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Abstract. A central and much debated topic in the Knowledge Representation
and Reasoning community is how to combine open-world with closed-world for-
malisms, such as Description Logics (DLs) with Logic Programming. We pro-
pose a new approach to defining the semantics of hybrid theories, composed of a
DL and a Normal Logic Program (NLP) parts, which employs Pinto and Pereira’s
Minimal Hypotheses semantics (MHs) for the latter. Because this semantics is
more general than the currently employed semantics for hybrid DL-NLP KBs
based on Stable Model (SM) semantics, and because MH semantics guarantees
model existence for every NLP, our hybrid semantics also guarantees the exis-
tence of models for any hybrid DL-NLP theory with consistent DL fragment and
consistent DL-NLP ensemble. Finally, due to the MHs featuring beneficial the-
oretical properties, like relevance and cumulativity, existential query answering
tasks may not need to consider the whole hybrid KB, as it is necessarily the case
with current state-of-the-art approaches based on the SM semantics.

1 Introduction

1.1 Background

Description Logics (DLs) are a family of knowledge representation formalisms that are
decidable fragments of first-order logic [2], where decidability is ensured via several
syntactic restrictions. These restrictions lead to problems when expressing some non-
tree like relationships. Such relations can easily be expressed using logic programming
rules. Nevertheless, rule-based formalisms have their own shortcomings because typi-
cally they do not allow reasoning with unbounded infinite domains and hence cannot
be used in many scenarios where modeling incomplete information is required. Unlike
DLs, rules, for example, cannot reason about implicit objects of a domain. For instance,
in DLs one can easily define the concept Father as “a male person with a child person”
(in DLs syntax Father ≡ Person u Male u ∃hasChild.Person) without providing further
information about the children themselves. This, of course, is not possible in rule-based
formalisms unless all the children are explicitly stated. Yet another difference between
DLs and logic-based formalism is that DLs, as decidable fragments of first-order logic,



are inherently monotonic whereas many ruled-based formalisms allow for default nega-
tion and are thus capable of defeasible inferencing.

The benefits of the increased expressiveness of DLs and rule-based formalisms cou-
pled in a unified manner has motivated a significant body of research. Much work has
been done in this direction where some deal with integrating DLs with first-order rules
(for example, [12]) while others focus on achieving a unified framework for DLs and
non-monotonic rules ([8, 15, 16, 14, 20], etc). In such formalisms, a Knowledge Base
(KB) has two components: a DL-KB3 and a Logic Program (LP) and is called hybrid
KB. In this work, we focus on the latter direction of research and present a new ap-
proach of integrating DLs with Normal Logic Programs (NLPs).

1.2 Motivation

NLPs are the simplest class of LPs allowing for default negation in the bodies of rules.
Since the conclusions (heads) of rules of NLPs are always positive atoms, and no ex-
plicit negation is allowed, no contradictory sets of conclusions may be derived from
NLPs, i.e., NLPs are always consistent — when viewed as SAT problems, NLPs are
always satisfiable. DLs, however, although not allowing for default negation, do allow
for explicit negation, therefore a DL-KB may be inconsistent. Moreover, even when a
DL-KB is consistent the resulting combination of it with an NLP may be inconsistent
if there is a sub-alphabet shared amongst these two components, e.g., if the conclusions
of the DL part explicitly contradict (via explicit negation) the conclusions of the NLP
part. Thus, the whole hybrid DL-NLP KB consistency must be dependent only on the
DL’s consistency and on the DL-NLP combination consistency, never on the isolated
NLP’s consistency which is guaranteed.

The main difference between the approaches in [15, 16] and [14] is the underlying
semantics considered for the NLP part. The former are based on the Stable Models (SMs
[10]) semantics and the later considers the Well-Founded Semantics (WFS)[9] for the
NLP. While the WFS guarantees model existence for the NLP it does so at the cost of
resorting to the third undefined truth-value, and sometimes this might not be acceptable
for the purposes the user intends. The SM-based approaches do offer 2-valued-complete
models, but they do not guarantee their existence for every NLP. Besides, since SM
semantics lacks other useful properties such as relevance and cumulativity4, the whole
NLP must be considered when answering an existential query and no tabling (lemma
storing) techniques can be employed to speed up computations. This has a severe impact
on query-answering computation times.

In order to have a 2-valued semantics for hybrid DL-NLP KBs, where the whole
KB consistency is ensured as far as the isolated NLP component is concerned, a new
semantics (other than the WFS and SM) for the NLP part must be considered, one that

3 DL-KBs are usually called Ontologies in the Semantic Web community. In this paper, we use
these two terms interchangeably.

4 If a semantics enjoys relevance that means one needs only to consider the rules in the syntactic
dependencies call-graph of a query in order to answer it. If a semantics enjoys cumulativity
that means one can safely store previously proven true query results in order to speed up later
computations.



enjoys all these properties (guarantee of 2-valued-model existence, relevance, cumu-
lativity). Our work’s goal is the pursuit of such a hybrid semantics for DL-NLP KBs
resorting to a new 2-valued semantics for NLPs enjoying those properties.

1.3 Approach and Results

The knowledge represented by a hybrid DL-NLP KB can only be more complex than
the “sum” of the individual DL and NLP components if these share a common sub-
alphabet. It is via this shared set of bridging symbols that conclusions from one of
the components may be used by the other to derive extra conclusions not deducible
otherwise. Therefore, a sensible semantics for a hybrid KB must symmetrically allow
each component to inform the other with its local conclusions about shared symbols.

Following the motivational guidelines above we define a hybrid semantics for DL-
NLP KBs which differs from the ones in [15, 16] and [14] (a comparison is presented
in Section 5) in two ways: 1) we resort to a crossed fixed-point approach as a means to
characterize the models of the hybrid semantics; and 2) we do so by using the classical
semantics for the DL part, and the new 2-valued Minimal Hypotheses (MH) semantics
[19] for the NLP part.

Why the Minimal Hypotheses semantics? In [19] Pinto and Pereira proposed the MH
semantics, which, besides complying with all the requirements identified in 1.2, also
takes all SMs as MH models as well, which ensures the “SM-backward-compatibility”
of MH semantics. The original NLP-exclusive motivations for the MH are manifold and
are presented in [18, 19]; these lie outside the scope of our paper, and thus we do not
repeat that discussion here, only very briefly outlining some of the intuitions behind it.
However, the goals pursued with this current work demand that the semantics for the
NLP part must enjoy the properties listed at the end of 1.2, thus adding yet another set
of motivation arguments for a semantics such as the MH, instead of the SM, that pile
upon the original ones in [18, 19].

Since the DL part is a fragment of first-order logic it is monotonic and thus there
is no room for different possible semantics for it. The NLP part, however, since it may
contain default negation, allows for multiple possible ways of interpreting the meaning
of rules, e.g., one may consider a 2-valued semantics or a 3-valued semantics for it.
Using a 3-valued semantics, e.g., the WFS, has certain advantages over common 2-
valued semantics (like the SMs and MHs), such as tractable complexity (the reasoning
tasks with the WFS are known to be polynomial). However, in settings where one wants
to identify the multiple alternative scenarios compatible with the NLP part and do some
computations with each of them, a 2-valued semantics allowing for multiple 2-valued
models is necessary. In this paper we take this last direction.

Because the NLP part is always consistent (by not allowing rules to derive nega-
tive conclusions), the 2-valued semantics for this component of the DL-NLP hybrid KB
must ensure model existence in order to guarantee the whole hybrid DL-NLP consis-
tency as far as the isolated NLP part is concerned. This is not the case with the SM
semantics, but it is with the MH one. Also, because the NLP itself may be an aggrega-
tion of independent sets of rules, it makes no sense to have to consider the whole NLP



when answering an existential query which concerns only a subset of the NLP which
is syntactically independent from the rest. The SM semantics does not allow to take
advantage of such independence because it lacks the relevance property; whereas the
MH semantics does allow it by enjoying this property.

Besides guaranteeing model existence for NLPs, and enjoying relevance, the MH
semantics also enjoys cumulativity (these properties of non-monotonic formalisms are
detailed in [5, 6]). This property means that the whole semantics of the program remains
unchanged if atoms known to be true are added as facts. Both relevance and cumula-
tivity potentially improve the time performance of some reasoning tasks by performing
some pre-processing and considering only the relevant sub-part of the program. This al-
lows us for black-box approach of performing reasoning tasks in hybrid KBs by using
a standard DL reasoner and an MH model calculator.

We define a hybrid semantics for hybrid DL-NLP KBs based on the classical seman-
tics for the DL part, and the MH semantics for the NLP part by resorting to a crossed
fixed-point. We contrast this MH-based choice against a SM-based alternative like the
one in [16] and conclude that the former has advantages over the latter, namely by being
more general than the ones based on SMs in the sense that all SMs are MH models as
well, and, further, MH assigns a semantics to all NLPs.

The rest of the paper is organized as follows. We first provide some preliminaries in
Section 2. The notion of hybrid (DL-NLP) KBs, along with an example, is presented in
Section 3 where we also provide our crossed fixed-point semantics for hybrid DL-NLP
KBs. The notion of reasoning in our formalism, along with the complexity issues, are
discussed in Section 4. In Section 5 we compare our approach to some of the existing
ones and some concluding remarks along with directions for future work in Section 6.

2 Preliminaries

We now review some notions we will be using henceforth.

2.1 Description Logic SROIQ

The DL SROIQ is one of the most expressive DLs which provide the logical founda-
tion of OWL 2[17]. For the syntax of SROIQ, let NI , NC , and NR be finite, disjoint
sets called individual names, concept names and role names respectively. Further we as-
sume that NR is the union of disjoint sets Rs (simple roles) and Rn (non-simple roles).
These atomic entities can be used to form complex ones in the usual way (see Table 1).

A SROIQ-knowledge base is a tuple (T ,R,A) where T is a SROIQ-TBox, R
is a regular SROIQ-role hierarchy5 and A is a SROIQ-ABox each being a finite set
of corresponding axioms as presented in Table 2. The semantics of SROIQ is defined
via interpretations I = (∆I , ·I) composed of a non-empty set ∆I called the domain
of I and a function ·I mapping individuals to elements of ∆I , concepts to subsets of
∆I and roles to subsets of ∆I ×∆I . This mapping is extended to complex roles and
concepts as in Table 1 and finally used to evaluate axioms (see Table 2). We say I

5 We assume the usual regularity assumption for SROIQ, but omit it for space reasons.



Name Syntax Semantics
inverse role R− {(x, y) ∈ ∆I ×∆I | (y, x) ∈ RI}
universal role U ∆I ×∆I
top > ∆I

bottom ⊥ ∅
negation ¬C ∆I \ CI
conjunction C uD CI ∩DI
disjunction C tD CI ∪DI
nominals {a1, . . . , an} {aI1 , . . . , aIn}
univ. restriction ∀R.C {x | ∀y.(x, y) ∈ RI → y ∈ CI}
exist. restriction ∃R.C {x | ∃y.(x, y) ∈ RI ∧ y ∈ CI}
Self concept ∃S.Self {x | (x, x) ∈ SI}
qualified number 6nS.C {x | #{y ∈ CI | (x, y) ∈ SI} ≤ n}
restriction >nS.C {x | #{y ∈ CI | (x, y) ∈ SI} ≥ n}

Table 1. Syntax and semantics of role and concept constructors in SROIQ.Herein x and y
denote individuals names, R an arbitrary role name and S a simple role name. C and D denote
concept expressions.

Axiom α I |= α, if
R1 ◦ · · · ◦Rn v R RI1 ◦ · · · ◦RIn ⊆ RI RBoxR
Dis(S, T ) SI ∩ T I = ∅
C v D CI ⊆ DI TBox T
C(a) aI ∈ CI ABox A
R(a, b) (aI , bI) ∈ RI
a
.
= b aI = aI

a 6 .= b aI 6= bI

Table 2. Syntax and semantics of SROIQ axioms

satisfies a knowledge base O = (T ,R,A) (or I is a model of O, written I |= O) if it
satisfies all axioms of T , R, and A. We say that a knowledge base O entails an axiom
α (written O |= α) if all models of O are models of α.

2.2 Logic Programs

A Normal Logic Program (NLP) is a set of rules of the form
h← b1, . . . , bn, not c1, . . . , not cm (1)

with m,n ≥ 0 and finite, where h, the bi and the cj are function-free first-order atoms.
Literals are atoms or their negations. Default negated literals (DNLs) are those of the
form not c. For a rule of form (1), we use head(r) to represent the atom h and body(r)
to represent the set {b1, . . . , bn, not c1, . . . , not cm}. A rule r with body(r) = ∅ is
called a fact. An atom a occurring in a program P is called rule-less (or we say that it
has no rules) if there is no rule r in P such that head(r) = a.

Given a program P and a rule r ∈ P , we write body(r) to denote the subset of
body(r) whose literals’ atoms do not have rules that depend on r. Intuitively, body(r)
represents the part of the body of the rule r not in loop.

A NLP naturally induces a directed graph where the rules are the nodes and there
is an arc from r1 to r2 iff r2 syntactically depends on r1, i.e., if the head of r1 appears,



possibly default negated, in the body of r2. When two rules depend on each other we
say there is a loop in this rule graph. When such a loop is formed through DNLs, i.e.,
when at least one of the heads of rules in the loop appears as a DNL in the body of a
rule of the loop, we say there is a Loop Over Negation (LON). Moreover, when there is
an Even (Odd) number of DNLs through which the LON is formed we say there is an
Even (Odd) Loop Over Negation (ELON/OLON).

An Integrity Constraint (IC) is a special kind of logic rule where the head is ⊥.
ICs are not part of NLPs, but (non-Normal) LPs are unions of “normal” rules with ICs.
This way, a problem can be modeled by a LP using the normal rules as generators of
candidate solutions (the models), and using the ICs as filters to discard unsatisfying
candidate solutions.

2.3 Semantics for Normal Logic Programs

One of the cornerstone semantic principles for NLPs is the Closed World Assumption
(CWA) which reifies the default character of the not operator in logic programs. In-
tuitively, the CWA principle says the truth-value of any atom in a program should be
assumed false unless there is support for its truth via a rule with that atom as head;
that is why a program like P1 = {a ← not b} has only the model {a, not b} — b is
assumed false by CWA. However, when we have LONs (e.g., a← not b b← not a)
we no longer can apply the CWA directly. Instead, first we assume some truth-values
for the atoms of DNLs, and then we apply the CWA under the assumed context, i.e.,
the LONs give us a degree of choice by allowing several alternative models based on
freely chosen assumption for the truth-values of the atoms of DNLs. The way the SM
semantics is defined allows it to assign models to ELONs, but not to OLONs6.

In order for the intended use of LPs described in 2.2 above to be effective, a se-
mantics for the “normal” part must always guarantee model existence, otherwise there
would be some way of using normal rules to play the role of ICs, which would compro-
mise the declarative meaning of both normal rules and ICs. For the sake of declarativity,
rules with ⊥ head should be the only way to write ICs in a LP: no normal rule, or com-
bination of normal rules, should possibly act as IC(s) under any given semantics. An
NLP should always have at least one model according to any given 2-valued semantics.

Since the SM semantics fails to assign models to OLONs (which are patterns formed
by normal rules alone), it should not be used for the intended purpose of LPs described
above. For this reason we turn to the MH semantics which guarantees model existence
for NLPs. Our formalism can thus handle hybrid KBs where the NLP contains OLONs.

2.4 Minimal Hypotheses semantics for NLPs

In general, 2-valued semantics for NLPs allow for several possible alternative models.
The interpretations accepted as models can be seen as sets of beliefs the semantics

6 By failing to assign a semantics to OLONs, the SM semantics treats them as modeling errors,
although this claim has been refuted time and again — e.g., [7] says “Let P be a knowledge
base represented either as a logic program, or as a nonmonotonic theory or as an argumentation
framework. Then there is not necessarily a bug in P if P has no stable semantics.”



consider plausible. In this regard, the atoms true in a model can be envisaged as either
assumed hypotheses or their respective consequences via the rules. The MH semantics
considers the atoms of some DNLs in an NLP as the assumable hypotheses (a more
detailed explanation is provided below). MH semantics aims at minimizing the sets of
assumed hypotheses in each model necessary to fully determine the 2-valued truth-value
of all literals in an NLP, and thus takes an approach akin to that of minimal abduction.

MH semantics: Hypotheses set of a NLP Not all atoms of DNLs in a program are
eligible as assumable hypotheses (whenever possible the CWA must be enforced). In
[18, 19] the authors defined a syntactic transformation applicable to a NLP P in order
to find which DNLs are its assumable hypotheses, the set Hyps(P ). In an informal and
intuitive manner, and resorting to a simpler notation, this is the transformation:

Definition 1. Program Transformation — Layered Remainder of P .
Given an NLP P , the layered remainder of P is the program P̊ obtained by repeat-

edly applying the following reduction rules to P until a fixed-point is reached:

1. for any rule r ∈ P with not b ∈ body(r) s.t. b has no rules, remove not b from
body(r).

2. for a rule r and a fact b in P , if not b ∈ body(r) 7 then remove r from P .
3. remove every fact a from the body of every rule in P .
4. remove every rule r from P s.t. there is a b ∈ body(r) and b has no rules.
5. remove all subsets of rules that depend on each other via only positive literals

(atoms) in their bodies, but only if there are no other rules with the same heads.

The set Hyps(P ) of assumable hypotheses of P is the set of atoms of DNLs of P̊ . ♦

The transformation defined above is similar to the one presented in [3] except that
in the condition of the rule 2, body(r) is considered rather than body(r). The program
obtained from P in that way is called the remainder instead and is used to calculate
the Well-Founded Model (WFM) of P . For a detail discussion and comparison of both
transformations we refer to [18].

Example 2. MH semantics: Layered Remainder.
Let P = a← not b b← not c c← not a, d d← not e x← x a

Applying rule 1 from Definition 1 we delete the not e from the body of rule d← not e.
Because d is now a fact we can apply the rule 3 from Definition 1 deleting d from the
body of rule c← not a, d. Applying rule 5 from Definition 1 we delete the rule x← x
from the program which is now

P = a← not b b← not c c← not a d a
Whereas the calculus of the Remainder of P would allow the fact a to be used to delete
the rule c ← not a in order to further simplify the program, that is not the case with
the Layered Remainder: since the rule c ← not a is involved in a loop with a rule for
a, this c← not a rule is not allowed to be deleted, because not a /∈ body(c← not a).

7 The literals in body(r) are those whose rules for the corresponding atoms are all in layers
strictly below that of r.



No more rules from Definition 1 are applicable and hence we have reached the Layered
Remainder of P . The set of assumable hypotheses are the atoms of the DNLs still
remaining: Hyps(P ) = {a, b, c}. ♦

Definition 3. Minimal Hypotheses semantics — (simplified from [18, 19]).
For a NLP P with set of assumable hypotheses Hyps(P ), a set of literals M is a

MH model of P iff the WFM of P ∪H is 2-valued complete and it coincides with M ,
whereH ⊆ Hyps(P ) is empty, or non-empty set-inclusion minimal, i.e.,H is minimal
but sufficient to determine the 2-valued truth-values of all atoms of P 8. ♦

In the Example 2 above, since Hyps(P ) = {a, b, c} we have four different subsets
of hypotheses that yield MH models: H1 = ∅, which yields the MH model M1 of P
which is M1 = WFM(P ∪H1) = WFM(P ∪ ∅) = WFM(P ) = {a, b, not c, d};
H2 = {a}, which yields the same MH model M1 of P which is M1 = WFM(P ∪
H2) = WFM(P ∪{a}) = WFM(P ) = {a, b, not c, d}; H3 = {b}, which yields yet
again the same MH model M1 of P which is M1 = WFM(P ∪H3) = WFM(P ∪
{b}) = WFM(P ) = {a, b, not c, d}; and finally H4 = {c}, which yields the other
MH model M2 of P which is M2 = WFM(P ∪ H4) = WFM(P ∪ {c}) =
WFM(P ) = {a, not b, c, d}. The MH models of the program in Example 2 are thus
M1 = {a, b, not c, d}, and M2 = {a, not b, c, d}.

3 Hybrid Knowledge Bases: Syntax and Semantics

A hybrid DL-NLP KB K is a pair K = (O,P) where O is a DL-KB and P is an NLP.
Let ΣO denote the signature of (the set of predicate symbols and constants occurring
in) O, and ΣP denote the signature of P , then ΣK denotes common signature of K,
i.e., the set of shared predicate symbols and constants occurring in both O and P —
ΣK = ΣO ∩ΣP . Let ABΣ denote the set of all possible atoms over signature Σ.

Example 4. The affordable car problem.
Consider this example in which we present a hypothetical online recommendation

system for selling vehicles. The background knowledge of the car sales company is
formalized in an ontology that contains the following axioms:

Vehicle ≡ Car t Van t Truck (1)
Car ≡ ABS t Airbagged t Automatic (2)

AffordableCar ≡ Car u ¬(ABS u Airbagged u Automatic) u StandardSeats (3)
LuxuryCar ≡ Car u ABS u Airbagged u Automatic u LeatherSeats (4)

and in a logic program containing the non-monotonic rule:
StandardSeats(C)← not LeatherSeats(C) (5)
Besides the kind of vehicles for sale (Axiom (1)), the ontology says the cars this

company sells always come with some different system (Axiom (2)). According to

8 The reasons for allowing non-empty set-inclusion minimal Hs are explained in [18] and they
are related to allowing cumulativity.



Axiom (3) an affordable car is a car missing at least one of the systems (ABS, Airbags
or Automatic transmission) and has standard seats. Moreover, luxury cars have all three
systems and special leather seats (Axiom (4)). In other words, each system in a car, and
the special seats, add to the price of the car. Also, by default, a car is sold with standard
fabric seats, unless it is explicitly demanded by the customer the car must have leather
seats. This is expressed by Rule (5) in the program.

Suppose now there is a customer who will be happy if she gets an affordable car c,
and her preferences regarding car systems are given as in the following rules:

Automatic(c)← not ABS(c) (6)
ABS(c)← not Airbagged(c) (7)

Airbagged(c)← not Automatic(c) (8)
Happy← AffordableCar(c) (9)

The task at hand here is to find an affordable car while still satisfying her preferences.
Note that using the stable models as the semantic basis for this hybrid KB leads to no
solution for the problem because the SM semantics is unable to assign models to the
OLON formed by the rules (6), (7) and (8). We will see later that such a system is
easily realizable in our approach. ♦

The semantics of a hybrid KB K = (O,P) must take into account the semantics
of both of its components O and P — we consider the MH semantics for the NLP
part. The intuitive definition of our semantics is as follows. Since MHs allows for the
existence of several alternative models and the ontology have several models, the joint
KB K must also allow for the existence of several hybrid models. Also, the literals of
a model of each one of the two components must be used by the other to allow for
the possible entailment of further consequences. Hence, the truth values of atoms in a
non-deterministically chosen MH model of the NLP part, which are part of the shared
symbols in ΣK, may allow for the further entailment of new conclusions in the DL
part. In turn, these new DL entailments, which are also part of the same ΣK, may allow
further conclusions to be drawn in the NLP part in the form of a new MH model with
more true atoms. Also, coherence must be enforced: explicitly negated literals entailed
from the DL part must imply their default negated shared ΣK counterparts in the NLP
part. This mutual, or crossed, enrichment of each DL and NLP component with the
truth-values of shared ΣK atoms coming from the other component must be repeated
until a joint crossed fixed-point is reached. There may be several crossed fixed-point
hybrid interpretations, only the consistent ones are our hybrid models.

Definition 5. MH-based semantics of hybrid KB.
Let O be a consistent DL theory and K = (O,P) be a hybrid DL-NLP KB. A pair

(I,M) is an MH-based hybrid model of K iff

– M is an MH model of P ∪ (I+ ∩ ABΣK) with
– {not B : ¬B ∈ I− ∧B ∈ ABΣK} ⊆M− (coherence) and
–
(
O ∪ (M+ ∩ ABΣK) ∪ ({¬B : not B ∈M− ∧B ∈ ABΣK})

)
∪ I is consistent.

where M = M+ ∪M−, M+ ⊆ ABΣP , M− = {not B : B ∈ ABΣP \M+}; and
I = I+ ∪ I−, I+ ⊆ ABΣO , I− = {¬B : B ∈ ABΣO \ I+}. We use the term hybrid
model instead of MH-based hybrid model whenever it is obvious from the context. ♦



Consider again the Example 4 about the affordable car problem with the unique
constant c. The atom bases are

ABΣP = {StandardSeats(c), LeatherSeats(c), Automatic(c), ABS(c), Airbagged(c),Happy,
AffordableCar(c)},

ABΣO = {StandardSeats(c), LeatherSeats(c), Automatic(c), ABS(c), Airbagged(c), Vehicle(c),
AffordableCar(c), LuxuryCar(c),Car(c), Van(c), Truck(c)}, and

ABΣK = {StandardSeats(c), LeatherSeats(c), Automatic(c), ABS(c), Airbagged(c),
AffordableCar(c)}.

If we take the NLP part alone, resulting from joining together the rule of the car sales
company with the rules of the buyer, we get

StandardSeats(c)← not LeatherSeats(c)
Automatic(c)← not ABS(c)

ABS(c)← not Airbagged(c)
Airbagged(c)← not Automatic(c)

Happy← AffordableCar(c)

This program has three MH models:

M1 = {StandardSeats(c), not LeatherSeats(c), Airbagged(c), ABS(c), not Automatic(c),
not Happy, not AffordableCar(c)},

M2 = {StandardSeats(c), not LeatherSeats(c), Airbagged(c), not ABS(c), Automatic(c),
not Happy, not AffordableCar(c)}, and

M3 = {StandardSeats(c), not LeatherSeats(c), not Airbagged(c), ABS(c), Automatic(c),
not Happy, not AffordableCar(c)}.

Notice that StandardSeats(c) is true and LeatherSeats(c),Happy, and AffordableCar(c) are
false in every MH model of this NLP part alone. Taking, e.g., M1, and adding M+

1 ∩
ABΣK and {¬B : not B ∈ M−1 ∧ B ∈ ABΣK} to O we get, along with the Axiom
(1), (2), (3) and (4) in the ontology, the following ABox axioms
StandardSeats(c),¬LeatherSeats(c), Airbagged(c)ABS(c),¬Automatic(c),¬AffordableCar(c)

This extended ontology is now inconsistent: because we have, e.g., ABS(c), we con-
clude Car(c) via the second axiom; also, because we have Car(c), StandardSeats(c) and
¬Automatic(c) we conclude AffordableCar(c) via the third axiom, which explicitly contra-
dicts the
¬AffordableCar(c) in the ontology. This shows that we must not just simply take an MH
model (or even Stable Model, for that matter) for the NLP part and expect it to be
straightforwardly a part of a hybrid model of the whole KB; there might be conse-
quences entailed by the DL part that contradict what is entailed by the NLP part alone
— that is the case with AffordableCar(c) in this example. Of course one might take advan-
tage of such contradictions when developing a concrete algorithm to construct hybrid
models as a means to revise the initially guessed pair (I,M), but we do not explore that
path in this paper, leaving it for future work. We must guess a pair (I,M) and check if
if complies with the three conditions in Definition 5. In this case an MH-based hybrid
model would be (I,M) where I = {StandardSeats(c),¬LeatherSeats(c), Airbagged(c),
ABS(c),¬Automatic(c), AffordableCar(c),Car(c),¬LuxuryCar(c), Vehicle(c)} and



M = {StandardSeats(c), not LeatherSeats(c), Airbagged(c), ABS(c), not Automatic(c),Happy,
AffordableCar(c)}.

Our formalism naturally supports non-monotonicity in the NLP part: suppose now
the customer won a lottery and so we add the new fact LeatherSeats(c). In this case all the
MH models will include LeatherSeats(c) and not StandardSeats(c) (and the hybrid models
will include ¬StandardSeats(c) from the ontology part as well).

Before discussing different reasoning tasks in our approach, we define the notion
of satisfiability of a first-order atom in a hybrid model of a hybrid KB. Note that this
depends on the atom base of the signature (of ontology or program) the atom belongs
to.

Definition 6. MH-based hybrid model satisfies atom.
Let (I,M) be an MH-based hybrid model of a hybrid KB K = (O,P) and let A be

a First-order atom A. We say A is satisfied in (I,M), written (I,M) |= A, iff

– O ∪ (M+ ∩ ABΣK) ∪ ({¬B : not B ∈ M− ∧ B ∈ ABΣmknfK}) ∪ I |= A
whenever A ∈ ABΣO , and

– A ∈M whenever A ∈ ABΣP ♦

The set I in Def. 5 can be understood as a belief set one possesses s.t. it is consistent
with what is stated in the ontologyO along with the information entailed by the program
(M+∩ABΣK and {¬B : not B ∈M ∧B ∈ ABΣK}). Thus, for an atom to be satisfied
in a hybrid model (I,M), it is required to be a logical consequence of the ontology
along with the added information from the program and the belief set I if A ∈ ABΣO .
And if A ∈ ABΣP then it is required to be true in M which is an MH model of the
program enlarged with the new facts entailed from the ontology that are shared.

4 Reasoning

We present some important reasoning tasks and also present computational complexity
results related to these tasks. But first note that we never discussed the DL-safety re-
striction on the rules occurring in the logic program part. Indeed, the rules never violate
the restriction as the only way for the ontology and program to communicate with each
other is via a finite set of shared ground atoms. Hence DL-safety restriction is satisfied
trivially for all the rules.

Now similar to knowledge bases in other formalisms, one of the most basic reason-
ing task is to check if a given hybrid KB is consistent.

Definition 7. Consistency of a Hybrid KB.
Let K = (O,P) be a hybrid KB. Then K is said to be consistent iff there is at least

one MH-based model for K. K is said to be inconsistent otherwise. ♦

The checking of whether a hybrid KB is consistent is termed as the consistency problem.
Another interesting reasoning task is to check if a given atom is entailed from a

hybrid KB. Like in non-monotonic formalisms we distinguish between credulous and
skeptical reasoning here.



Definition 8. Entailment.
Given a first order atom A and a hybrid KB K, we say A is credulously/skeptically

entailed from K (written as K |=C A/K |= A) iff for some/every MH-based hybrid
model (I,M) of K we have that A is satisfied in (I,M) i.e., (I,M) |= A. ♦

Then the entailment problem is to check if the atom A is entailed (credulously or scep-
tically) from the hybrid KB K.

It follows from Definition 5 that checking the consistency of a hybrid DL-NLP KB
requires guessing sets I and M such that the conditions imposed by the definition are
satisfied. In the following lemma we prove that the consistency problem is decidable
provided the underlying language for formalizing the ontology is decidable. Further we
show that the problem is worst-case optimal in the sense that it is no worse than the
reasoning problem in the DL part or in the NLP part under MH semantics. To see this,
let L be the description logic for formulating ontologies and let C be the complexity of
the consistency problem in L. Then,

Lemma 9. Complexity of the consistency problem.
For a given hybrid DL-NLP KB K = (O,P), the consistency problem can be

checked in

– C if C is computationally worse than ΣP
2 , and

– ΣP
2 otherwise.

Proof By definition both ABΣO and ABΣP are finite, indeed, polynomial in the size
of the knowledge base. We non-deterministically guess the sets of atoms I+ ⊆ ABΣO

and M+ ⊆ ABΣP , and set I = I+ ∪ I− and M = M+ ∪M− such that I− = {¬B :
B ∈ ABΣO \ I+} and M− = {not B : B ∈ ABΣP \M+}.

Now checking if M is an MH model of P ∪ (I+ ∩ ABΣK) can be performed in
ΣP

2 [19]. Coherence (the second condition in Definition 5) can be checked in linear time
in the size of I and M . Finally, checking if the ontology

(
O∪ (M+∩ABΣK)∪ ({¬B :

not B ∈ M− ∧ B ∈ ABΣK})
)
∪ I is a consistent L KB can be performed in C. Now,

if C is worse than ΣP
2 , the overall consistency problem can be decided in C. Otherwise,

it can be decided in ΣP
2 .

Hence, the overall complexity of the consistency problem is dependent on the complex-
ity of reasoning task in the underlying ontology language. By fixing SROIQ [11] as
the ontology language, we get the following results:

Theorem 10. Complexity of the consistency problem with SROIQ DL.
Given a hybrid DL-NLP KBK = (O,P) withO formulated in the description logic

SROIQ, the problem of checking the consistency of K is N2EXPTIME-complete.

Proof The consistency in SROIQ is known to be in N2EXPTIME [13]. Thus as a con-
sequence of Lemma 9, the consistency problem of K is in N2EXPTIME as well. The
lower bound immediately follows from the fact that a SROIQ ontology can be trans-
lated into a hybrid KB by considering the program part empty and that the reasoning
problem in SROIQ is N2EXPTIME-complete [13]. �



Another important consequence of Lemma 9 is that by considering some tractable de-
scription logic, e.g., EL++ [1], the consistency problem in our approach does not get
tractable. Indeed, it is ΣP

2 -hard regardless of the language of the ontology.

We now discuss the complexity issues regarding the entailment problem in hybrid
KBs. Note that unlike description logics, we cannot translate the entailment problem in
the consistency problem. This is the case as our formalism is non-monotonic in general.
To check if a given atom A is entailed credulously from a hybrid KB K is to check for
a hybrid model of K such that A is satisfied in it. This can be performed as follows:

if there are I = (I+ ∪ I−) and M = (M+ ∪M−) with
I+ ⊆ ABΣO and I− = {¬B : B ∈ ABΣO \ I+}, and
I ⊆ ABΣP \ {A} and M− = {not B : B ∈ ABΣP \M+}

such that
(1) M is an MH-based hybrid model of P ∪ (I+ ∩ ABΣK)
(2) {not B : ¬B ∈ I− ∧B ∈ ABΣK} ⊆M−
(3)

(
O∪(M+∩ABΣK)∪({¬B : not B ∈M−∧B ∈ ABΣK})

)
∪I is consistent.

(4) A ∈M whenever A ∈ ABΣP

(5) O ∪ (M+ ∩ ABΣK) ∪ ({¬B : not B ∈M− ∧B ∈ ABΣK}) ∪ I |= A
whenever A ∈ ABΣO

then K |=C A; otherwise K 6|=C A

The steps for checking credulous entailment can be modified in order to check the
sceptical entailment of an atom from a hybrid KB. The idea is to check that no hybrid
model of the knowledge base is such that the atom is false in it. This is achieved by
replacing condition (4) and (5) with

(4′) not A ∈M , and
(5′)

(
O ∪ (M+ ∩ ABΣK) ∪ ({¬B : not B ∈M− ∧B ∈ ABΣK})

)
∪ I 6|= A

respectively. Now if all the conditions are satisfied for some hybrid model, then
K 6|= A.

Similar to Lemma 9, we can prove that the complexity of the credulous entailment
problem isΣP

2 if the entailment problem in the ontology is better thanΣP
2 and it is same

as the complexity of the entailment problem in the ontology otherwise. Additionally we
can show that the sceptical entailment problem is in ΣP

2 ∩ ΠP
2 [19]. if the entailment

problem in the ontology is computationally better than ΣP
2 ∩ΠP

2 . It corresponds to the
complexity of the entailment problem in the ontology otherwise.

Again by fixing SROIQ as the ontology language we get the following results:

Theorem 11. Complexity of the entailment problem with SROIQ DL.
Given a hybrid DL-NLP KB K = (O,P) and a first-order atom A, both, credulous

and sceptical entailment problem is N2EXPTIME-complete.

Proof similar to Theorem 10. �

5 Related Work

Among several existing approaches towards unifying DL with rules, probably the most
mature ones include the formalisms presented in ([15], [16]) and [14]. In both ap-



proaches MKNF theories are used for specifying DL KB and rules. In [16], standard
MKNF semantics is used which corresponds to the SM semantics of LPs. Comparing to
our work: first our approach is not based on MKNF; rather, hybrid KBs in our approach
are just pairs consisting of an ontology and an NLP with an overlapping signature. Fur-
ther, in the approach of [16], hybrid KBs with rules forming a OLONs are inherently
inconsistent. Nevertheless, as already mentioned, OLON are required for further expres-
sivity in a rule-based language. In contrast, our approach can deal with NLPs containing
OLONs. Since every stable model of a program is also its MH-model, our approach is
more general than that of [16] for the hybrid KBs restricted to a DL KB and NLPs. A
variation of the [16] approach is presented in [14] where WFS for MKNF theories is
defined. This approach can handle OLONs by using a third truth value namely “unde-
fined”. But such approaches are not suitable when a 2-valued semantics is required.

The work closely related to our approach is that of the so-called multi-context
system (MCS), a framework that allows for combining arbitrary monotonic and non-
monotonic logics [4]. Hybrid KBs in our approach can be taken as multi-context system
with two contexts, an ontology context and a program context. But comparing to our ap-
proach, note that we do not have, per se, the notion of bridge rules, rather, the exchange
of information is via the shared signature only. This is in contrast to multi-context sys-
tem where bridge rules are part of the multi-context system explicitly specified and that
the head of the the rules are the only information that can be added to the knowledge
base of the context to which the rule belongs to. Another interesting point we men-
tion here is that the notion of MH-based hybrid models corresponds to the notion of
equilibrium in [4]. An equilibrium is a belief state which contains for each context an
acceptable belief set, given the belief sets of the other contexts. In our approach, a tuple
(I,M) is said to be a hybrid model such that M is a MH model of the logic program
part given the set I and additionally I is consistent with the ontology given the set M .
Nevertheless, one still has to see how to translate hybrid KBs into MCS and use the
known results from there.

6 Conclusion

We presented a new approach to integrate DL with NLPs. The underlying semantics
for the NLP considered is the MH semantics which guarantees the existence of models
even for programs with OLONs. By defining a fixed-point hybrid KB, we presented a
practical method to draw crossed entailments from the KB. Moreover, our MH-based
approach, besides covering all the cases an SM-based one would, still keeps within
optimal complexity results.

As the avenues for the future work we will 1) extend this framework to deal with
other classes of LPs, such as Extended LPs (which allow for explicit negation) and
Disjunctive LPs (which allow for disjunctions in the heads of rules where the disjuncts
may be explicitly negated), and in doing so we will resort to an extension of the MH
semantics to those classes of LPs; 2) develop algorithms for computing hybrid models,
and for handling the reasoning tasks defined in Section 4 – using intelligent heuristics
these should be as efficient as possible in most cases, while still lying within the known
complexity results. In doing so, the fixed-point semantics of our formalism lets us to



take a black-box approach by using a standard DL reasoner and a tool for computing
MH models.
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