
often neglected by developers. So far, there is no tool suitable for
practice that automatically assesses how well a CM is written,
including its meaning and context. Since this task is challenging,
we ask the research question: how well can the CM quality,
including semantics and context, be measured with machine
learning methods? By considering all rules from the most popular
CM quality guideline, creating datasets for those rules, and
training and evaluating state-of-the-art machine learning models
to check those rules, we can answer the research question with:
sufficiently well for practice, with the lowest F1 score of 82.9%,
for the most challenging task. We develop a full-fledged open-
source framework that checks all these CM quality rules. It
is useful for research, e.g., automatic CM generation, but most
importantly for software practitioners to raise the quality of
CMs and thus the maintainability and evolution speed of their
software.

Index Terms—commit message, maintenance, quality, text
classification, machine learning

I. INTRODUCTION

Motivation. Although code should best be self-explanatory,

it is unable to contain all context, such as the implementation

decisions (e.g., technical trade-offs) or the reasons for the code

change (e.g., the business requirement or bug report motivating

the commit). We define context as all relevant information

that the code change does not convey by itself. CMs of code

repositories that document this context are the most important

way to understand the code change [37] and therefore help

future development, evolution, and maintenance.

A comprehensive yet easy to understand CM history is

one of the most powerful maintenance approaches [26] and

strongly benefits the code comprehension and team communi-

cation, especially with today’s increase in remote work [44].

Despite these advantages, CMs are cultivated by only few

software developers (see Sec. VI and [38], [45]) – or in

Linus Torvalds’ words: “GitHub is a total ghetto of crap

commit messages”. This is confirmed by our experiment

with 5,000 random CMs from GitHub: our framework (see

Sec. III) assesses 90% of the CMs as low quality, and 55%

as low quality due to missing context. In contrast, for the

1Abstraction level F: formatting, SY: syntax, SE: semantics

Table I
CHRIS BEAMS’ CM QUALITY GUIDELINE [26]: RULES AND EXAMPLES

Rule Description L1

R1 Separate subject from body with a blank line F
R2 Limit the subject line to 50 characters F
R3 Capitalize the subject line F
R4 Do not end the subject line with a period F
R5 Use the imperative mood in the subject line SY
R6 Wrap the body at 72 characters F
R7 Use the body to explain what and why vs. how SE

R5 violated (“fix” used as a noun, not as verb)

Linter error fix

R7 violated (describes "how", but not "what" and "why")

Duplicate zval before add_next_index_zval

R7 violated (unclear what was wrong before the changea)

Fix Sass + CSS Modules (#3186)

R5, R7 satisfied (simple change, context sufficient for R7)

Fix linter errors

R5, R7 satisfied

Fix running ALTER TABLE statements in Execute SQL tab

This fixes a bug introduced in 73efa11. Because SQLite
reports ALTER TABLE statements to return one column
worth of data, DB4S assumed they are close to a SELECT
statement and therefore did not fully execute them.

See issues #2563 and #2622.
a“No module-specific actions (like compiling the classnames) got done.” [20]

well-maintained [15] CM history of the Linux Kernel, our

framework assesses only 3% of the CMs as low quality due

to missing context. Applied broadly, e.g., as automatic CM

quality reviewing tool run locally or as part of a CI pipeline

in the cloud, a CM quality checker could train developers and

lead to CM histories with much higher quality, resulting in

more maintainable and faster evolving software.

CM quality guideline. Developers that cultivate CMs with

high quality often follow certain rules. Table I gives a summary

and examples for [26], the most prominent (see Sec. II) CM

quality guideline. It sums up most ideas from older guidelines

into a 7-rule convention, establishing etiquette for formatting,

syntax, semantics, and contextual information: The formatting

rules R1 to R4, R6 help readability of CMs and are trivial

to verify in an automated way. The remaining two rules



require capable natural language understanding (e.g., for the

examples in Table I): Syntactic rule R5 enforces imperative

verb mood, which improves consistency since it is used in

CMs generated by git, too. R5 also improves understandability

because the mood distinguishes descriptions about what the

change does from descriptions about the context and the way

things worked before the change. E.g., for the CM “Incorrect

changes were stored”, it is not clear whether storing incorrect

changes is the fix or the undesired behavior before the fix.

Semantic rule R7 says that a CM should leave out details

about “how“ a change has been made since code should be

self-explanatory, and rather focus on “what“ has changed (i.e.

summary for understanding) and “why“ the change has been

made in the first place (reasons for the code change), which is

particularly useful for software maintainability and evolution.

Hence, R7 demands that the CM provides the relevant context,

and thus requires investigating the CM’s meaning. The amount

of required context depends on the situation: Beams argues that

“a single line is fine, especially when the change is so simple

that no further context is necessary”. One-line CMs are very

common, making up 35 % of our samples.

Contributions. So far, there is no practical approach to

check CMs on a semantic level (see Sec. II). This article fills

this gap and presents a practical and programming language-

agnostic framework (see Sec. III) integrating state-of-the-art

NLP methods to rigorously check all of Beams’ guideline. We

determined Beams’ guideline as gold standard by surveying

research articles and CM guidelines (see Sec. II).

We (two authors and further three experienced software

developers) create four labeled datasets (see Sec. IV) to train

and evaluate state-of-the-art machine learning models for our

framework (see Sec. V): our models achieve state-of-the-art

performance in assessing the CM quality on the levels format,

syntax (F1 score of 97.8%), and semantics (F1 score of 82.9%).

So our contributions are datasets to train machine learning

(ML) models, evaluations of ML models, and a framework

based on ML to automatically check CM quality according

to Beams’ guideline. We also implemented a tool based on

our framework, enabling everyone to assess commit message

quality, both locally and using GitHub workflows. Our contri-

butions are open-sourced2.

II. RELATED WORK

CM quality assessment. Table II summarizes related work

on assessing CM quality. It contains a lot of gray literature:

software guides, style guides, blog articles, wiki pages, guide-

lines with criteria by which to assess the CM quality – there

is no formal standard on CM quality.

We pick the guideline [26] by software practitioner Chris

Beams for our work because of three reasons: (1) It is the most

popular: It is cited in about 10% of the repositories having

contribution rules (a CONTRIBUTING.md file). Some of the

contribution rules do not cite [26], but require good CM se-

mantics more vaguely, e.g., that the CM be “understandable”,

2See https://doi.org/10.6084/m9.figshare.22096736 and https://github.com/
commit-message-collective/beams-commit-message-checker

Table II
CM QUALITY ASSESSMENT: RELATED WORK

Year Source Type Level1 AE3

2022 [55] Conference article F, SY, SE �
2021 [22] Software guide F �
2020 [19] Style guide F, SY, SE
2020 [52] Master thesis F, SY, SE
2019 [25] Master thesis F, SY �
2019 [12] Tool website F, SY �
2019 [18] Tool website F, SY �
2018 [29] Journal article F, SY, SE
2017 [15] Software guide F, SY, SE
2017 [13] Style guide SY, SE
2016 [9] Tool website F, SY �
2016 [10] Style guide F, SE
2015 [24] Workshop article -
2014 [26] Blog article F, SY, SE
2014 [28] Book F, SY, SE
2013 [6] Blog article F, SE
2013 [7] Wiki page F, SY, SE
2012 [5] Wiki page F, SY, SE
2011 [4] Software guide F, SY, SE
2009 [2] Blog article F, SY, SE
2008 [47] Blog article F, SY, SE
2000 [43] Journal article -

“meaningful”, or “well documented”. None of the repositories

with contribution rules contradict the semantic rule R7. The

only other cited CM quality guideline is [47], in about 6%

of those repositories. (2) It is the most complete: it covers

all CM aspects mentioned by other guidelines, besides minor

variations in formatting rules. (3) It is cited by all five research

articles about CM quality assessment.

Insight 1: Chris Beams’ article is the most comprehensive

guideline on commit message quality. In our study, we

evaluate commit message quality based on its rules.

There is only little research (five articles) in the related

work. Only the recently published Tian et al. [55] is closely

related to our work: They analyze the reason for a CM to be

“good”, develop a corresponding taxonomy about how CMs

convey “what” and “why” information, and train machine

learning models to automatically classify CMs as good. Their

best model has a high performance: 77.6% positive class F1,

73.9% negative class F1. However, they focus on a thorough

theoretic analysis about the taxonomy of commit messages

instead of realizing a checker for a CM’s usefulness in practice,

e.g. according to a guideline like [26]. They (2 experts) only

investigate a low number (5) of projects with little variance:

all are high quality open-source Java projects about web

communication. Furthermore, for a large portion of CMs, they

rely on unsuitable pattern matching:

• Any CM with automatically generated parts is excluded,

e.g., CMs containing pull request # (15% to 30%

of all CMs). This is unsuitable since CMs containing

3Automated evaluation: evaluates criteria in an automated way.



automatically generated parts can also be of low quality

and should thus be improved, while others do contain

(automatically generated or manually added) text making

them high quality CMs.

• The “why” criterion is already fulfilled if the CM contains

an issue- or PR-link (about 40% of all CMs), or the

word “fix” (about 30% of all CMs). Relevant infor-

mation hidden behind issue- or PR-links is unsuitable,

as described in Sec. VI-B. Pattern matching the word

“fix” is unsuitable as this is insufficient to check what

R7 demands: that the CM makes clear the reasons why

the change was made, clarifying the way things worked

before the change and what was wrong with that (see

Table I).

In contrast, we (5 experts) investigate 427 projects with

high variance (multiple domains, programming languages,

cultures), also consider CMs with automatically generated

parts, ignore issue- and PR-links, and semantically check

whether a CM really conveys what and why vs how.

Insight 2: The only study on the most challenging task

of assessing semantic commit message quality (R7 of

Beams’ guideline) falls short in fully capturing semantics

and uses a dataset of limited diversity. We account for those

shortcomings.

The other four research articles are still related, but less:

Chahal et al. [29] conduct a multi-vocal literature review in-

cluding gray literature. They determine 11 criteria to measure

CM quality and rank the importance of the chosen metrics

through an expert survey. These metrics are well covered by

[26]: the three most important metrics are variations of R5

and R7, and the atomicity rule that a commit should have one

logical change. But atomicity is an attribute of the commit,

not its message. Schweizer [52] investigates the fluctuations

in quality metrics in commit histories. They use [26] as metric

for the CM quality. Mockus et al. [43] analyze commits from

a quality perspective by considering commit metadata like

number of unique CMs and size of commit comments (smaller

messages indicating immaturity). Agrawal et al. [24] study

literature to operationalize CM quality metrics. Their Google

search for “good commit logs” yields more than 57 million

search results. They use the top five hits, which are all gray

literature: besides [5]–[7], [47], [26] is one of them.

Automatic CM quality assessment. We found six sources

that deal with the automated evaluation of CM quality: The

only research paper is [55], which contains a model for

automation, but is of limited practical use (see above). Alberto

et al. [25] propose a tool to validate a syntactic interpretation

of Chris Beams’ rules. The other four sources are tools: The

open-source tool GitCommitBear [9] automatically analyzes

R5 by a syntactic analysis based on classical natural language

processing, which faces performance issues. The other three

tools try to cover all of [26] but fail on R7: The open-source

medical image processing (ITK) software guide [22] checks

variations of Beams’ formatting rule R1, R2, R6. The open-

source project [18] validates all syntactic rules of Chris Beams

and heuristically checks R5 using a keyword-based approach

(for R7, the script performs no check and only states “Not

enforceable”). The open-source project [12] validates all of

Chris Beams’ rules but R7. For R5 they employ a similar

technique to [9] and face similar issues. They state that R7 is

too subjective, but we show a substantial agreement between

experts assessing R7 in Section IV.

Automatic generation of CMs. Most research about CMs

is dealing with their automatic generation out of code changes,

without considering the intent behind the code changes [37]:

An automatically generated CM is evaluated using Natural

Language Generation metrics such as BLEU, which measure

its closeness to CMs that humans generated out of the code

changes [45], [46]. Thus, this field of work is not helpful for

us, but it could strongly benefit from an automatic assessment

of CM quality: on [45]’s ground truth of 2,521 CMs (obviously

poorly-written already filtered out), our framework assessed

85% to have low quality, 48% due to missing context.

III. APPROACH

We present a framework that performs the first full-fledged

assessment of CM quality, including semantics and context,

following Chris Beams’ guidelines (see [26] and Table I).

A. The Classification Pipeline

As Fig. 1 shows, the framework has a pipeline architecture

to successively perform five tasks, all of which take a CM as

input and perform a classification. The order of the tasks is

from simplest (formatting) to hardest (semantic), thus giving

feedback as fast as possible. With many low-quality CMs

already filtered out, harder tasks can focus on CMs with

potentially high quality. Classification for the last task yields

a rating between 1 (worse) and 4 (best). All other tasks

perform binary classifications. A classification checks either

a rule of [26] or whether project-specific conventions should

be followed instead of R7. If a rule violation is detected, the

pipeline outputs a warning and exits (Tasks 1, 2 and 5). If a

project-specific convention is detected, the pipeline outputs a

corresponding recommendation and exits (Tasks 3 and 4). A

recommendation is also issued when the CM has minor deficits

in regards to R7 (Task 5). So the pipeline output is either a rule

violation warning, a recommendation to follow project-specific

conventions or improve R7, or R1-7 satisfied for a suc-

cessful pass through all classifiers, indicating high CM quality

according to [26]. For warnings and recommendations issued

by the pipeline, developers should review Beams’ guideline

[26], follow project-specific conventions, seek mentorship or

feedback from other members of the development team or

review past CMs of the project. Therefore, the output of the

pipeline directly contributes to improvement of CM quality.

Overall, our framework addresses the following tasks:

Task 1 (check formatting rules). This checks whether a

CM fulfills rules R1 - R4 and R6 (see Table I). It is a minor

task, so we do not go into detail.
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Figure 1. Training data and prediction pipeline for our novel framework for automatic CM quality assessment. It reads commit messages (and a file extension
list) and outputs a rule violation warning, recommendation for project-specific conventions or for R7 improvements, or that overall CM quality is good.

Task 2 (check the syntactic rule). Task 2 checks the

only syntactic rule, R5: the subject line uses the imperative

verb mood. It is challenging due to syntactic ambiguities (see

Table I) and the unique vocabulary of CMs [51].

Task 3 (detect documentation changes) & Task 4 (detect
trivial version bump changes). Though not part of Chris

Beams’ rules, these classifiers check whether the CM describes

• a documentation change, i.e., a change that does not

modify functional code, only documentation like manuals

and code comments (Task 3)

• a trivial version bump, i.e., a change that merely bumps

the version of the code project or one of its dependencies,

but has no major consequences nor goals beyond the

migration to the new version (Task 4)

These rules are not part Chris Beams’ guideline, but related to

it: The labeling and discussions among the 5 experts revealed

that in these two cases (documentation and trivial version

bumps), changes are self-explanatory and done routinely. The

CMs for these changes need no elaborate explanation and

often follow project-specific conventions. Thus, we recom-

mend following project-specific conventions when we detect

a documentation change or a trivial version bump change.

Task 5 (check the semantic rule). Task 5 checks the only

semantic rule, R7: the body is used to explain what and why

vs. how. Task 5 is the main focus of this work and the most

challenging task as it requires comprehension of both the CM

and further context to decide which context is relevant and

should be part of the CM. Thus, Task 5 interprets R7 strictly:

It checks not only that the CM text focuses on “what and

why” instead of “how”, but also that it supplies sufficient

“what and why”, i.e. all context relevant to fully understand

“what and why”. R7 originally applies to the CM body. We

extend it to the CM summary as well in correspondence to

[15] and Beams’ argumentation that a single line CM can

be sufficient. Since CMs are nuanced with regard to R7, this

task does not classify binarily. Instead, a 4-point scale from

1 (violated) over 2 (moderately violated) and 3 (moderately

satisfied) to 4 (satisfied) is used, which minimizes central

tendency bias (details in Sec. IV-B). Being the last task in

the pipeline, its classification result for R7 is output to the

user, scores 1 and 2 being warnings that R7 is violated, score 3

meaning that all rules including R7 are met, but recommending

to further improve R7, and score 4 indicating high overall

commit message quality.

B. Architecture of the classification pipeline

Task 1 is simple, requires no ML, and is implemented

as a rule-based classifier. Thus it is easily configurable (e.g.,

allowing 75 characters in the subject line [15] instead of 50).

For Task 2-5, we consider several state-of-the-art machine

learning methods. Our final framework uses a language model

(LM) based on CodeBERT (see [32]) that we fine-tuned

to the corresponding task. In our evaluation in Section V,

CodeBERT was for each task either best or among the

top 3 best performing classifiers and only marginally worse

than the best one (see Table V). Always using CodeBERT

simplifies future multi-task learning, common pretraining, and

multimodal architectures (see [34]).

For each task, the CM text is passed to the LM’s

pretrained tokenizer to create input embeddings E. The

embeddings are input to the encoder, which produces a

contextual representation T summarizing the whole CM.

Pretraining with documentation and code enables T to

capture contextual knowledge. Using a linear layer, T is

projected to the predicted label for Tasks 2-4, and for

Task 5 to the interval [0, 1]. These are finally mapped

to R7 violated, R7 moderately violated,
R1-7 satisfied (R7 moderately), and

R1-7 satisfied by our pipeline.

Contribution 1: We propose a practical and programming

language-agnostic framework for CM quality evaluation

based on all rules of Beams’ guideline.



IV. DATASET CREATION

To the best of our knowledge, there is no suitable labeled

data available to train and evaluate our classification Tasks

2-5. Thus, we – two authors and further three software

developers, all with 8+ years of industry experience across

various domains, programming languages and technologies –

create suitable datasets.

A. Dataset Sampling
As depicted in Fig. 1, we use the following data pipeline:
1) two base datasets are created: a diverse source dataset

based on 1,700 most popular repositories from GitHub

and top 200 repo dataset � source dataset with the top

200 of those 1,700 repositories according to their quality.

2) the datasets to train and evaluate Task 2-5 are created out

of the base datasets by evenly sampling the data out of

the source dataset and the top 200 repo dataset.
This data pipeline helps to focus on data for labeling and train-

ing models that are accurate and robust in various application

areas. All datasets are open-sourced2.
1) Source dataset: We apply a sampling approach similar

to Sarwar et al. [51] and Zafar et al. [57] to ensure a wide vari-

ety of software repositories and CM styles, e.g. no restrictions,

with CM quality guidelines, Conventional Commits [13], or

CM templates. Specifically, we choose the 17 most popular

languages on GitHub according to the number of repositories

using them. For each of the languages, we choose the most

popular 100 repositories according to their number of stars

and from each of those 1,700 repositories, we collect their

100 latest commits as those are contained in the data that the

GitHub API returns4.
2) Top 200 repo dataset: Our source dataset is highly

skewed towards low quality CMs (see Sec. I). Our framework

should help newcomers learn to write good commit messages,

as well as teams that already take pride in writing high quality

commit messages to further optimize them. To be able to train

models that predict accurately for both kind of users, we create

the top 200 repo dataset which only contains the top 200

repositories, according to our own evaluations.
When creating all datasets to train and evaluate Task 2-5,

we evenly sample from the source dataset (marked with the

label random pool) and from the top 200 repo dataset (marked

with good pool), avoiding any duplicates4.
For Tasks 2-4, we end up with datasets of over 1,250 sam-

ples each, covering 644, 564 and 464 repositories respectively.

For Task 5, we end up with a dataset of 808 samples, covering

427 repositories.

B. Dataset Labeling
1) Task 2-4: Our labeled datasets for Task 2-4, annotated

according to our annotation guide2, contain over 1,250 samples

with dichotomous annotations each, labeled by 2 experts.

4The balancing in our data pipeline reduces labeling effort for reaching a
training set variance that is required for the model to generalize sufficiently.
The balancing does not hurt validation: the predictive performance (MCC) of
our best model for Task 5 only deviates by 2.54% (STD by 2.75%) between
our and the original distribution.

2) Task 5: Since CMs are nuanced with regard to R7,

we label on a 4-point scale from 1 (violated) over 2 (mod-

erately violated) and 3 (moderately satisfied) to 4 (satisfied).

Compared to the 5-point Likert scale [40], this encourages

decisive evaluations and minimizes central tendency bias. To

handle uncertain cases, experts could mark commits they were

uncertain about, ensuring that we included a labeled commit

message only if the corresponding expert was confident. This

approach combines the benefits of a forced-choice scale with

the ability to handle uncertain cases, resulting in a more

reliable and informative labeled dataset. Annotating a dataset

for Task 5 is very challenging due to the required implicit

knowledge in software development and ambiguities of the

context. Thus, we applied the methodology depicted in Fig. 2:

Groupwise. To ensure that our experts are all properly

trained and agree on the task, we firstly conducted a feasibility

study in form of a groupwise interrater agreement: all 5

experts rated the same set of commits and conducted thorough

discussions. We estimated the amount of commits necessary

for statistical significance by using the one-sample proportion

in the Z-interval. We used p = 0.5, a confidence interval of

95% and an error margin of 0.05, resulting in a minimum of

385 samples – we end up using 404 commits. Through the

discussions, our agreement rose from κ = 0.42 to κ = 0.72,
i.e. from “poor” to “substantial” according to Emam et al.

[31]. As a result, we created our final annotation guide2 in

form of Chris Beams’ article [26] extended by examples and

comments.

Pairwise. Based on the final annotation guide2, experts con-

tinued to label a dataset without access to others’ ratings. To

ensure the highest possible training dataset quality within what

is economically feasible, we annotated further data by splitting

commits equally among
(
5
2

)
= 10 expert pairs. Discussions to

resolve disagreements were no longer conducted.

Final dataset. For our final dataset, we filtered out com-

mits with disagreements. Experts marked commits they were

uncertain about, which were 18% of the commits they rated,

illustrating the difficulty of this task. This leads to 157 commits

from the final phase of the groupwise interrater agreement,

which have been labeled according to our final annotation

guide2, and 651 commits from the pairwise interrater agree-

ment. In total, the final dataset for Task 5 consists of 808

CMs, 407 stem from the good pool and 401 from the random
pool. For the pairwise interrater agreement, we have an average

κ = 0.63 (substantial) for the good pool, κ = 0.60 (moderate)

for the random pool, and κ = 0.63 (substantial) overall. Thus,

Task 5 is a feasible task and our final dataset is useful for

training and evaluation.

Contribution 2: We create the first labeled datasets for

Beams’ rules, including the first one to fully capture the

semantics of R7. Representing over 400 repositories each,

they are diverse. We ensure high-quality labels by involving

5 industry experts.

Disagreement discussion for Task 5. During annotations,



Figure 2. Overview of the labeling process for Task 5.

we continuously monitored κ agreement between experts. We

conducted 3 agreement alignment meetings in regular intervals

where patterns of disagreements were discussed and resolved.

These disagreements were mainly caused by implicit context

required for some CMs: Experts found some formulations of

CMs to be ambiguous. Especially shorter messages, which

naturally might not provide sufficient context, were more

often subject to disagreements than longer ones. CMs that

were disagreed upon were 171 characters long on average,

while CMs that were agreed upon were 48% longer with 253

characters on average. This is probably because the task is

heavily context dependent and shorter CMs are more likely to

contain implicit context, which can be disagreed upon.

Besides implicit context, another source for disagreements

are multiple independent changes in one commit: Some

commits are not atomic, i.e., are not following the single

responsibility principle (SRP) [2], [29]. This makes it harder

to assess whether sufficient reason is given for the change. The

experts settle to rate such a CM positively only when the Boy

Scout Rule [36] is applied or the message provides reasoning

for all of the included logical changes.

V. EVALUATION

In this section, we answer our research question RQ: How
well can the CM quality, including semantics and context,
be measured with machine learning methods?. For this, the
model performance of various machine learning models used

for each task is evaluated via an extensive offline evaluation.

A. Evaluation setting

Table III lists the models we trained and evaluated, consist-

ing of Baseline and of Transformer-based models.

Baselines. For comparison, the following baselines are used:

(1) and (2)5, which are tools specifically for Task 2, and (3) to

5These are the only tools we found that detect the mood of the verb of a
CM. They both utilize the POS tagger provided by NLTK [1].

(7), which have proven to perform well for a variety of NLP

tasks, for Task 2-5.

(1) GitCommitBear (GCB) [9],

(2) Bad Commit Message Blocker (BCMB) [12]

(3) Support Vector Machines (SVM) trained with TF-IDF

embeddings

(4) Random Forests (RF) trained with TF-IDF embeddings

(5) FastText, a word embedding and classification model

that was on par with the performance of deep learning

methods as of 2017 [39]

(6) Feed-Forward Neural Network (NN) based on self-trained

dense vector word embeddings

(7) Convolutional Neural Network (CNN) with max pooling

over time, similar to the architecture proposed by Col-

lobert et al. [48], also based on self-trained dense vector

word embeddings.

Transformer-based models. We evaluate models based on

BERT [30] that utilize the encoder part of the Transformer

architecture [56]. BERT-based models have been pretrained on

vast amounts of natural language text. Pretraining facilitates

transfer-learning, allowing models to adapt to specific NLP

tasks. BERT-based models have been preferred for classifica-

tion of commit messages in research [32], [33], [51], [55].

We evaluate the original BERT [30] itself, which is pre-

trained on English Wikipedia and freely available books.

Along BERT, we evaluate 2 models that enhance the ar-

chitecture, parameters and training data of BERT: RoBERTa

[41], a robustly optimized version of BERT, and DeBERTa

[35], featuring disentangled attention and an enhanced mask

decoder, both trained with more data than BERT - DeBERTa

also utilizing stories and data from Reddit, and RoBERTa news

articles in addition to that.

We also evaluate DistilBERT [50], a distilled, performant

version of BERT that reduces its size by 40% and improves

its runtime by 60% by only sacrificing 3% of its language

understanding capabilities, rendering it a compelling option



Table III
CLASSIFIERS AND TEXT REPRESENTATIONS OF USED METHODS.

Shorthand Classifier Text representation

SVM SVM TF-IDF
RF Random Forests TF-IDF
FastText Linear classifier Word vectors
NN Feed-forward NN Word vectors
CNN Feed-forward NN Word vectors
*BERT* Feed-forward NN Transformer [56] encoder

for tools that are run locally on the developer’s machine.

Additionally, we investigate the performance of models

that have been pretrained with data coming closer to commit

messages: CodeBERT [32], pretrained unimodally on pro-

gramming code and bimodally on programming code and

programming code descriptions, and SciBERT [27], pretrained

on biomedical and computer science papers.

Since our experiments with modified architectures (e.g.,

using Bi-LSTM) did not yield better performance, we focus

on multimodality and fine-tuning various BERT-based models.

Table IV lists for each model the hyperparameters that we

optimized, via 10-fold random search cross-validation. When

fine-tuning BERT-based models, we vary the epochs in the

range of 5, 10, 15 and the learning rate in the range of 3e-5,

4e-5, 5e-5. After many preliminary experiments with more

hyperparameters and broader spectra, we honed in on these

ranges, and on the batch-size 8.

Table IV
OPTIMIZED HYPERPARAMETERS FOR EACH MODEL

Method Hyperparameters

SVM kernel, degree, C, gamma
RF number of estimators, max features, max depth,

min. samples for internal node split,
min. samples required to be at a leaf node

FastText parameters optimized by [16]
NN output dimension of embedding layer,

number of hidden layers, number of units per
hidden layer, L2 regularization parameter λ

CNN kernel size, output dimension of embedding layer,
number of hidden layers, number of units per
hidden layer, L2 regularization parameter λ

*BERT* learning rate, epochs

B. Evaluation results

Table V summarizes the best 3 BERT-based and the best

3 baseline models for each of our tasks. Besides precision,

recall, and F1, the Table V lists the MCC score (Matthews’

correlation coefficient) [42] and its standard deviation. All

baseline methods were significantly outperformed by methods

based on the BERT architecture. For Task 2, the difference

was largest, for Task 4 smallest. The performance of the best

three BERT architectures differed by at most 5% for each

task. Since CodeBERT was the best (except for Task 4 where

Table V
PERFORMANCE OF THE RESPECTIVE 3 BEST UNIMODAL BERT-BASED

AND RESPECTIVE 3 BEST SIMPLE BASELINE MODELS FOR EACH TASK

(TASK 1 IS RULE-BASED AND THUS USES NO MODEL THAT NEEDS TO BE

EVALUATED), AND BCMB [12] AND GCB [9] FOR TASK 2.

Task Method MCC F1 Precision Recall MCC STD

2 GCB 0.478 0.651 1.000 0.373 0.046
BCMB 0.563 0.745 0.938 0.551 0.036

RF 0.622 0.810 0.808 0.815 0.077
fastText 0.705 0.850 0.890 0.802 0.070
NN 0.750 0.873 0.889 0.856 0.053

SciBERT 0.949 0.973 0.980 0.967 0.031
BERT 0.958 0.978 0.980 0.977 0.027
CodeBERT 0.958 0.978 0.978 0.978 0.022

3 fastText 0.709 0.853 0.876 0.809 0.082
RF 0.718 0.857 0.887 0.811 0.062
SVM 0.723 0.857 0.910 0.788 0.059

RoBERTa 0.818 0.906 0.903 0.911 0.053
DeBERTa 0.823 0.909 0.905 0.914 0.048
CodeBERT 0.840 0.918 0.913 0.924 0.042

4 RF 0.822 0.913 0.913 0.912 0.448
fastText 0.847 0.922 0.955 0.890 0.051
NN 0.869 0.934 0.934 0.938 0.041

CodeBERT 0.897 0.946 0.956 0.938 0.022
SciBERT 0.898 0.947 0.954 0.941 0.025
DeBERTa 0.906 0.952 0.954 0.949 0.038

5 CNN 0.529 0.724 0.836 0.720 0.123
NN 0.532 0.734 0.795 0.783 0.111
FastText 0.567 0.762 0.823 0.813 0.083

DistilBERT 0.676 0.814 0.823 0.809 0.069
SciBERT 0.686 0.818 0.832 0.809 0.070
CodeBERT 0.703 0.829 0.841 0.820 0.070

DeBERTa was only 1% better), we decided to use CodeBERT

as model for all Tasks 2-5, since that simplifies the pipeline and

makes it more flexible for future improvements (multimodality,

multi-task learning, own pretraining). CodeBERT’s higher

performance compared to other BERT-based models is likely

due to its smaller covariate shift between its pretraining data

and our data.

Task 2. We used the additional baseline methods GitCom-

mitBear [9] and Bad Commit Message Blocker [12], which

are specialized for this task and therefore listed in Table V

in spite of performing poorly. Both are outperformed by all

other baseline methods. Their low performance is likely due

to the simple n-gram model [8] used to train the POS tagger,

which is unable to capture advanced context, and due to the

covariate shift between their training and our evaluation data

(see [11]).

Task 3 and 4. Task 4 is the only task where CodeBERT is

not the best model, but it is only slightly worse (0.006 F1) than

the best. Table V contains our unimodal CodeBERT model

that is trained with the CM text alone. In Table VI, we list

the performance of our bimodal CodeBERT model for Task

3, which is trained with the CM text and prepended counts of

the extensions of changed files (e.g., md3java1 for 3 changed

Markdown files and 1 changed Java file). Compared to our



Table VI
UNIMODAL (CM) AND BIMODAL (+EXTENSION COUNTS) PERFORMANCE

OF CODEBERT FOR TASK 3

Modality MCC F1 Precision Recall MCC STD

unimodal 0.840 0.918 0.913 0.924 0.042
+ extension counts 0.911 0.954 0.946 0.963 0.040

unimodal CodeBERT model for Task 3, bimodality improves

the performance of the model significantly, from F1 = 0.918
to F1 = 0.954. Thus, extension counts are a viable additional

feature for classification of documentation changes. Our final

pipeline incorporates bimodality in Task 3.

We experimented with other categorical and numerical

features as part of the textual BERT model input, like file

extensions, change lengths and an estimation of the change diff

entropy, but only the introduction of extension counts to the

model input of Task 3 lead to a significant improvement in the

classification performance. Overall, for Task 4, multimodality

did not improve performance.

Task 5. Compared to other tasks, CodeBERT won most

clearly for Task 5 with an F1 difference of 0.011 compared to

the second best, SciBERT. As for Task 4, multimodality did

not improve performance for Task 5.

Being the most challenging task, we analyze the perfor-

mance in more detail: Firstly Table VII summarizes F1,

precision, and recall for both positive (minority class, Task

5 ratings < 2.5) and negative (majority class, Task 5 ratings

≥ 2.5) class for our best model, CodeBERT. Secondly, Table

VIII compares the performance of the best model (BERT) from

Tian et al. [55] and our best model (CodeBERT). We evaluate

both models on our own dataset, due to the deficits of Tian

et al.’s dataset, see Sec. II. Our model is evaluated using 10-

fold cross-validation, while their model was trained on their

own dataset and then evaluated on our dataset. Comparing

both models on our dataset, our model has a 35% better F1

score, 32% better precision, and 53% better recall. Evaluating

their model on our dataset instead of their dataset, their (see

[55]) positive class F1 score drops from 77.6% to 73.6%

(5%), their negative class F1 score from 73.9% to 61.5%

(17%). This shows that their model does not perform well

for other programming languages than Java, domains outside

high quality open-source web communication, a semantically

meaningful interpretation of rule R7 (see Sec. II), and is thus

unsuitable for general use. In contrast, our approach does

not have these limitations, as the F1 score of 82.9% shows.

The performance can likely be improved further by increasing

Task 5’s dataset (see Sec. VI-C), as the plot of the predictive

performance, depending on the dataset size, shows in Fig. 3.

Task 5: error analysis. Since Task 5 is the most challenging

and yields the lowest performance among our tasks, we

conduct an error analysis: Firstly, we see in Table VII that our

model is weakest on the positive class recall with 0.82. With a

FNR of 0.18, our model classifies rather lax and predicts 18%

of bad commit messages as good. But for a quality assurance

tool, being too lax is better than being too strict since a too

Table VII
PERFORMANCE OF CODEBERT FOR TASK 5.

Class F1 Precision Recall

Negative 0.872 0.866 0.880
Positive 0.829 0.841 0.820

Table VIII
PERFORMANCE COMPARISON WITH TIAN ET AL.’S PRETRAINED

CLASSIFIER [55] ON OUR DATASET

Method F1 Precision Recall Accuracy

Tian et al. (BERT) 0.615 0.658 0.577 0.759
We (CodeBERT) 0.829 0.841 0.820 0.854

high FPR leads to noise, manual work, distrust, and eventually

rejection of the tool. Nonetheless we look into the cause for

our lax model: For Fig. 4, we conduct another 10-fold cross-

validation to create confusion matrices on the random pool
resp. the good pool (see Sec. IV-A). As expected, the FNRs

are higher than the FPRs. The model has a significantly higher

TPR in the random pool (80%) than in the good pool (67%),

likely due to many more obviously bad CMs in the random
pool. As consequence from the high FNR in the good pool,
the overall positive class recall is relatively low. So the overall

positive class recall would be better with our data pipeline

sampling the training set only from the random pool instead

of evenly from the random pool and good pool. We believe

even sampling was the right choice because our model should

also be helpful for teams that already take pride in writing high

quality commit messages. With a training set from the random
pool only, the model would have a harder time to generalize

to the good pool, and Fig. 4 shows that the model with even

sampling already performs worse on the good pool than on

the random pool. All in all, we conclude from Fig. 4 that

the model performance for the good pool, though reasonable,

could be improved by labeling and sampling more CMs from

the good pool.
Runtime performance. The CodeBERT models are about

500 MB in size and evaluating a sentence takes about 7

Figure 3. Effect of data size on the predictive performance of our best
model for Task 5 where 100% corresponds to the 808 commits in our sample
evaluated by a 10-fold CV.



Commit messages from the random pool Commit messages from the good pool

F1 = 0.837 F1 = 0.755

TNR 84.34% FPR 15.66%

FNR 20% TPR 80%

TNR 95.89% FPR 4.11% 

FNR 33.04% TPR 66.96%

Figure 4. Performance of our CodeBERT trained and evaluated with 10-fold
CV, with evaluation results separated for commits from the good and random
pools.

seconds on a modern i7-1068NG7 CPU without utilizing GPU

support. This may not be sufficient for a satisfactory user

experience for real-time evaluation while the CM is being

typed. When exporting the model to the ONNX [14] format

and thus profiting from hardware optimizations, the runtime

of a single model prediction in the pipeline on the CPU can be

reduced significantly to 0.02 seconds. Thus, we use ONNX.

In conclusion, given the high predictive performance of

F1 = 82.9% for our CodeBERT model for Task 5, our answer

to RQ: How well can the CM quality, including semantics
and context, be measured with ML methods? is: sufficiently

high for practical use.

For illustrative purposes, we demonstrate the application of

our pipeline to a random sample of 5,000 CMs in Figure 5.
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Figure 5. Our pipeline classifying 5,000 randomly sampled commits

Contribution 3: Using our datasets, we fine-tune cur-

rent NLP methods. They achieve state-of-the-art and can

measure CM quality – including semantics and context –

sufficiently well for practical use, answering our research

question positively.

VI. DISCUSSION

A. Predictors of CM quality

We use our tool to assess various repositories (repos for

short) and look into multiple aspects of software engineering

to investigate predictors of CM quality, with linear regression

and Pearson correlations (since outliers occurred rarely and

in those cases the Spearman correlation coefficient was only

insignificantly different). All reported correlation coefficients

have p < 0.05.

Commit-based predictors. Firstly, we scrape a large Com-
mit Guru dataset2 from [23]. It comprises 482 repos, each with

its full commit history, totaling 4,103,489 commits, and each

with many per-commit metrics. Commit Guru [49] derives

these metrics as estimates for aspects like the number of

developers involved, their experience, whether the commit

introduces a bug (bug-inducing), and various aspects regarding

time. Since there are 16 numerical metrics, we firstly analyze

their relationship with R7 ratings with an OLS multiple linear

regression: it is significant and the per-commit metrics do

correlate with R7 ratings (F-statistic= 17530 with p = 0,
each predictor’s p < 0.05), but with very high variance

and each individual per-commit metric only has a very weak

correlation with R7 ratings (R2 = 0.068, prediction intervals

cover the full R7 rating scale). We perform another OLS

multiple linear regression on per-repo averages across all 482

repos, to check whether these per-repo metrics, e.g. the average

number of developers involved in a repo, have a stronger

effect on the averaged R7 ratings. This regression is also

significant, and at least 6 per-repo metrics correlate with R7

ratings (F-statistic= 10.79 with p = 0, and p < 0.05 for

6 predictors), but still with relatively high variance and each

individual per-repo metric has no or a very weak correlation

with R7 ratings (R2 = 0.258, prediction intervals cover half

of the R7 rating scale). These weak correlations might be due

to software engineering being complex, with many interacting

explanatory variables – regressions have very high condition

numbers of 1.01e+16 (per-commit) resp. 2.25e+05 (per-repo).

Consequently, we will only look at a few specific relationships

in the Commit Guru dataset. A more elaborate analysis on

these predictors is future work.

Correlations with commit-based predictors. Firstly, we

investigate the per-commit relationship between R7 ratings

and bug-inducingness, which is estimated with an SZZ-like

algorithm [54] that detects bug-fixing commits via keyword

detection in CMs, from which bug-inducing commits are

derived via git blame [49]. As expected after our regression

analysis, we only get a weak correlation, surprisingly a pos-

itive one. Computing the per-repo relationship instead, i.e.

the correlation between the percent of bug-inducing commits

and average R7 ratings leads to a similar result, as does

the relationship between commit’s bug-inducingness and their

average R7 ratings so far. These are likely due to confounding

variables: writing better commit messages leads to better

keyword detection and thus better detection of buggy commits;

and more complex environments cause more bugs, but also

demand better CMs (see moderate correlation rsystemsPL below).

Thus we consider other, per-repo predictors. Firstly, we

compute the correlation between the per-repo average R7

rating and the lifetime of the repo, measured by the time



Table IX
PLS WITH AVERAGE R7 SCORE, AGE, AVERAGE AGE OF DEVELOPERS

Main PL Score Age of PL Age of Dev

C 3.34 51 31.7
C++ 3.14 38 32.0
Perl 2.89 35 40.3
Ruby 2.80 28 34.2
PHP 2.77 28 32.5
Objective-C 2.76 38 34.6
Python 2.75 32 30.7
JavaScript (JS) 2.68 27 32.5
Java 2.60 28 32.3
Go 2.58 14 32.1
Scala 2.51 18 33.3
Lua 2.43 29 33.7
TypeScript (TS) 2.37 10 30.6
Swift 2.34 9 30.8
C# 2.15 23 33.8
CoffeeScript 2.12 13 -

span between the repo’s first and last commit6: we get a

moderate positive correlation rlifetime = 0.30. If rlifetime is due

to a causal relationship, it is not from lifetime to R7 ratings,

since the R7 ratings are roughly constant over time, but from

R7 ratings causing more maintainable repos and thus higher

sustainability, i.e. higher lifetime. Secondly, we consider team

size as predictor and compute a weak positive correlation

rteam = 0.28 between the average R7 ratings and the average

number of developers, likely due to the increased necessity of

communication in larger teams.

Correlation with more general predictors. Having at most

moderate correlations on commit-based metrics, we consider

more general predictors: programming language, developers,

companies. We use our source dataset (see Sec. IV-A), which

comprises 1,700 repos with 100 commits each, covering 17

programming languages (PLs) and many companies.

A repository has the main PL P if more than 50% of the

files changed by its commits are in P . Table IX lists the main

PL, the average R7 rating, the age of the PL, and the average

age of the developers of the PL [21]. This grouping leads to

the following correlations:

• projects using younger PLs have lower average R7 rating,

with a strong correlation ragePL = 0.83
• projects in a systems PL (C, C++, Go) have a higher av-

erage R7 rating, with a moderate correlation rsystemsPL =
0.58, likely because developers know that low-level pro-

grams interface with a complex environment outside of

the software system and thus demand thorough descrip-

tions of that complex context in the CMs.

To investigate whether the strong correlation ragePL is caused

by developer demographics, we estimate the experience of a

developer d at the time they created commit c by getting (a)

the time span between d’s first GitHub commit and c, and (b)

the number of GitHub commits of d up to c. On our dataset,

6The average over all repos is 8.2 years, its standard deviation 5.2 years.

Table X
(GROUPS OF) CORPORATIONS WITH THEIR CM QUALITY

Corp Uber Apple Twtr Meta Goog Nflx MS

Score 3.92 3.56 3.43 3.38 3.20 2.70 2.68

Group Big-4 Big-5 Big-tech Non-big-tech

Score 3.37 3.19 3.24 2.67

there is only a weak positive correlation rexperienceDev < 0.08
between R7 ratings and (a) resp. (b)7. Additionally, the average

developer age estimated for each PL P (see Table IX) has a

weak correlation rageDev = 0.13 with P ’s average R7 rating.

Is the strong correlation ragePL caused by team culture?

Lacking a metric for company culture, we group the commits

into their company workplace, i.e. owner, of the corresponding

repository: The average R7 rating for each owner is listed in

Table X (Big-4 is Amazon, Apple, Meta, Alphabet (Goog);

Big-5 is Big-4 and Microsoft (MS); Big-tech is Big-5 and

Netflix (Nflx), Snap, Twitter (Twtr), and Uber; everything else

is Non-big-tech). This shows a strong relationship between

company culture and CM quality.

In summary, a CM quality assessment with our tool is not

only useful for improving CMs, but can also reveal other

software engineering aspects, e.g. about the developer culture.

The per-repo correlations with average R7 ratings are

• for PLs: a strong correlation of ragePL = 0.83 with

the main PL of the repo, and a moderate correlation

rsystemsPL = 0.58 with the system level of the PL,

• for developers: weak correlations of rageDev = 0.13
with the estimated average age of the developers and

rexperienceDev ≤ 0.09 with the estimated experience of the

developers, and a moderate correlation of rteam = 0.28
with the team size,

• for sustainability: a moderate correlation of rlifetime =
0.30 with the lifetime of the repo.

B. Threats to validity

Threats to construct validity. Fig. 3 indicates that training

with more data can improve the predictive performance of our

model for Task 5, which we already started working on (see

next section). Our data collection was limited by the experts’

availability and the high labeling effort for Task 5.

Threats to internal validity. CodeBERT’s text input is

limited to 512 word(-parts) [53], which can cause attrition

or deformation (e.g., clipping). But this happened only for

extremely long CMs, in less than 0.4% of the cases.

Threats to external validity. Some developers neglect

writing high quality CMs, arguing that their workflow is

issue tracker centric. But software maintainability is improved

by having both issues and CMs of high quality. The CM

7This is in line with the weak correlation r = 0.09 between R7 ratings
and the per-repo developer experience metric of the Commit Guru dataset.



history is independent of the issue tracking tool, closer to the

code and developer, and accessible by many tools, e.g. IDEs.

Furthermore, there is always a one-to-one relationship between

commits and CMs, but this is often not the case between

commits and issues. Finally, many CMs in our dataset had

dead PR- or issue-links, pointed to issues without any useful

text or to issues with information hidden in too much text or

behind links (see e.g. Table I). Thus the git history should

contain the relevant information directly.

C. Future Work

Additional labels. We started to annotate further CMs with

additional labels, covering the following aspects: “why“ suf-

ficient, “what“ sufficient, “how“ not distracting, CM matches

code change. Differentiating these aspects is quite complex

and time consuming, but we plan to gain further insights and

performance improvements from having more data and more

fine-grained labels.

Parallel rule checking. Our pipeline processes a CM

sequentially through our classification models. A parallel

architecture would enable faster evaluation of high quality

CMs, and multiple warnings at once for low quality ones.

However, it would have required experts to also label CMs

for the challenging rule R7 that fail the simpler rules R1 to

R6 for various reasons. But many of those CMs are hard

for the experts to understand and label because they have

confusing formatting (filtered out by Task 1), follow project-

specific conventions (filtered out by Task 3 and 4), or text that

does not clarify whether it is about the change or about the

context and the way things worked before the change (filtered

out by Task 2). Due to the higher variance of those CMs, the

model for R7 would also need more training data to achieve

a certain performance.

User study. We plan a user study to identify possibilities for

improvement. There is already interest from several medium

and large companies to participate.

Pretraining BERT. CodeBERT likely performs better than

other BERT-based models because it has a smaller covariate

shift between its pretraining data and our fine-tuning data.

There is some covariate shift left even for CodeBERT, so

pretraining a BERT-based method with pairs of CMs and

matching code diffs will likely further improve the perfor-

mance, by achieving advanced comprehension of code diffs

and thus improve the predictive performance for our tasks. But

pretraining is expensive, as well as data- and time-consuming,

and thorough experiments on pretraining tasks on commits are

needed.

VII. CONCLUSION

The quality of CMs is crucial for software maintenance and

evolution. Thus, we considered how well CM quality can be

assessed, and created a framework for automatically assessing

CM quality based on several criteria, using state-of-the-art ML

methods. Our contributions are all open-sourced2.

Specifically, we developed and provided large datasets of

labeled CMs for the detection of imperative mood (Task 2),

of version bump (Task 3), and of documentation changes

(Task 4). Furthermore, we designed a high-effort dataset of

labeled CMs for evaluating their semantic quality based on

context and meaning (Task 5 for Chris Beams Rule 7 about

“what and why vs. how”). These datasets are also useful for

benchmarking and other tasks, such as research about CM

generation. We then provided thorough evaluations of our

full-fledged framework, consisting of 4 classification tasks. To

this end, we considered 7 baselines and 5 deep learning-based

models. The best performing models (BERT-based trained on

our datasets) set the state-of-the-art for all our classification

tasks, with the following F1 scores: 97.8% for Task 2 (formerly

74.5%), 95.4% for Task 3, 95.2% for Task 4, 82.9% for Task 5

(formerly 61.5%). Finally, we created our framework as a tool
for practitioners, which can be run locally or in the cloud, and

comprises a pipeline to automatically assess the CM quality

on all levels (format, syntax, semantics), checking all rules of

the CM guideline by Chris Beams [26], the most popular one.

The evaluation demonstrates that our open-source frame-

work can automatically assess the quality of CMs, including

semantics and context, sufficiently well for practical use. Our

framework can be used for assessing projects and company

culture, or integrated in a software development process. For

instance, as an IDE plugin for immediate validation while a

CM is being written, or as commit hook [22] for a simple

solution that still prevents commits with low quality messages

from being merged, or in the CI as an automatic CM quality

reviewer. There is already interest from medium and large

companies to participate in our planned user study. A CI

integration in the background, e.g., of GitHub projects with

GitHub Actions [17], can lead to a broad adoption and thus to a

shift towards more maintainable and faster evolving software.
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