A Goal Specification Language for Automated Discovery and
Composition of Web Services

Sudhir Agarwal
Institute of Applied Informatics and Formal Description Methods (ATFB),
University of Karlsruhe (TH), Germany.
agarwal@aifb.uni-karlsruhe.de

Abstract

In order to find suitable Web services from a large col-
lection of Web services, automatic support is needed to
filter out Web services relevant according to some crite-
ria specified by the user. In real business scenarios con-
straints on the types of input and output parameters are
often not sufficient. Rather one wishes to specify con-
straints on relationships of input and output parameters,
interaction pattern and non-functional properties of Web
services. Therefore, there is a need for a more expressive
goal specification language.

Current goal specification techniques for matchmak-
ing and composition of Web services either lack expres-
sivity to support real business scenarios or formal se-
mantics to enable development of automatic algorithms.
In this paper, we present a goal specification language
that allow specifying constraints on functional and non-
functional properties of Web services. The language is
a novel combination of an expressive temporal logic -
calculus and an expressive description logic SHZ Q(D).

1. Introduction

Service orientation is a promising paradigm for offer-
ing and consuming business processes within or across
organizational boundaries. Ever increasing acceptance
of service oriented architecture (SOA) and the need for
outsourcing business processes partially or completely
will lead to large number of business processes offered
as Web services. Therefore, there is a need for mecha-
nisms to find suitable Web services automatically. Since
the suitability of Web services is relative to user’s cri-
teria, one first needs a technique to specify user’s cri-
teria.

In the recent years, quite a few formalisms have been
proposed for describing Web services formally. How-
ever, there has not been much work done for specifying

user criteria in order to find suitable Web services. In
real business scenarios, the criteria for the suitability of
a Web service are much richer than just the types of its
input and output parameters. Existing approaches ei-
ther lack the expressivity so that finding suitable Web
services still requires a lot of manual effort or formal se-
mantics so that it is difficult to develop automatic dis-
covery and composition algorithms.

In this paper, we present a language for specifying
constraints on functional and non-functional properties
of Web services. In Section 2, we identify requirements
for an expressive goal specification language. In order
to be able to do reasoning over functional and non-
functional properties of Web services, such properties
must be described first. In Section 3, we present a for-
mal model of a Web service. In section 4, we present a
formalism for specifying expressive user’s goals. In sec-
tion 5, we discuss some related work. Finally, we sum-
marize our work in section 6 and discuss some open
problems.

2. Language Requirements

A Web service operates on resources that can be
real world objects or information objects. A Web ser-
vice expects resources from the client and delivers re-
sources to the client. A requester searching for a Web
service typically wishes to define constraints on the re-
sources expected from and delivered by the Web ser-
vice.

Consider for example a library that maintains a wish
list of books where the library members can enter the
ISBN of books they would like to have. On the ba-
sis of some ranking (e.g. number of members that wish
the book) of the desired books the library system needs
to place book orders at regular intervals. At the time
of designing and implementing the library system the
software engineers need to find book selling Web ser-

vices. Suitable book selling services are those that ac-
cept an ISBN and deliver a book.

Requirement 1 It must be possible to define con-
straints on the types of input and output parameters of a
Web service.

Considering the library scenario a bit deeper, we
identify that the software engineers are actually inter-
ested in Web services that do not sell just any book,
but exactly the book that is ordered by the library soft-
ware. In this example a suitable Web service is one that
delivers a book with the same ISBN as the one it ob-
tains as input.

Requirement 2 It must be possible to define con-
straints on the values of the properties of the resources.
In other words, it must be possible to define relation-
ships among resources.

In realistic scenarios we must consider that there are
many book selling Web services available and there is
no global vocabulary for the domain of books that ev-
ery Web service provider can or wants to use for de-
scribing the resources of his book selling Web service.
As a result, we have to assume that in general Web ser-
vice providers describe their Web services with their re-
spective vocabularies independently of other Web ser-
vice providers. Similarly, a requester needs a vocabu-
lary that he understands to be sure that the constraints
that he specifies capture the intended meaning.

Consider for example, that the output type of a book
selling service is Book! and a requester searches for Web
services that have output type T2Z7Q. If the type Book
as well T2Z7Q mean the set of books, then the Web ser-
vice must be detected as a match.

Requirement 3 The formalism for specifying con-
straints on resources must be able to consider mappings
among the vocabularies while checking the satisfiabil-
ity of constraints.

When a Web service executes, it may cause changes
in the knowledge state of the participants. For example,
charging requester’s credit card as a consequence of the
order he has placed is performed by means of an update
(setting the available credit amount to a lower value) in
the database of the corresponding bank. While search-
ing for desired Web services, a requester may be inter-
ested in specifying which effects he wishes to take place
and which not.

1 Classically defined as complex type in an XML schema; in case
of semantic Web services as a concept of an ontology.

Requirement 4 The formalism for specifying con-
straints must support specification of desired and unde-
sired changes in the resources.

Because of the vast heterogeneity of the available
information, Web service providers and users, security
becomes extremely important. Security related aspects
are mostly classified in three categories, namely confi-
dentiality, integrity and availability [9, 15, 10].

When a Web service uses other Web services in or-
der to achieve its functionality, it may be possible that
a requester trusts the composite Web service but not
its component Web services.

Requirement 5 The formalism should allow a re-
quester to specify constraints on the set of parties in-
volved in the execution of a Web service.

A suitable Web service for the library system must
have the matching (opposite pole) communication pat-
tern so that the interaction between the Web service
and the client can take place. If the Web services had
only one input activity and only one output activity,
one may assume that a Web service always perform
the output activity after the input activity. As a con-
sequence matching the communication patterns of the
client and a Web service would be trivial. However, in
general this is not the case. Even if Web services ab-
stract from implementation details, the process trig-
gered by invoking a Web service may be very complex
involving multiple interactions with the client or other
Web services. Consider a book selling Web service that
after receiving a book order, sends a confirmation to
the client and expects a back confirmation. Only af-
ter receiving the back confirmation from the client, it
sends the ordered book to the client. Even if the Web
service receives an ISBN in the first input activity and
output the book with the same ISBN in the last ac-
tivity, it may not be suitable for the library system,
if the library system does not foresee to receive an or-
der confirmation and sending a back confirmation. In
other cases, an opposite situation may occur. That is,
a client system is ready to receive a book only after it
has received an order confirmation and sent a back con-
firmation, but the Web service neither sends any order
confirmation nor it waits for a back confirmation be-
fore sending the book to the client.

Requirement 6 In order to find Web services that can
be incorporated in the client system it must be possible
for the requester to specify constraints on the commumni-
cation pattern of a Web service.

While the above requirement concerns the public
communication protocol of the Web services (choreog-

raphy), there are use cases, in which a requester may
be interested in specifying constraints on the internal
communication structure of a Web service (orchestra-
tion). Consider, for example a company internal Web
service exposing a complex order process. It may be
desired that the ordered good must be approved by at
least two managers before it is bought. In other words,
this means that in order to check whether the Web ser-
vice is compliant to company’s policies, one must be
able to reason about the information flow and the or-
der of activities that transport information.

Requirement 7 In order to find Web services that can
be incorporated in the client system it must be possible for
the requester to specify constraints on the internal com-
munication of a Web service with other services.

Finally, a requester may wish to combine different
types of constraints. In the following, we give some ex-
amples of the combination of different types of con-
straints.

e Combination of Effects and Behavior A user
may wish to search for services that charge the
credit card after the shipment of the ordered book.

e Combination of Resources, Behavior and
Trust A Web service may send some user spe-
cific information, e.g. his credit card number or
his date of birth, to its component Web services
that a requester (potential user) may not trust. In
order to make sure that a Web service acts in com-
pliance with his privacy policies, he wishes to spec-
ify constraints like “user’s date of birth should not
be sent to a party that the user does not trust”

e Combination of Trust and Effects The bank
Web service should check that the book selling
Web service is authorized (by the user) to cause
an effect in the user’s bank account.

Requirement 8 The formalism should allow to specify
different types of constraints in a unifying and compos-
able manner. That is, it must be possible to specify com-
plex constraints from simpler constraints that may be of
different types.

3. Formal Model of Web Services

In this section, we fix the model of Web services
that we consider for developing the goal specification
language. Providing a concrete syntax for describing
such a formal model is out of the scope of this paper.
In our earlier works, we have presented a m-calculus
and SHZQ(D) based syntax for describing such mod-
els [5, 1].

Aq

As

i« o)
Q<= ~0
Q—o—0

As

Figure 1. Formal model of Web services illus-
trated with an example of three agents.

The business processes underlying a Web service
may consist of many activities. In some cases, the order
of execution of the activities is important. Hence, the
formalism should be able to specify the temporal be-
havior of business processes. Due to Web service tech-
nology, more and more business processes run partially
or completely inside the Web. In general, the process
triggered by invoking a Web service may involve many
actors, that may or may not be Web services. In or-
der to specify such business processes, we need a for-
malism that allows modeling of processes running in a
mixed environment in a unifying way.

The Web service providers will obviously describe
the non-functional properties of their Web service in a
way that their Web services are found often. For exam-
ple, almost every Web service provider will tend to say
that his Web service has fast response time. So, non-
functional properties of a Web service described by the
provider of the Web service do not have much signif-
icance. Rather, the non-functional properties of Web
services must be describable by other parties without
a central control and in a way that users can build their
trust in them.

We denote the set of agents with A. Each agent
A € A has functional properties and non-functional
properties. Functional properties consist of resources,
resource schemata and behavior of an agent whereas
non-functional properties describe credentials of an
agent.

3.1. Functional Properties

3.1.1. Resources and Resource Schemata Each
agent A € A is associated with a resource schema S4.
Furthermore, each agent A € A has a finite set of re-
sources R 4. These resources can be real world objects
or information objects.

3.1.2. Behavior The agents run concurrently to
each other and communicate by exchanging mes-
sages (refer to Figure 1). In case of Web services,
the messages are exchanged via Web protocols like

execution
semantics

o~

<=0

~0

S 4

. . b
: Doy
Az— O :
51 52 83 84 S5 S6
Figure 2. From execution model to labeled tran-
sition system with execution semantics.

HTTP and are serialized in some Web standard syn-
tax like SOAP. Furthermore, the actors may perform
operations locally, e.g., adding and removing re-
sources to and from their respective set of resources
respectively or defining relationships among the re-
sources in their respective set of resources.

In general, more than one resource can be trans-
ported or communicated from one agent to another in
a communication activity. Protocol types are impor-
tant in practice, since many business processes run in
a mixed environment.

Figure 2 shows on the left hand side various sit-
uations or states that may occur during the execu-
tion of the example Web service depicted in Figure 1.
The right hand side of the Figure 2 shows the la-
beled transition system of the example Web service. For
A= {Ai,..., A,}, the sets of resources Ra,,..., R4,
of the agents Ay, ..., Ay, together with their behaviors
Ba,,...,Ba, at some given point of time, describe the
state of the system at that time.

3.2. Non-Functional Properties

Apart from the resources, we consider the properties
of an agent in our formal model. For example, agent i
is a university or agent j is above 18 years.

We denote with P the set of all non-functional prop-
erties. The basic idea behind modeling non-functional
properties of actors in an interoperable way is to in-
terpret a non-functional property as a set of agents
and assume a subset relationships among such sets.
For example, the statement above2l C adult says that
any agent who above 21 years of age is also adult.
Hence, agents possessing the non-functional property
above2l can be automatically selected when a user
wishes to select agent that possess the property adult.
As we have mentioned before, it is necessary to con-
sider who issues whom a non-functional property, so
that users can build their trust or distrust in them.
However, trustworthiness of the non-functional prop-
erties is not the focus of this paper and we refer to our
previous works [3, 4], in which we have proposed to

use SPKI/SDSI certificates for issuing non-functional
properties to agents.

4. Specification of Expressive Goals

In this section, we present our main contribution, a
formalism to specify constraints on Web services. The
novelty of the formalism lies in its holistic nature as
it allows specification of constraints on resources, be-
havior and non-functional properties of Web services in
a unifying way. In the previous section, we have intro-
duced our formal model of Web services and shown how
the executable process model can be translated to a la-
beled transition system. The main aim of a goal spec-
ification language is to provide a syntax and seman-
tics to restrict the set of states in such an LTS. That
is, by specifying constraints in a goal specification lan-
guage, a user should be able to fix the set of states
that may/should occur in the execution of a Web ser-
vice or a Web service composition.

As we have stated earlier, a Web service is in gen-
eral a process involving multiple actors. p-calculus is
one of the most expressive temporal logics while still
being decidable[13]. In this section, we will first show
how constraints on the behavior of a Web service can
be specified with p-calculus. Then we will add a fa-
cility to specify constraints on the involved resources
by giving structure to p-calculus propositions and ac-
tions. Finally, we consider specification of constraints
on the non-functional properties and show how they
can added to our goal specification language, thus pro-
viding a single very expressive goal specification lan-
guage.

4.1. Specifying Constraints on Behav-
ior with pu-calculus

p-calculus, as it is mostly used today was first in-
troduced in [13]. Let Var be an (infinite) set of vari-
ables names, typically indicated by X, Y, Z .. .; let Prop
be a set of atomic propositions, typically indicated by
P,Q,...; and let A be a set of actions typically indi-
cated by a,b, The syntax of formulae (with respect
to (Var, Prop, A) is presented in column two of Ta-
ble 1.

Definition 1 (Structure) A structure T (over Prop,
A) is a labeled transition systems, namely a setS of states
and a transition relation —C S x A x S, together with
an interpretation Vprop : Prop — P(S) for the atomic

propositions. We often write s —— t for (s, a,t) €—.

Given a structure 7 and an interpretation V
Var — P(S) of the variables, the set [¢]y of states

Name Syntax Semantics

True true S

False false ()

Atomic

Proposi- P Vprop(P)

tion

Conjunction ¢1Ag2 [p1]y N [¢2]v

Universal a

Quantifier [a]g {slvts —t=1te [g]v}
Negation —¢ S\ [¢lv

Minimal Fix-

pOil’lt MZQS O{S g S|S g Hd)HV[Z::S]}
Disjunction d1Vo2 [o1]v U o]y

Existential a

Quantifier (a)o {s|Fts —tAte]d]v}
Maximal Fix-

point vZ.¢g U{S S SIS C [dlviz=s}

Table 1. p-calculus Syntax and Semantics

satisfying a formula ¢ is defined in column three of Ta-
ble 1.

With fixed point operators, one can define all known
constraints on the temporal behavior. In the following,
we give examples of some most widely known temporal
operators. The formula pX.(¢2V (p1 A{—)trueA[—] X))
describes ¢1 until ¢2, as it can be read as: either ¢o
holds in the current state or sooner or later the pro-
cess reaches a state in which ¢o holds and until then
¢1 holds. The modality eventually ¢ can be easily de-
fined as trueuntil ¢.

4.2. Adding Structure to u-calculus Propo-
sitions and Actions with SHZQ(D)

p-calculus in its pure form abstracts from the mean-
ing and structure of the propositions. In our formal
model, the set of propositions of an agent correspond
to the facts in the knowledge base of the agent. The
facts (explicit or derived) in the knowledge base of an
agent at some point of time represent the set of propo-
sitions that are true at that point of time.

4.2.1. Short Introduction to SHZQ(D) A
SHZQ(D) description logic knowledge base con-
sists of a set of axioms, which can be distinguished
into terminological axioms (building the so-called
TBox 7) and assertional axioms or assertions (con-
stituting the ABox A). Based on names for con-
cepts (as C, D,...), roles (R, S,...), and individuals
(a, b,...), SHZQ(D) provides constructors like nega-
tion, conjunction, disjunction, existential quantifier,

universal quantifier and qualified number restric-
tions to build complex concepts from simpler ones.
Further, it supports concrete datatypes and there ex-
ist corresponding axioms for quantifiers and cardi-
nality constraints for roles with a datatype range. A
TBox consists of a finite set of concept inclusion ax-
ioms C' C D, where C and D are either both concepts
or relations. The A-Box consists of a finite set of con-
cept assertions C(a), role assertions R(a,b), individ-
ual equalities a = b, and individual inequalities a # b.
Those assertional axioms or assertions introduce in-
dividuals, i.e. instances of a class, into the knowl-
edge base and relate individuals with each other.
For details about the semantics of SHZQ(D) con-
structors, T-Box axioms and A-Box axioms, we refer
to [7, 12, 14).

We give p-calculus atomic propositions (denoted by
P above) the structure of the form QrQQ 4. A propo-
sition P = QrQQ 4 is true if the SHZQ(D) concept
@Qr has instances in the knowledge base of an agent
that has non-functional properties described by the
SHIQ(D) concept Q4. We will see in the next sec-
tion how user’s agent selection criteria based on non-
functional properties can be specified as SHZQ(D)
concept.

For actions (see p-calculus formulas (a)¢ and
[a]¢), we make similar structural extensions. We dif-
ferentiate between input and output actions by us-
ing the sign '+’ or '—’ for input and output actions
respectively. We give an input action a the struc-
ture +(P, A, v1:T1, ..., 0m:Tm)QQ 4, which means an
agent satisfying the non-functional properties de-
scribed in the query @Qa performs an input action
that can receive m values of types Ti,...,T,, re-
spectively over a channel of protocol P at the ad-
dress A. Similarly, we use —(P, A,Q1,...,Qm)QQ4
for an output action, which means an agent satis-
fying the non-functional properties described in the
query @4 performs an output action that sends m val-
ues which are answers of the queries Q1,...,Qmn
respectively over a channel with protocol P and ad-
dress A.

4.3. Specifying Constraints over Non-

Functional Properties

Now we turn our attention to the 'QQ@Q 4’ part of
the structures that we introduced above. Q4 is a
SHZQ(D) concept that specifies user’s agent selec-
tion policy based on the non-functional properties of an
agent. We have mentioned in Section 3.2, that a non-
functional property can be interpreted as a set of agents
that have the property. Considering the set-theoretic

semantics of SHZQ(D), we can view a non-functional
property as a SHZQ(D) concept. By doing this, on one
side it becomes possible to use SHZ Q(D) constructors
to build complex policies on the other side SHZQ(D)
subsumption relations can be used to obtain interoper-
ability among the non-functional properties.

Having introduced our goal specification lan-
guage, we now look back to the requirements
identified in Section 2 and discuss how our lan-
guage covers the requirements. In an input for-
mula +(P,A,v1:Th, .. 0T)QQa, Th,..., T,
are desired input types and in an output formula
_(P’ Av le SERE) Qm)@QAv Qla X} Qm are descrip—
tion logic queries. So Requirement 1 is fulfilled.
The queries Qp...,Q.,, can use the process vari-
ables, e.g. those in an input formula. This way it
becomes possible to establish relationships between in-
puts and outputs thus covering the Requirement 2.
Requirement 3 is covered by the fact that we use de-
scription logic SHZQ(D) for specifying constraints
on terminologies. Simple mappings between termi-
nologies can be expressed via subsumption rela-
tionship, whereas complex mappings with DL-safe
rules [11]. DL-safe rules [14] are a decidable rule ex-
tension of description logics and subset of SWRL[12].
Introduction of propositions of the form QrQQ 4 cov-
ers the Requirement 4. The Requirement 5 is covered
by the suffix “@QQ@Q4” in propositions, input formu-
las and output formulas. Requirements 6 and 7 are
covered by formula types [a]¢ and (a)¢p. Require-
ment 8 is fulfilled by the logical connectors available
in the language.

5. Related Work

OWL-S Matchmaker [16] uses OWL-S Profile for de-
scribing Web services as well as describing the goal. Re-
call, that even if OWL-S Profile is designed for mod-
eling pre and post conditions in addition to the types
of input and output parameters of the Web services,
there is still no concrete formalism fixed for describing
the conditions. As a result, the goal specification re-
duces to the types of input and output parameters. So,
it neither allows the specification of relationships be-
tween inputs and outputs nor constraints on the tem-
poral structure of a Web service.

[6] presents a procedure for the verification using
SPIN model checker of OWL-S process models by map-
ping them to PROMELA. SPIN model checker sup-
ports LTL as a constraint specification language. How-
ever, in order to be able to use the SPIN model checker,
authors needed to abstract from the types of input

and output parameters, which loses the added value
of OWL-S.

A WSML goal specification consists of capability
and interfaces. A capability description consists of
shared variables, pre- and post conditions as well as as-
sumptions and effects. Due to the availability of shared
variables WSML goals are more expressive than OWL-
S Profiles. The interface description is used to specify
the desired choreography and orchestration of a Web
service. In other words, WSMO interface used in a
goal specifies constraints on the dynamic behavior of
a Web service. However, currently there is no concrete
proposal for describing the choreography and orches-
tration. Furthermore, due the separation of capabili-
ties and dynamic behavior already at the conceptual
level, one would not be able to specify temporal con-
straints on effects. That is, constraints like “credit card
should be charged (effect) should take place after deliv-
ery (choreography)“. Furthermore, WSMO goal speci-
fication does not address trust and access control poli-
cies. However, we believe that access control policies
can be integrated in WSML as pre-conditions.

Perhaps, the work that is closest to our work
is [8], in which an approach is presented to charac-
terize Web services with their transition behavior
and their impacts on the real world (modeled as rela-
tional databases). We model the local knowledge bases
of the participating actors with decidable descrip-
tion logics, which can be helpful in proving decidability
of discovery and composition algorithms and also more
suitable since the Web ontology language OWL stan-
dardized by W3C is based on description logics. An-
other major difference is the choice of the logic for
specifying constraints on Web services. [8] uses propo-
sitional dynamics logic (PDL) whereas we have used a
more expressive logic p-calculus.

6. Conclusion and Outlook

In this paper, we have developed an expressive for-
malism for modeling goals. We showed how tempo-
ral and security constraints as well as constraints on
the objects involved in a Web service process can be
specified with one logic. The logic developed in this
paper is a novel combination of SHZQ(D) and p-
calculus. We have shown in our earlier works, that cre-
dentials of an agent can be modeled with description
logics and the verification of eligibility can be checked
with description logic queries [3, 4]. Hence, our goal
specification formalism presented in this paper cov-
ers resources, behavior and access control/trust poli-
cies of the agents. We have implemented a Java API
for modeling goals programmatically. Furthermore, we

have developed a concrete syntax for the language
so that the formulas can be written by an end user
at user interface. The connection between concrete
syntax and the Java API is established by a parser
generated with the well-known JavaCC? tool (see [1]
and http://kasws.sourceforge.net/ for more de-
tails about the implementation).

For Web service descriptions having the semantics
of the formal model presented in Section 3, it becomes
possible to develop an expressive discovery based on lo-
cal model checking techniques known for p-calculus and
query answering for description logics [2]. In some sit-
uations however, there may be combinations of Web
services that fulfill a given goal. The problem of find-
ing such combinations is often referred to as automatic
composition and there is already some work done to ad-
dress this problem. Most of the approaches are based on
Al-planning techniques, in which a goal denotes a situ-
ation that should be reached. However, we believe that
classical Al planning techniques are not sufficient for
the problem of automatic composition of Web services,
since a goal (as in our goal specification) may just de-
scribe constraints on the overall properties of a compos-
ite Web service and not only a final state that should
be reached. Developing automatic Web services com-
position algorithms for goals specified in our goal spec-
ification language is an interesting and open research
problem.

Acknowledgements

Research reported in this paper was partially sup-
ported by the EU in the IST project NeOn (IST-2006-
027595, http://www.neon-project.org/)).

References

[1] S. Agarwal. Formal Description of Web Services for Ex-
pressive Matchmaking. PhD thesis, University of Karl-
sruhe (TH), May 2007.

[2] S. Agarwal. Model Checking Expressive Web Service
Descriptions (Short Paper). In IEEE 5th International
Conference on Web Services, Salt Lake City, Utah, USA,
July 2007. IEEE Computer Society.

[3] S. Agarwal and B. Sprick. Access Control for Semantic
Web Services. In L.-J. Zhang, editor, 2nd International
Conference on Web Services, pages 770-773, San Diego,
California, USA, July 2004. IEEE Computer Society.

[4] S. Agarwal and B. Sprick. Specification of Access Con-
trol and Certification Policies for Semantic Web Ser-
vices. In K. Bauknecht, B. Proll, and H. Werthner, edi-
tors, 6th International Conference on Electronic Com-
merce and Web Technologies, volume 3590 of Lecture

2 https://javacc.dev. java.net/

(12]

(13]

(14]

(16]

Notes in Computer Science, pages 348-357, Copen-
hagen, Denmark, August 2005. Springer.

S. Agarwal and R. Studer. Automatic Matchmaking
of Web Services. In L.-J. Zhang, editor, I[EEE jth In-
ternational Conference on Web Services, pages 45-54,
Chicago, USA, September 2006. IEEE Computer Soci-
ety.

A. Ankolekar, M. Paolucci, and K. P. Sycara. Towards
a Formal Verification of OWL-S Process Models. In
Y. Gil, E. Motta, V. R. Benjamins, and M. A. Musen, ed-
itors, International Semantic Web Conference, volume
3729 of Lecture Notes in Computer Science, pages 37-51.
Springer, 2005.

F. Baader, D. Calvanese, D. McGuinness, D. Nardi,
and P. F. Patel-Schneider, editors. The Description
Logic Handbook: Theory Implementation and Applica-
tions. Cambridge University Press, 2003.

D. Berardi, D. Calvanese, G. D. Giacomo, R. Hull, and
M. Mecella. Automatic Composition of Transition-
Based Semantic Web Services with Messaging. In
K. B6éhm, C. S. Jensen, L. M. Haas, M. L. Kersten, and
B. C. O. Per-ke Larson, editors, VLDB ’05: Proceed-
ings of the 31st international conference on Very large
data bases, pages 613—624, Trondheim, Norway, August-
September 2005. ACM.

M. Bishop. Computer Security — Art and Science. Ad-
dison Wesley, 2003.

D. E. Denning. Cryptography and Data Security. Addi-
son Wesley, 1982.

P. Haase and B. Motik. A Mapping System for the In-
tegration of OWL-DL Ontologies. In A. Hahn, S. Abels,
and L. Haak, editors, IHIS 05: Proc.s of the 1st Int.
Workshop on Interoperability of Heterogeneous Infor-
mation Systems, pages 9-16. ACM Press, November
2005.

I. Horrocks and P. F. Patel-Schneider. A Proposal
for an OWL Rules Language. In Proceedings of the
Thirteenth International World Wide Web Conference
(WWW 2004), pages 723-731. ACM, 2004.

D. Kozen. Results on the propositional mu-calculus.
Theoretical Computer Science, 27:333-354, 1983.

B. Motik, U. Sattler, and R. Studer. Query Answering
for OWL-DL with Rules. In S. A. Mcllraith, D. Plex-
ousakis, and F. van Harmelen, editors, Proc. of the
3rd. Int. Semantic Web Conference (ISWC 2004), vol-
ume 3298 of LNCS, Hiroshima, Japan, November 2004.
Springer.

P. Samarati and S. Capitani di Vimercati. Access Con-
trol: Policies, Models, and Mechanisms. In R. Focardi
and R. Gorrieri, editors, Foundations of Security Analy-
sis and Design (FOSAD), volume 2171 of Lecture Notes
in Computer Science, pages 137-196. FOSAD 2000,
Bertinoro, Italy, Springer Verlag, Berlin, October 2001.
K. Sycara, M. Paolucci, A. Ankolekar, and N. Srini-
vasan. Automated Discovery, Interaction and Composi-
tion of Semantic Web Services. Journal of Web Seman-
tics, 1(1):27-46, December 2003.

