
Efficient Index Maintenance for Frequently
Updated Semantic Data

Yan Liang1, Haofen Wang1, Qiaoling Liu1, Thanh Tran2, Thomas Penin1, and
Yong Yu1

1 Department of Computer Science & Engineering
Shanghai Jiao Tong University, Shanghai, China

{yliang,whfcarter,lql,tpenin,yyu}@apex.sjtu.edu.cn
2 Institute AIFB, Universität Karlsruhe, Germany

{dtr}@aifb.uni-karlsruhe.de

Abstract. Nowadays, the demand on querying and searching the Se-
mantic Web is increasing. Some systems have adopted IR (Information
Retrieval) approaches to index and search the Semantic Web data due
to its capability to handle the web-scale data and efficiency on query
answering. Additionally, the huge volumes of data on the Semantic Web
are frequently updated. Thus, it further requires effective update mech-
anisms for these systems to handle the data change. However, the ex-
isting update approaches only focus on document. It still remains a big
challenge to update IR index specially designed for semantic data in the
form of triples, which are finer grained structured objects rather than un-
structured documents. In this paper, we present a well-designed update
mechanism on the IR index for triples. Our approach provides flexible
and effective update mechanism by dividing the index into blocks. It re-
duces the number of update operations during the insertion of triples.
At the same time, it preserves the efficiency on query processing and
the capability to handle large scale semantic data. Experimental results
show that the index update time is a fraction of that by complete recon-
struction w.r.t the portion of the inserted triples. Moreover, the query
response time is not notably affected. Thus, it is capable to make newly
arrived semantic data immediately searchable for users.

1 Introduction

Nowadays, indexing and retrieving the Semantic Web data is drawing an in-
creasing attention. Some systems such as [1, 2] have adopted IR (Information
Retrieval) approaches for indexing these data. In particular, the semantic search
engine [1] has indexed over 1.4 million Semantic Web documents and began to
provide search services in the Semantic Web community similar to Google. The
success is due to the fact that IR is proved to handle web-scale data and be
efficient on query answering. Moreover, these systems are benefited from the IR
approaches to exploit huge amounts of textual information on the Semantic Web
by users keyword queries.

2

Additionally, the huge volumes of semantic web data are frequently updated.
Thus it requires semantic search engines not only to be scalable but also have
flexible update mechanisms to make the newly arrived data immediate searchable
for users. For example, the search engine in [1] indexes over 1.4 million Semantic
Web documents and it has to update its index on a regular basis.

However, to keep the Semantic Web data up-to-date in an IR index is a dif-
ficult task. The IR-based approaches index the Semantic Web data by reusing
the existing structure of inverted index. Although there are many discussions
on the index update for traditional IR search engines [3–7], current update ap-
proaches are just suitable for semantic documents. But for an IR index which is
designed as a repository of triples, index updating is more difficult. Since during
the update it should also keep the original relations between existing individu-
als. Although some methods (such as [8]) have presented to speed up the index
construction, frequently rebuilding the index is still costly.

In this paper, we present an efficient updating mechanism based on [9], which
is the state-of-art of the current IR approaches to index and retrieve the large
scaled semantic instances (RDF triples). It reuses the IR engine’s index structure
and functions to provide efficient query processing. Moreover, it supports both
the structured queries for semantic web data and the keyword queries for textual
information.

Our approach is based on the idea of dividing the index into blocks, which
reduce the number of update operations during the insertion of triples. Our
index mechanism can also be used for the index update based on an incremental
crawler. Experimental results show that the index update time is a fraction
of complete reconstruction due to the portion of the inserted triples. Thus it’s
capable to make the newly arrived semantic data immediately searchable by
users. At the same time it preserves both the efficiency on query processing and
the scalability to handle the large-scaled semantic data. Moreover,the reuse of
IR search engine not only can index the structural Semantic Web data but also
the textual information. Thus it supports the hybrid query capability for both
structured queries and keyword queries.

The paper is organized as follows. Section 2 introduces the related work. Sec-
tion 3 describes the basic index structure we are based on. Section 4 discusses
the extended block index structure, along with an update mechanism. Moreover,
a comprehensive analysis on the performance of our update mechanism is pre-
sented in Section 5. Section 6 shows the experimental results and we will give a
conclusion in Section 7.

2 Related Work

The update mechanisms for inverted index is a well studied field. Work in [3]
proposed a dual inverted list which stores short lists in the memory and long
lists on the disk. When the area for the short lists is full, the longest short list
will be merged into a long list. Work in [5] presents a hybrid approach in which
long posting lists are updated in-place, while short lists are updated using a

3

merge strategy. [6] improves the in-place update by saving the short posting
lists within the vocabulary and over-allocating the long lists. [4] uses overflow
’buckets’ to handle the new arriving postings. Work in [7] presents a method to
update previously indexed documents whose content have changed. The idea is
based on blocking together with the diff algorithm. [10] presents a just-in-time
indexing component which invests less in the preprocessing of arriving data, at
the expense of a tolerable latency in query response time. Index update can also
be achieved by reconstruction. Method in [8] is presented to speed up the index
construction.

However, there are few work on the index update for Semantic Web data.
[11] enables incremental update of index for XML documents part of which are
changed.

Querying and searching semantic web data using IR-based approaches are
emerging areas. Work in [1] presents a crawler based indexing and retrieval
system for semantic web data. It uses an IR engine to index the crawled semantic
web documents by using the n-gram and taking URIrefs as terms. [2] provides
an interface for searching ontologies and semantic documents using keywords.
However, these works are designed to index semantic documents and they do
not index triples. [9] is designed as a repository of RDF triples based on the IR
engine’s index structure. It supports both structured query and keyword query.
[12] uses keyword search results to do spread activation on semantic networks.
But it does not support structure queries for semantic web data. Work in [13]
discusses the result ranking for combining keyword search and structured queries.
[14] borrows XML Fragment query language to search semantically annotated
text corpora but not for semantic web data such as RDF triples. Moreover, the
inverted index also can be used in DBMSs to support containment queries in
XML documents [15, 16].

3 Overview of Semplore

Our work is based on [9], which indexes and retrieves RDF triples using the
existing index structure and functions of current IR engines. It provides the hy-
brid query capability by combining both structured queries and keyword queries.
In this section, we will give a brief introduction to its query capability, index
structure and query evaluation algorithm.

3.1 Hybrid Query Capability

Here the hybrid query is an extension of the DL-based conjunctive query which
was introduced in [17] and can be presented by the SPARQL query language.
To support the keyword queries, an extension of the ordinary conjunctive query
is made by taking keyword as a virtual concept. An individual is an instance
of a certain virtual concept if the textual content of its properties contain the
corresponding keyword. Then the users can input a conjunctive query containing

4

Table 1. Translation from semantic web data to fields, documents, and terms

Document Field Term

concept C
subConOf super-concepts of C
superConOf sub-concepts of C
text tokens in textual properties of C

relation R
subRelOf super-relations of R
superRelOf sub-relations of R
text tokens in textual properties of R

individual i

type all concepts that i belongs to
subjOf all relations R that (i, R, ?) is a triple in data
objOf all relations R that (?, R, i) is a triple in data
text tokens in textual properties of i

keyword constraints. For example, to find all films which are about ”romantic”
and directed by some Chinese director, the query is:

{f | "romantic"(f) ∧ directs(d, f) ∧ ChineseDirector(d)}
Here the queries are restricted as tree-shaped unary queries, whose query

graphs are trees. The detailed definition can be found in [9].

3.2 Index Structure

The index structure of traditional IR search engine is the inverted index which
based on fields, documents and terms. Work in [9] uses the inverted index struc-
ture to index triples and provides searching and querying based on the functions
of IR search engine. Its main idea is to translate semantic web data into doc-
uments, fields and terms which can be indexed and retrieved by traditional IR
engine. The translation is shown in Table 1.

After the translation, semantic web data can then be indexed by the IR
engine. The IR engine’s retrieval functions can also be used over these indexed
data. For example, for each relation, the IR engine can find all its super relations
by inputting the relation name and the field ”superRelOf” as a query. For each
concept, the IR engine can also return all its individuals by taking the concept
name and the field ”type” as a query.

For relation triples, the index saves relation names as terms and the subject
individuals as the documents. As it is shown in Fig.1, for each subject in a
certain relation’s posting list, its position list stores all its corresponding objects
in this relation. As an example in Fig.1, i2 and i3 are corresponding objects of
i1, then i2 and i3 are stored in i1’s position list in relation R1’s posting list.
Thus the IR engine can find all the objects of a certain relation with a given set
of subjects by return the union of the corresponding position lists. The index
structure is symmetric, for the objects of a relation can be taken as the subjects
of the inverse relation. So in the similar way, objects of triples are stored in the
posting list of inverse relations and they also have position lists to stored the
corresponding subjects.

5

TriplesTriples

(i1, R1 , i2)

(i1, R1 , i3)

(i3, R1 , i4)ii i i

0 1 2 3 4 ……

iR1

(i3, R1 , i4)

(i5, R1 , i6)

(i7, R1 , i4)

i3i1

0 (i2) 1 (i3) 2 (i4) 3 (i6)

i5 i7
…...

2 (i4)

i8

Term Index

R1
- i2 i3

…...i4 i6

0 (i2) 1 (i3) 2 (i4) 3 (i6)

T P iti

2 (i4)

0 1 2 3 ……

1

0 (i1) 1 (i3)0 (i1) 2 (i5)

Term Position

3 (i7)

Fig. 1. Triples stored in the inverted index

To force the search engine to save the object individuals as position infor-
mation, the actual contents stored in the position lists are the object’s local
positions in the inverse relation’s posting list. For example in Fig.1, in i1’s posi-
tion list stores 0 and 1, which are i2 and i3’s local position in the posting list of
R−. By reading the subject’s position list the search engine can quickly skip to
the corresponding objects in the inverse position list. Based on this index struc-
ture, the search engine can provide efficient query evaluation algorithm which
will be discussed in Section 3.3.

IDs are used throughout the indexing process to uniquely represent a re-
source (individual). Individuals in the posting lists or position lists are sorted in
ascending order according to their IDs in order to provide fast query evaluation.

3.3 Query Evaluation

Basic Operations In modern IR engines, two basic operations can be efficiently
achieved, which are the Basic Retrieval and the Merge Sort. Given a field f and a
term t, Basic Retrieval (f, t) returns the corresponding posting list from inverted
index. The result is sorted by individual IDs in ascending order. The input of
Merge Sort are two sorted lists of individual IDs S1 and S2 and a binary operator
op which can be ∩, ∪ or −. The Merge Sort operation m(S1, op, S2) computes
S1 opS2 by merging the lists S1 and S2 and returns the result as a new sorted
list of individual IDs. According to the index structure mentioned in Section 3.2,
works in [9] reuses and extends these basic functions of IR engine to support its
own query evaluation algorithm.

(1) Concept Constraints

The input of this operation is a boolean combination of concepts and keyword
concepts. It’s output is a sorted list of individual IDs which match the con-
straints. This operation can be implemented using basic retrieval and merge-
sort operation mentioned above. For example, for the input Film u “romantic”,

6

the Concept Constraints can be achieved through two Basic Retrievals and one
Merge Sort: m((type, Film), ∩, (text, “romantic”)).

(2) Relation Expansion

The input of this operation is a relation R and two sets S1 and S2 of individual
IDs. The operation computes the set {y | ∃x : x ∈ S1 ∧ (x,R, y) ∧ y ∈ S2} and
returns it as a sorted list of individual IDs. The Relation Expansion is not
directly supported by traditional IR engines. This operation needs to find all the
objects of a certain relation with a given set of subjects. According to the index
structure in 3.2, these objects can be obtained by computing the union of the
subjects’ position lists. Since in these position lists it stores the objects’ local
position in the inverse position list, the union can be computed based on a bit
vector which has the same length as the inverse relation’s posting list.

Query Evaluation Algorithm From these basic operations, a tree-shaped
hybrid query can be evaluated using a bottom-up method. At first for each leaf
nodes in the query graph, it uses the Concept Constraints operation to obtain
the satisfied individuals. When all of the children nodes are evaluated, it moves
forward to the parent node using the Relation Expansion to filter the results.
Then these children nodes are removed. Doing this procedure iteratively then
the final result is obtained when finish visiting all the edges in the query graph.

4 Index Update Mechanisms

Based on the index structure in Section 3.2, for concept names, relation names
or concept individuals which are indexed without using position lists, we can
update the index by adopting the optimizations of traditional index mainte-
nance([3, 6]). However, for relation triples, updating the index is time consuming.
During the index update, newly arrived triples need to be added into the index.
Their subjects and objects are inserted into the posting lists of corresponding
relations and inverse relations. However, inserting new individuals into a posting
list would make some of the original individuals’ local position moved behind.
These affected local positions are stored in the position lists in the inverse re-
lation’s posting lists. As a result, these position lists which store the updated
local positions should be updated. It is certainly a heavy cost, since inserting
one individual may sometimes leads to the reconstruction of the whole posting
list. In this section, we present a Block Index structure based on Section 3.2. It
reduces the cost of inserting new relation triples into the index.

4.1 Block Index Structure

The purpose of our Block Index structure is to minimize the changes in the
position lists when inserting relation triples. The basic idea is to split posting
lists into blocks. The first individual of each block is taking as landmark. All

7

Block1 Block2

R1
i3 ……i1 i7 i8i5 ……

Block1 Block2

(Lm1,0) (Lm1,1) (Lm1,2) …… (Lm2,0) (Lm2,1) ……. Triples

(i1, R1 , i2)
1

(Lm1,0) (Lm1,1) (Lm2,0) (Lm2,0)(Lm2,1)

(i1, R1 , i3)

(i3, R1 , i4)

(i5, R1 , i6)

(i R i)

R -
i i i i

(Lm1,0) (Lm1,1) ……… (Lm2,0) (Lm2,1) …….

Block1 Block2 (i7, R1 , i4)

R1 i2

(Lm1,0) (Lm1,1)

i3 ……i4 i6

(Lm1,0)

……

(Lm2,0) (Lm1,2)

Fig. 2. Structure of block based index

Algorithm 1: Single Update Algorithm
Input: An inserted triple (s, R, o)
if s /∈ Posting(R) then Insert(s, R);1

if o /∈ Posting(R−) then Insert(o, R−);2

Add LocalPosition(R, s) to PositionList(o, R−);3

Add LocalPosition(R−, o) to PositionList(s, R);4

individuals in the same block have their offsets comparing their local position
to that of the block’s landmark. Then the local position of each individual in
the posting list can be presented as a < Landmark ID, offset > pair. Take
Fig.2 as an example, in the posting list of relation R1, individuals i1 and i7
are landmarks of Block1 and Block2 respectively. Then the local position of i5
can be represented by the pair < Lm1, 2 > where Lm1 is the landmark ID of
Block1 and 2 is the offset. An auxiliary landmark table is needed to store all
the landmarks and their real position in the posting lists. Thus real positions
of individuals in a posting list can be obtained by getting the landmark’s real
position from landmark table and adding the offset value.

Note that the Block Index structure is only for the storage of relation triples.
For concept names, relation names or concept individuals, which are only stored
in posting lists, the index structure is the same as it defines in Section 3.2.

4.2 Single Update Operation

In this section, we present the algorithm for inserting a single triple into the
index, which is shown as Algorithm 1. First we insert the subject into the re-
lation’s posting list if necessary. Second is to insert the object into the inverse
relation’s posting list in a similar way if necessary. After the insertion, we get
the local positions of the subject and the object in corresponding posting lists.
Then we can add their local positions into each other’s position list.

8

Procedure Insert(s,R)

Find block B that s should inserted into;1

foreach instance i that i ∈ B ∧ i > s do2

foreach < pl, po >∈ PositionList(i, R) do3

o = Skip To(< pl, po >, Posting(R−));4

Find < nl, no > in PositionList(o, R−) that5

Skip To(< nl, no >, Posting(R)) == i ;
no = no + 1;6

Add s to Posting(R);7

Update the Landmark Table;8

The procedure of Insert(s, R) is to insert an individual s into the posting list
of a relation R. For each subsequence individual i in the Block, we read every
local position (< pl, po >) in it’s position list to find the corresponding object o
in the inverse-relation list. Then we update the old local position of i which is
stored in o’s position list by increasing the offset value by one. We should also
maintain the landmark table after the insertion. Since the insertion of s makes
the real positions of all landmarks of the subsequence blocks moved afterward
for one space.

Fig.3 shows the procedure of Insert(i2, R1) when inserting a single triple
(i2, R1, i7) into the index. Since the subject i2 does not exist in the posting list
of R1, i2 is then inserted into Block1 of R1’s posting list. The local position
of all subsequence individuals in this block (i3 and i5) should be updated by
increasing the offset value by one. The old local positions of i3 and i5 should
be updated, which are stored in the position list of their corresponding objects.
By reading the position list of i3 and i5 in R1’s posting list, we can easily get
these corresponding objects (i4 and i6) and skip to their positions in the posting
list of R−1 . Then we can find in i4 and i6’ position lists and update i3 and i5’s
old local position by increasing the offset value by one. In the similar way, the
object i7 is inserted into Block2 of R−1 ’s posting list and all the local positions of
subsequence individuals in this block have to be updated. As a result, their old
local positions which are stored in the position list of the corresponding subjects
in R1 should be changed.

The delete operation is much easier, for we only need to delete the local
positions of the subject and the object in each other’s position lists. Considering
the expenses of inserting an individual in the posting list, we do not delete an
individual with empty position list for further insertion.

4.3 Batch Update Operation

In this section we present a batch update operation, which can reduce the number
of update operations in position lists for multi-triple’s insertion. In the batch
update operation, every time we insert all individuals which belong to the same
block into the posting list. It will avoid the redundant update in position lists.
The Algorithm 3 shows how it works.

9

R1 i3 ……i1 i7 i8i5 ……

(Lm1,0) (Lm1,2) (Lm1,3) …… (Lm2,0) (Lm2,1) …….

i2

Insert a triple

(Lm1,0) (Lm1,1) (Lm2,0) (Lm2,1)

Insert a triple

(i2, R1 , i7)

(Lm2,0)Existing Triples

(i1 R1 i2)

R1
- i2 i3 ……i4 i6……

(Lm1,0) (Lm1,1) …… (Lm2,0) (Lm2,1) …….

(i1, R1 , i2)

(i1, R1 , i3)

(i3, R1 , i4)

(i5, R1 , i6)

(Lm1,0) (Lm1,2)(Lm1,0) (Lm2,0) (Lm1,3)

(5, 1 , 6)

(i7, R1 , i4)

Fig. 3. Procedure of inserting a single individual into posting list

When more triples of a relation is inserted into the index, each time we select
all the individuals which belong to the same block and insert them into the
posting list at one time. The operation of BatchInsert(S, B, R) is an expansion
of Insert(s,R) presented in Section 4.2. Once inserting these individuals in the
posting list, the local position of every original individual in the block which
behind the minimum inserted individual should be moved afterward. These local
positions are stored in the position lists of the corresponding objects in the
inverse relation’s posting list. The offset value are updated due to the number
of individuals which will be inserted in front of it. The batch insert operation
is more efficient since it reduce the number of position update when inserting
individuals belong to the same block.

Algorithm 3: Batch Update Algorithm
Input: Inserted triples (s1, R, o1),(s2, R, o2) ... (sn, R, on)
foreach block Bi v Posting(R) do1

Ssub =2

{st | st /∈ Posting(R) ∧ st ≥ Landmark(Bi) ∧ st < Landmark(Bi+1)};
BatchInsert(Ssub, Bi, R);3

foreach block Bi ∈ Posting(R−) do4

Sobj =5 {
st | st /∈ Posting(R−) ∧ st ≥ Landmark(Bi) ∧ st < Landmark(Bi+1)

}
;

BatchInsert(Sobj , Bi, R
−);6

foreach (si, R, oi) do7

Add LocalPosition(R, si) to PositionList(oi, R
−);8

Add LocalPosition(R−, oi) to PositionList(si, R);9

In order to be efficient for the update operation, the block size must be chosen
in a certain range, which will be discussed in Section 5.3. After the batch update,
if a block size exceeds the threshold, it will be splited into two smaller blocks.

10

Procedure BatchInsert(S,B,R)

foreach instance i ∈ B ∧ i > min{S} do1

foreach < pl, po >∈ PositionList(i, R) do2

o = Skip To(< pl, po >, Posting(R−));3

Find < nl, no > in PositionList(o, R−) that4

Skip To(< nl, no >, Posting(R)) == i ;
no = no + | {s | s ∈ S ∧ s < i} |;5

Add each s ∈ S to Posting(R);6

Update the Landmark Table;7

5 Performance Analysis

5.1 Space Requirement

According to [7], the landmark-offset encoding for local position does not increase
the space requirement of the index. Suppose k bits are allocated for a location
position in the posting list, then the same k bits can be used to encode a <
landmark ID, offset > pair with b < k bits for the landmark ID and the rest
k − b bits for the offset. However, an extra landmark table will be stored on
disk and loaded in memory during index update and query processing. The size
of landmark table is usually small. For a index with average block size B, the
total number of landmarks is Σ(d2LR/Be) ,where LR is the number of triples
of relation R.

5.2 Query Performance

In essence, query evaluation time with block index is not significantly affected
comparing to the index structure mentioned in 3.2. For concept individuals,
which are stored in traditional inverted index without blocks, the IR engine
provides fast processing time. For relation triples, the main difference is that
the individual’s real positions in the posting lists needs to be computed by
seeking the real position of the landmark in the landmark table and adding the
individual’s offset. In the landmark table, all landmarks in a certain relation’s
posting list is sorted by their real positions. Using the binary search, the seek
operation takes O(log(L/B)) time, where L is the length of posting list and B
is the average block size.

5.3 Index Update Time

In the block based index, contents in the same block are stored continuously.
Based on the optimization of traditional index maintenance([3, 6]), inserting in-
dividuals into a block is not time consuming. Moreover, with the help of land-
mark table, seeking in the posting lists can be finished efficiently. During the
index update, the main cost is to look up and update the offset values in the
position lists. Since contents of a position list are physically stored continuously

11

Table 2. Triples of real world dataset

Dataset Version 2.0 Version 3.0 Percentage

No. of triples 557,126 569,051 -

Inserted triples - 157,127 28.2%

Deleted triples - 145,280 26.1%

in modern IR engines, the look up operations in the position lists enjoys the
benefit of spatial locality for fast access.

Using the batch update introduced in Section 4.3, the total index update
time for all newly arrived triples depends on the block size and the number of
blocks which will be inserted with new individuals. So our update mechanism is
especially efficient when the index size is large and the number of update triples
is small. Blocks with larger size lead to more individuals whose local positions are
affected during the insertion. Thus it increases the number of update operations
in the position list. While block with too small size will decrease the efficiency
of both index updating and query processing. That’s because the individuals’
real positions are computed by looking up the landmark table. Small blocks will
increase the size of landmark table and thus slow down the look up operation.
Small blocks also produce many fragments on disk which will affect the disk
access time. In our experiment in Section 6.2, we will demonstrate and further
discuss the impact of block size to the index update.

For concept names, relation names or concept individuals, which only stored
in posting lists, the index structure is the same as it defines in Section 3.2 and
we update the index by using the existing optimizations for traditional IR index
maintenance([3, 6]). Since the update in these posting lists are infrequent and
less time costing comparing to the update of triples.

6 Evaluation

6.1 Experiment Setup

We use both the real world data and the artificial semantic data in our experi-
ment. In order to simulate the data change on the Semantic Web, a representative
NTriple file (persons.nt) from DBpedia is used as the real world data. Table 2
shows its content update during a time interval of five months 3.

In order to test the efficiency of our index update mechanism and its impact
on query answering, we also use the LUBM [18] benchmark data. In the LUBM
dataset, data is randomly generated and can be scaled to an arbitrary size. For
each dataset from LUBM(1,0) to LUBM(20,0), we treat its content as triples
to be inserted into an existing block index which is build for the LUBM(50,0)
dataset. Table 3 shows the number of triples from LUBM(1,0) to LUBM(50,0).

3 The DBPedia 2.0 version was launched in 09/2007 while the 3.0 version was launched
in 02/2008

12

Table 3. Triples of artificial datasets

Dataset LUBM(1,0) LUBM(5,0) LUBM(10,0) LUBM(15,0) LUBM(20,0) LUBM(50,0)

No. of triples 102,737 643,435 1,311,787 2,014,462 2,772,017 6,865,225

Table 4. Index construction for persons.nt v2.0

Person.nt v2.0 from DBpedia Semplore Block Index

Index Construction Time (s) 218 231

Index Space (MB) 37 38

In Section 6.3 we also evaluate the query processing time under LUBM(20,0)
and LUBM(50,0).

The proposed experiments are carried out on a desktop PC with Pentium 4
CPU of 3.2 GHz and 2Gb memory, running Microsoft Windows Server 2003 with
Sun Java JRE 1.5.0. Note that single indexing thread is used in our experiment
to obtain a raw indexing speed for ease of comparison.

6.2 Index Update Performance

In this section, we evaluate the efficiency and scalability of our index update
mechanism. Table 4 shows both the index construction time and index space
size for persons.nt v2.0 using the two different index structures. Semplore [9]
is based on the index structure already introduced in Section 3.2. Note that
our proposed block index only slightly increases the index construction time.
Moreover, the same conclusion can be drawn on the size of index space, which
indicates that it would not lead to the space overhead.

When updating the index to persons.nt v3.0, we choose different block size
to test the performance. As shown in Fig. 4, we can see that when the block
size is increasing, the update time increases. Blocks with larger size lead to
more individuals whose local positions are affected during the insertion and
thus increase the number of update operations. However, when the block size is
chosen as 50, it took more time to update the index than with block size equals
to 100. The main reason is that getting individuals’ real position needs to look
up the landmark table. When the block size is small, the size of landmark table
is increased and thus the index update time is slow down. Since Semplore does
not provide the index update mechanism, it’s index can only be updated by
complete reconstruction, which takes 225 seconds.

For the LUBM dataset, we first build the index based on the Block Index
structure under the dataset of LUBM(50,0). Here we chose the block size equals
to 1000. For every dataset from LUBM(1,0) to LUBM(20,0), we take it as the
set of triples be to inserted into the existing Block Index. Then we insert each of
them into the original index of LUBM(50,0) to evaluate the index update time.
For Semplore, we rebuild the index for the original dataset LUBM(50,0) together
with the new inserted dataset. The results are shown in Fig.5. We can find that

13

������������

(S
e
c
o

n
d

s)
������
��

T
im

e

Block Size (# Terms)

Fig. 4. Index update time with different block sizes

8000

10000

12000

14000

U d Ti b Bl k I d

0

2000

4000

6000 Update Time by Block Index

(Seconds)

Rebuild Time by Semplore

(Seconds)

Fig. 5. Index update time vs. index rebuild time

the index update time is a fraction of complete rebuild due to the portion of the
inserted triples.

6.3 Query Response Time

In additional to the efficiency of index update performance, it is also important
to test whether the block index structure would largely influence the time of
query answering. We choose 8 of 14 LUBM benchmark queries mentioned in
[18] for the evaluation, which is shown in Table 5. The excluded queries are
either cyclic or with multiple variables which are out of the query capability
of Semplore (i.e. unary tree-shaped conjunctive query). Here we only focus on
testing the efficiency on retrieval but not the reasoning capability.

Table 6 shows the query response time under LUBM(20,0) and LUBM(50,0)
by the two different indices. The block index is built by setting the block size
as 1000. The response time of the block index is slightly slower than that of
Semplore as it needs to lookup the landmark table stored in the main memory
when returning the individuals local position. Moreover, the retrieval time is

14

Table 5. LUBM benchmark queries

Q1
(type GraduateStudent ?X) (?X takesCourse
Department0.University0.GraduateCourse0)

Q3
(type Publication ?X) (?X publicationAuthor
Department0.University0.AssistantProfessor0)

Q5
(type Person ?X) (?X memberOf

Department0.University0)
Q6 (type Student ?X)

Q10
(type Student ?X) (?X takesCourse

Department0.University0.GraduateCourse0)

Q11
(type ResearchGroup ?X) (?X subOrganizationOf

University0)
Q13 (type Person ?X) (University0 hasAlumnus ?X)

Q14 (type UndergraduateStudent ?X)

Table 6. Query Response Time for LUBM Datasets (ms)

Query LUBM(20,0) LUBM(50,0)
Semplore Block Index Semplore Block Index

Q1 14 63 14 84

Q3 0 43 0 51

Q5 0 32 0 43

Q6 16 19 31 34

Q10 0 43 0 47

Q11 0 0 0 0

Q13 0 39 13 56

Q14 0 0 32 36

almost the same as Semplore when queries are tend to find individuals of concepts
or keywords. This is due to the fact that the corresponding posting lists do not
use the position lists thus are not stored in the block index. This way, the block
index is proved to provide much more flexibility for index update mechanisms
while preserving the efficiency of query answering.

7 Conclusion

In this paper, we present a well-designed update mechanism on the state of the
art IR index (Semplore) for triples. Benefited from the basic idea of dividing the
index into blocks, it reduces the number of update operations during inserting
triples, which results in several orders of magnitude decrease on the index update
time compared to that by complete reconstruction. Moreover, both the size of
index space and query response time are not notably effected. Thus, our proposed
mechanism makes it possible for Semplore to handle frequent semantic data
update while preserving efficient hybrid query answering. One future work we
are considering is to offer more suitable block sizes and update strategies to meet
the requirements of different situations in order for self-tuning.

15

References

1. Ding, L., Finin, T., Joshi, A., Pan, R., Cost, S.R., Peng, Y., Reddivari, P., Doshi,
V., Sachs, J.: Swoogle: a search and metadata engine for the semantic web. In:
Proceedings of the 13th ACM CIKM, New York, NY, USA, ACM Press (2004)
652–659

2. d’Aquin, M., Baldassarre, C., Gridinoc, L., Sabou, M., Angeletou, S.: Watson:
Supporting next generation semantic web applications. In: WWW/Internet con-
ference. (2007)

3. Tomasic, A., Garćıa-Molina, H., Shoens, K.: Incremental updates of inverted lists
for text document retrieval. (1994) 289–300

4. Brown, E., Callan, J., Croft, W.: Fast incremental indexing for full-text information
retrieval. In: Proceedings of the 20th International Conference on Very Large
Databases (VLDB), Santiago, Chille (1994) 192 – 202

5. Büttcher, S., Clarke, C.L.A., Lushman, B.: Hybrid index maintenance for growing
text collections. In: SIGIR ’06: Proceedings of the 29th annual international ACM
SIGIR conference on Research and development in information retrieval, New York,
NY, USA, ACM (2006) 356–363

6. Lester, N., Zobel, J., Williams, H.: Efficient online index maintenance for contigu-
ous inverted lists. Inf. Process. Manage. 42(4) (2006) 916–933

7. Lim, L., Wang, M., Padmanabhan, S., Vitter, J.S., Agarwal, R.C.: Efficient update
of indexes for dynamically changing web documents. In: World Wide Web. (2007)
37–69

8. Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine.
Computer Networks and ISDN Systems 30(1–7) (1998) 107–117

9. Zhang, L., Liu, Q., Zhang, J., Wang, H., Pan, Y., Yu, Y.: Semplore: An ir approach
to scalable hybrid query of semantic web data. In: ISWC/ASWC ’07. (2007) 652–
665

10. Lempel, R., Mass, Y., Ofek-Koifman, S., Sheinwald, D., Petruschka, Y., Sivan, R.:
Just in time indexing for up to the second search. In: CIKM. (2007) 97–106

11. Jang, H., Kim, Y., Shin, D.: An effective mechanism for index update in structured
documents. In: CIKM. (1999) 383–390

12. Rocha, C., Schwabe, D., Aragao, M.P.: A hybrid approach for searching in the
semantic web. In: Proceedings of the 13th international conference on World Wide
Web, ACM Press (2004) 374–383

13. Nejdl, W., Siberski, W., Thaden, U., Balke, W.T.: Top-k query evaluation for
schema-based peer-to-peer networks. In: International Semantic Web Conference.
(2004) 137–151

14. Chu-Carroll, J., Prager, J.M., Czuba, K., Ferrucci, D.A., Duboué, P.A.: Semantic
search via xml fragments: a high-precision approach to ir. In: SIGIR. (2006) 445–
452

15. Li, Q., Moon, B.: Indexing and querying XML data for regular path expressions.
In: The VLDB Journal. (2001) 361–370

16. Tatarinov, I., Viglas, S., Beyer, K.S., Shanmugasundaram, J., Shekita, E.J., Zhang,
C.: Storing and querying ordered XML using a relational database system. In:
SIGMOD Conference. (2002)

17. Horrocks, I., Tessaris, S.: Querying the semantic web: A formal approach. In:
International Semantic Web Conference. (2002) 177–191

18. Guo, Y., Pan, Z., Heflin, J.: Lubm: A benchmark for owl knowledge base systems.
J. Web Sem. 3(2-3) (2005) 158–182

