
SUMMA: A Common API for Linked Data
Entity Summaries

Andreas Thalhammer and Steffen Stadtmüller

Karlsruhe Institute of Technology
{andreas.thalhammer, steffen.stadtmueller}@kit.edu

Abstract. Linked Data knowledge sources such as DBpedia, Freebase,
and Wikidata currently offer large amounts of factual data. As the amount
of information that can be grasped by users is limited, data summaries
are needed. If a summary relates to a specific entity we refer to it as en-
tity summarization. Unfortunately, in many settings, the summaries of
entities are tightly bound to user interfaces. This practice poses problems
for efficient and objective comparison and evaluation.
In this paper we focus on the question of how to make summaries ex-
changeable between multiple interfaces and multiple summarization ser-
vices in order to facilitate evaluation and testing. We introduce SUMMA,
an API definition that enables to decouple generation and presentation
of summaries. It enables multiple consumers to retrieve summaries from
multiple providers in a unified and lightweight way.

Keywords: Web APIs, entity summarization, evaluation, testing, user inter-
faces, Linked Data

1 Introduction

With the growth of Open Data on the Web a plethora of information sources
covering diverse topics and domains are readily available to information con-
sumers. The abundance of information that can be found on single entities can
even be increased with the integration of different data sources with semantic
links (Linked Open Data). However, when it comes to the presentation of such
information, there are often limits on the amount of data that can be rendered
in interfaces and grasped by end users. These limits give rise to the require-
ment to only show the most important data in visualizations, i. e. a summary.
The amount of commercial systems that offer entity summaries are on the rise
[7,10,17]. Due to their proprietary nature, these systems tightly couple their
user interface and backend in accordance to their specific requirements. Also the
data sources from which these commercial summaries are derived are mostly not
publicly available. As a consequence, it becomes hard to exchange, evaluate, and
compare the output of summarization systems in an objective manner. In order
to facilitate accessibility of entity summaries it is necessary to identify the prin-
cipal properties of entity summarization systems, create a corresponding data
model, and to adhere to the best practices of Web APIs.

To enable clients to easily consume the summaries of entities from different
summarization services we propose SUMMA, a uniform lightweight interface
design based on a request/response vocabulary and the Representational State
Transfer (REST) interaction paradigm. The approach enables to combine a di-
verse selection of summarization approaches on a single Web site and to switch
from one service to another even during user navigation. The proposed API
aligns with the Linked Data interaction model. Our approach treats the summa-
rization approach itself as a black box while preserving the possibility to define
the required parameters of an entity summarization system in a uniform manner.
Thus clients can easily substitute or combine the employed entity summarization
system in a plug-and-play fashion. Existing summarization systems can easily
offer summaries with the SUMMA API in addition to their deployed user inter-
faces. In order to facilitate evaluation, the API aims at supporting researchers
and practitioners in the following settings:

– Quantitative Evaluation: SUMMA enables consumers to retrieve summaries
of entities in their most pure form (a ranked list of RDF statements). As
such, reverse engineering tasks such as disambiguating strings to URIs (e .g.
mapping “recompense” to http://dbpedia.org/ontology/award) are not
needed for automatic comparison of different approaches.

– Qualitative Evaluation: Commonly, multiple systems are placed next to each
other in qualitative evaluation settings for entity summarization and subjects
are asked to choose one or more. To support this, a SUMMA client can
present summaries of multiple different summarization systems in a uniform
way. In this way it can be ensured that style elements (such as pictures,
borders, colors, etc.) do not play a significant role in the subjects’ decision
making process.

– A/B Testing : Evaluation with A/B testing is commonly applied in industry
settings. SUMMA enables to change the technology that produces summaries
while the user interface stays the same. By tracking the interaction with each
variant it is possible to compare the effects of technology changes.

For our approach, we provide an open-source reference implementation and
deployment as well as an empirical evaluation. The source code of the reference
implementation as well as a deployment are available online. In the empirical
evaluation, we measure the overlap of our established requirements with the fea-
tures of real-world systems. This study includes interfaces of well known search
engines like Bing, Google, and Yahoo as well as entity presentations of well-
known news portals.

The remainder of this paper is organized as follows: In Section 2 we present a
requirement analysis for a uniform entity summarization API as well as the API
itself. In Section 3 we introduce the implementation as well as its deployment.
The evaluation in Section 4 introduces an empirical study that assesses the
applicability of our approach to real-world user interfaces. In Section 5 we analyze
the most related approaches and outline how we differ from them. Section 6
concludes the paper and provides an outlook on our future work.

http://dbpedia.org/ontology/award

2 SUMMA API definition

In its most basic form, a summary of an entity can be produced by two given
parameters:

URI A URI that identifies the entity.

k A number k that defines an upper limit of how many facts about the entity
should be presented.

While it is obvious that there is a need for an unambiguous reference to the
entity, it could be argued that a summary could also be specified by a given
compression level. For example, we could specify that 30 % of all facts about
the given entity should be contained in the summary. In this respect, we would
like to point out that concise presentations (for which we are aiming) are better
declared with an upper limit rather than a given percentage. This is due to the
fact that knowledge bases commonly cover well documented entities as well as a
long tail of sparsely documented ones: in this respect, 30 % could mean 20,000
facts for some entities while only 3 for others.

When defining a uniform interface for entity summarization, various specifics
that are inherent to the definition of RDF itself have to be considered as well.
This ranges from the possibility to have multiple labels for vocabulary or data
items to the more complex summaries that consider n-ary relations1 or enable full
property chains. Next to these features, other requirements include the grouping
of statements and the restriction to a predefined set of properties. In the following
we present an overview of all further requirements of the API:

Languages In many knowledge bases, labels in different languages for resources
and properties are commonly available. In order to avoid multiple requests or
queries to different knowledge sources we find it necessary to include labels
of one or more languages in the output of the summary.

Multi-hop Search Space It might be necessary (think of n-ary relations or
reification) or interesting to include statements in the summary that do
not directly involve the targeted entity but are connected through one or
more hops. For example, a max hop parameter of 1 (default) only considers
statements where the entity is either in the subject or object role, while a
max hop of 2 could cover facts that are still about the entity but are modeled
via an n-ary relation. Further hops are possible.

Property Restriction A summary can be targeted to a predefined set of
properties. An example would be to restrict the summary of a movie to
{dbpedia:starring} or {dbpedia:starring, dbpedia:director}. This fea-
ture is very useful if the interface has reserved space for specific features such
as a map presenting geolocations or pictures. These features can be retrieved
in a separate request.

1 “Defining N-ary Relations on the Semantic Web” – http://www.w3.org/TR/swbp-

n-aryRelations

http://www.w3.org/TR/swbp-n-aryRelations
http://www.w3.org/TR/swbp-n-aryRelations

Statement Groups Rather than ranking statements only individually, the sys-
tem could form groups or clusters of statements and, if applicable, provide
names for these groups.

These features and their compositions enable very specific views on entities al-
though they are still abstract enough to be applicable to any knowledge base,
be it encyclopedic or proprietary. In general, also the following considerations
have to be taken into account:

Resources/Literals Linking to other resources (i .e., URI identified entities)
supports exploration aspects while textual information (represented as lit-
erals) satisfies more the information need about the specific entity. For vi-
sualization purposes any resource URI included in a summary has to be
accompanied by a literal description which enables a user-friendly rendering
of the resource. Clients consuming the summary can therefore ignore the
resource URIs and only use literals for presentation.

Outgoing/Incoming Links For any unidirectional relation :x :link :y a
second relation can be established in the way :y :link by :x. In many
cases displaying such a relation in a summary of :y makes sense as it covers
information about it. Knowledge bases such as DBpedia, Freebase, and Wiki-
data enable to retrieve incoming links from other resources of the respective
knowledge base with queries. For Linked Data in general, many incoming
links can be retrieved with crawls as provided e.g. by the BTC [5].

Our approach consists of two main components with a strong interplay:

– The SUMMA Vocabulary can be used to frame summary requests, which
can be submitted to a summarization engine. Servers can interpret the given
parameters in the request and produce result sets with the vocabulary that
are in accordance to the provided parameters.

– The description of the RESTful Web Service provides a clear guideline
for the interplay between summary consumers and producers.

In the following, we first introduce the SUMMA Vocabulary and thereafter
the RESTful Web Service interaction guideline.

2.1 SUMMA Vocabulary

The SUMMA Vocabulary offers various parameters that help to configure and
represent a summary. During the design of the vocabulary we took the above
considerations into account. An overview of the vocabulary is depicted in Figure
1. In the following we introduce all classes and properties:

Summary This class describes the abstract concept of a summary of an entity.
The URIs of instances of this class are constructed with all query parameters.

SummaryGroup This class describes a group of statements. The entity sum-
marization system does not necessarily have to produce groups. If groups
are formed, it is completely up to the summarization system what is meant
by them or if they come with a label in the desired language.

entity This predicate with domain Summary and range rdfs:Resource points
to the entity that is summarized. As an example, the object of this property
could be a DBpedia or Freebase entity. This property is mandatory for the
API.

topK This property defines the maximum number of statements that are being
returned. This property is mandatory for the API.

statement This property with domain Summary and range rdf:Statement

attaches statements to a summary in the response context.

maxHops This property defines the maximum number of hops in the graph
the interface is able to represent. The default value is set to 1, which means
that all properties in the immediate vicinity of the focused entity are being
considered.

path This property enables to include the full paths in the returned statements
of the summary. For each statement that is included in the summary that
does not directly involve the focused entity, a path that shows how the
current statement relates to the entity needs to be provided. This situation
can occur if the maximum of hops is greater than 1. For more than 2 hops,
this relation is needed multiple times until the object statement of path
includes a triple that contains the focused entity.

language This property defines the languages in which the output literals should
be available. We recommend to use a fixed vocabulary like RFC 46462 for
this.

group The group property enables summaries to form groups of statements. At-
taching a group directly to a statement enables clients to ignore the property
if present but not supported.

fixedProperty If there is already some background knowledge on the summa-
rizer’s side about the underlying data structure it can request properties that
it wants to show in any case. Multiple different properties can be defined in
this way and thereby restricting the output to the defined set of properties.

Next to this vocabulary, we make use of the vRank3 vocabulary [9], XSD4 and
OWL5. The vRank vocabulary is necessary to include the computed scores of
each statement by the summarization service. A summary typically includes
more than one rdf:Statement. Although in some syntaxes constructs such as
summa:statement [a rdf:Statement; ...], [a rdf:Statement; ...] .

could be mistaken for ordered lists, the group of statements is returned as a set.
To determine an order between the statements additional information is required.
In this respect, we choose to use vRank rather than rdf:List to enable sum-
marization systems to publish the ranking scores. Listing 1.1 exemplifies the use
of the vRank vocabulary in combination with a reified rdf:Statement.

2 RFC 4646 – http://www.ietf.org/rfc/rfc4646.txt
3 vRank – http://purl.org/voc/vrank#
4 XSD – http://www.w3.org/2001/XMLSchema#
5 OWL – http://www.w3.org/2002/07/owl#

http://www.ietf.org/rfc/rfc4646.txt
http://purl.org/voc/vrank#
http://www.w3.org/2001/XMLSchema#
http://www.w3.org/2002/07/owl#

summa:Summary

xsd:positiveInteger

summa:topK
summa:entity

rdfs:Resource

xsd:String

summa:language

summa:fixedProperty

rdf:Property

summa:statement

rdf:Statement

xsd:positiveInteger

summa:maxHops

summa:SummaryGroup

summa:group

summa:path

Fig. 1. The SUMMA Vocabulary. Mandatory parameters in grey.

The SUMMA Vocabulary is published at http://purl.org/voc/summa/. Ex-
emplary usages of the vocabulary are shown in Listing 1.2 for input and in
Listing 1.3 for output (see Appendix A).

Listing 1.1. Example for using vRank for ranking a RDF Statement.

1 [rdf:type rdf:Statement ;

2 rdf:subject dbpedia:Barack_Obama ;

3 rdf:predicate dbpedia -owl:birthDate ;

4 rdf:object "1961 -08 -04"^^xsd:date ;

5 vrank:hasRank [vrank:rankValue "33.11"^^xsd:float]]

Listing 1.2. Example for a summary request that is sent via POST (namespaces
omitted).

1 [a :Summary ;

2 :entity dbpedia:Barack_Obama ;

3 :topK "2"^^xsd:positiveInteger ;

4 :language "en" ;

5 :maxHops "2"^^xsd:positiveInteger ;

6 :fixedProperty dbpedia -owl:birthDate ;

7 :fixedProperty dbpedia -owl:birthPlace .]

2.2 RESTful Web Service

According to the Richardson maturity model [8] REST is identified as the inter-
action between a client and a server based on three principles:

– The use of URI-identified entities.
– The use of a constrained set of operations, i. e., the HTTP methods, to access

and manipulate entity representations.

http://purl.org/voc/summa/

– The application of hypermedia controls, i. e., the data representing an entity
contains links to other entities. Links allow a client to navigate from one
entity to another during his interaction.

The use of URI-identified entities and their interlinkage are also direct con-
sequences from the Linked Data design principles6. Therefore, several existing
approaches recognize the value of combining RESTful services and Linked Data
[2,6,11,12,18,19], which led recently to the establishment of the Linked Data
Platform7 W3C working group.

We adopt these notions for our approach to enable a uniform interface to sum-
marized entities that aligns with the standard Linked Data interaction model.
The interaction of a client to retrieve the summary of an entity according to our
approach is depicted in Figure 2 and works as follows:

1. A client can send a summary request for an entity to a server offering a
summarization service via an HTTP POST request.

2. The response to the request contains the summarized entity in its payload, as
well as a URI in the location header field that identifies the created summary.

3. The client can use the URI of the summary for further lookups of the sum-
mary via HTTP GET.

Since summaries can be looked up via HTTP GET, we enable simple caching
mechanisms for the clients. The URI of the summary also enables to include di-
rect links in other web resources to the summary. To construct the URI that
identifies a given summary, we adopt the approach from [11], where the URI
contains key/value pairs that correspond to the properties in the original sum-
mary request. Note, that the server does not have to store the created summaries
for allowing the direct lookup but can calculate the summary on-the-fly for GET
requests as well as by interpreting the key/value pairs in the URI.

A client can also skip the first interaction via POST and anticipate how the
URI of a summary would look like as the lookups are computed in the same
way as the original POST request. However, we keep both interaction schemes
in place in order to enable a clear formulation of a request as well as a clean
cacheable lookup.

3 Implementation

The SUMMA API definition is based on Web standards such as the HTTP pro-
tocol and RDF. Summary producers as well as consumers can be implemented
in a variety of programming languages. However, in order to demonstrate fea-
sibility and to facilitate adoption, we provide a reference implementation based
on Java Jersey8 (server) and JavaScript (client).

6 http://www.w3.org/DesignIssues/LinkedData.html
7 http://www.w3.org/2012/ldp/charter
8 Jersey – https://jersey.java.net/

http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/2012/ldp/charter
https://jersey.java.net/

Client Server

POST [a :Summary;

 :entity dbpedia:Barack_Obama; :topK 10] .

201 CREATED

Location: http://example.com/

summary?entity=dbpedia:Barack_Obama&topK=10

@ prefix summa: <http://purl.org/voc/summa/> .

...

GET http://example.com/

summary?entity=dbpedia:Barack_Obama&topK=10

200 OK

@ prefix summa: <http://purl.org/voc/summa/> .

...

Fig. 2. Messages for first interaction: white. Messages for second interaction: grey

summaServer The summaServer application is an Apache Tomcat server ap-
plication that fully implements the SUMMA API. It provides a näıve sum-
marization method for DBpedia entities. This summarization method ranks
objects (only outgoing links are considered) based on the number of their
incoming links within Wikipedia. All necessary information (including the
link counts) is available via the official DBpedia SPARQL endpoint.9 The
source code of summaServer application is published at https://github.

com/athalhammer/summaServer and licensed with GPLv3.10 Deployments
of the summaServer application and another summarization method [15] can
be found at the following addresses:

– http://km.aifb.kit.edu/summaServer

– http://km.aifb.kit.edu/summa

summaClient The summaClient library is a lightweight JavaScript application
that interacts with servers that implement the SUMMA API. It enables visu-
alization and interaction with the results of multiple summarization engines
at a single Web page (see Figure 3). The source code of the summaClient li-
brary is published at https://github.com/athalhammer/summaClient and
licensed with GPLv3. A deployment of the summaClient library can be found
at http://people.aifb.kit.edu/ath/summaClient/.

9 DBpedia SPARQL endpoint – http://dbpedia.org/sparql
10 GPLv3 – http://www.gnu.org/copyleft/gpl.html

https://github.com/athalhammer/summaServer
https://github.com/athalhammer/summaServer
http://km.aifb.kit.edu/summaServer
http://km.aifb.kit.edu/summa
https://github.com/athalhammer/summaClient
http://people.aifb.kit.edu/ath/summaClient/
http://dbpedia.org/sparql
http://www.gnu.org/copyleft/gpl.html

Fig. 3. Screenshot: Two example summaries with the same configuration but different
systems (top). Example summary with restriction to two properties (bottom left) and
a different language and topK = 3 (bottom right).

4 Evaluation

In our evaluation we inspect interfaces from well-known providers such as the
Google Knowledge Graph (GKG) [10], Microsoft Bing Satori/Snapshots [7], or
Yahoo Knowledge [17]. We assess whether the expressibility of these interfaces
could be served via the SUMMA API. Thus, we provide empirical evidence about
the general applicability of the API for any kind of RDF entity summary.

For our evaluation, we select the entity summarization systems of the three
major search engines (mentioned above) as well as systems from the Alexa Top
News sites11 that offer factual knowledge about entities. We select two of the top
25 news portals offering infoboxes about entities. These are Forbes12 and BBC
news13. Our hypothesis is that the defined API could serve all of these interfaces,
thus potentially enabling them to switch between different entity summarization
services without changing their layout. For this, we focus on five entities from
diverse domains: Spain, Dirk Nowitzki, Ramones, SAP, Inglourious Basterds.
These entities are representatives for a country, a person (or athlete), a band,
a company (or organization), and a movie. We have to note that, at the time
of writing, BBC only supports summaries of countries, Forbes supports only
summaries of persons and organizations, and Yahoo only supports persons and
movies. For these systems our insights will be focused on the supported types.
Some of the analyzed systems use also fixed schema patterns or a combination

11 http://www.alexa.com/topsites/category/Top/News
12 Forbes, e. g. http://www.forbes.com/profile/dirk-nowitzki/
13 BBC news, e. g. http://www.bbc.com/news/world-europe-17944958

http://www.alexa.com/topsites/category/Top/News
http://www.forbes.com/profile/dirk-nowitzki/
http://www.bbc.com/news/world-europe-17944958

Fig. 4. Screenshot of the GKG representation of the “Ramones”: 1) Specific properties
such as the type and the Wikipedia description are always there (Property Restriction).
2) Several statements are gathered in a group named “Songs” (Statement Groups). 3)
N-ary relations - in this case title, year, and album - are supported (Multi-hop Search
Space). 4) The summary is offered in multiple languages (Languages)

of entity-specific summaries and schema patterns. We assume that even with
using only fixed schema patterns the content requirements at the interface re-
main the same. This still suits our evaluation scenario as our main goal is to
decouple summary and presentation: the way in which the summaries were gen-
erated is not relevant (black box). We also tried to include research prototypes
into our evaluation. However, although this research field is very active recently
[1,13,14,16,20], our system Summarum [15] is currently the only research pro-
totype that is available online.

In the following we will analyze for each of the above-mentioned interfaces
on whether they would be able to consume data from the API without changing
their layout. We assume both, the URI of the entity and the maximum number
of facts (topK) as standard parameters. Figure 4 demonstrates the analysis of
the interfaces.

Google Knowledge Graph For some facts, GKG uses contexts about the
data items (e. g. Wikipedia abstracts, population numbers, dates of mar-
riage, release year of album, role names, etc.). In RDF, these contexts are
represented as n-ary relations. Our API supports summaries over such con-
structs with the multi-hop search space. Further, certain properties such as

entity names, pictures, or types are always present in GKG. Not considering
the result of the dynamic ranking, these properties can be addressed with a
separate summary request that involves fixed properties. Further, GKG sup-
ports special groups of statements, such as a the group of albums of a band.
We support this feature by enabling to add a group to each statement by the
entity summarization system. GKG is able to adapt the interface to different
languages. This is supported by RDF (multi-linguality of rdfs:label, i. e.
literals) and by a parameter for the entity summarization system.

Bing Satori/Snapshots Bing Snapshots also supports features similar to the
GKG (i. e. context, special property selection, grouping, multiple languages).
Bing enables tables like “Career” vs. “Season” statistics in their summaries.
Even these statistics can be broken down to triples and represented in our
output format. How the triples are arranged in the end, in a table style or
just sequential is a matter of choice on the interface side. Certain patterns
in the output (e. g. multiple numerical values with the same property but
varying context) suggest table-style presentation.

Yahoo Knowledge At the time of writing, Yahoo displays factual knowledge
about persons and movies. The output for movies is very similar to the
aforementioned summarization systems of Google and Microsoft. Similar to
Bing, the output for Dirk Nowitzki includes various sport statistics. Like in
Bing, this data can be covered by our output model. Entities representing
other persons are very similar to the standard output of Google and Bing.
Yahoo currently does not offer summaries in multiple languages.

Forbes The interface shows basic properties of persons and companies in a
key-value style. Selected properties such as the label or a picture are present
for any entity. Similar to GKG, for some properties the context is added,
e. g. “As of June 2014”. For companies, Forbes forms two groups. “At a
Glace” and “Forbes Lists”. All these features are supported by our defined
data model. Like Yahoo, Forbes does not offer their summaries in different
language versions.

BBC news The BBC news portal includes summaries of countries only. Like
in Forbes, this data contains mainly key-value pairs and is easy to be rep-
resented with our output format. Also presenting multi-hop information is
needed, as the presented images have a caption that is also shown. BBC does
not define groups of facts and does not offer other languages than English.

The complete results of the evaluation are presented in Table 1. Overall we
found that all the requirements that these interfaces need in order to offer all
their functionality can be fulfilled by the proposed API.

5 Related Work

For the related work we distinguish between two kinds of approaches: systems
that add an additional layer between a SPARQL endpoint and data consumers
(as such serving as direct data providers) and approaches that introduce for-
malisms that enable ranked views on Linked Data.

Table 1. Requirements per interface. The checked features are supported by the specific
interface, the crossed ones are not required.

Features Google Bing Yahoo Forbes BBC

Languages X X 5 5 5

Multi-hop Search Space X X X X X
Property Restriction X X X X X
Statement Groups X X X X 5

Pubby14 is used to add an intuitive interface to SPARQL endpoints. It en-
ables to consume entities and ontologies on a per-concept basis directly in various
formats. For entities, it considers attached literal values in all available languages
as well as all incoming and outgoing relations. In general, Pubby implements the
following pattern for resources described by their URI:
SELECT * WHERE {{<URI> ?p ?v . } UNION { ?v ?p <URI> . }}
This may result in a large set of facts that are directly related to the currently
browsed entity. For machines as well as for human consumers all information
about an entity is provided. In our approach we extend this mechanism by var-
ious configurable properties (e. g. maximum number of statements) that enable
client interfaces to retrieve distilled versions of entities in a uniform way.

The Linked Data API15 adds a RESTful layer on SPARQL endpoints. It
enables developers who are not familiar with SPARQL or RDF in general to
access SPARQL endpoints in a RESTful manner. As an example, it enables to
represent selectors and filter options as request parameters in the following form:
http://example.com/university?country=UK&max-noStudents=10000.
Potential response formats include JSON, XML, RDF/XML, and Turtle. The
Elda16 system provides a reference implementation for the Linked Data API defi-
nition. The Linked Data API and SUMMA both add an additional RESTful layer
on top of SPARQL endpoints. However, the rationales of both approaches are
complementary: while the Linked Data API tries to make part of the SPARQL
feature set more intuitively accessible using REST, we are focusing on defining
a uniform RESTful interface that enables multiple services to provide concise
views on the same entity in a uniform way.

Bizer et al. define Fresnel,17 a vocabulary for selecting and formatting RDF
data [3]. The vocabulary is supported by RDF browsers such as Longwell18,
Piggy Bank19, or IsaViz20. It is devided into two main components, lenses and
formats. While the lenses help on selecting which content should be presented
the formats define the style in which the selected content should be presented.

14 Pubby – http://wifo5-03.informatik.uni-mannheim.de/pubby/
15 Linked Data API – https://code.google.com/p/linked-data-api/
16 Elda – https://github.com/epimorphics/elda
17 Fresnel – http://www.w3.org/2005/04/fresnel-info/manual/
18 Longwell – http://simile.mit.edu/wiki/Longwell
19 Piggy Bank – http://simile.mit.edu/wiki/Piggy_Bank
20 IsaViz – http://www.w3.org/2001/r1/IsaViz/

http://wifo5-03.informatik.uni-mannheim.de/pubby/
https://code.google.com/p/linked-data-api/
https://github.com/epimorphics/elda
http://www.w3.org/2005/04/fresnel-info/manual/
http://simile.mit.edu/wiki/Longwell
http://simile.mit.edu/wiki/Piggy_Bank
http://www.w3.org/2001/r1/IsaViz/

Our work is mostly related to Fresnel Lenses: The predicates fresnel:instance
LenDomain and fresnel:classLensDomain define the levels on which the lenses
can be applied. The predicates fresnel:showProperties and fresnel:hide

Properties define which properties of the instance or class are commonly shown
and in which order. The order is defined with rdf:List. Moreover, the Fres-
nel Selector Language (FSL)21 enables to define further restrictions, for exam-
ple which properties of connected entities should be shown (e. g., foaf:name).
The fresnel:instanceLensDomain in combination with the fresnel:showProp
erties predicate and FSL enable quite particular decisions on which triples are
included in the output and which are not. Eventually, however, covering specific
triples for the output with Fresnel involves complex FSL patterns and, more
importantly, still only provides a description of which information should be
presented but not the information itself. Summarizing entities with respect to
their individual particularities is possible but the lens descriptions would already
cover much of the actual data. The remaining information such as the objects
and all labels would have to be gathered at a different place. In other words,
SUMMA provides access to entity-specific data while Fresnel, more abstractly,
was designed to operate on the class level and to provide views. In fact, there
are efforts to identify the most common properties per DBpedia class with sur-
veys and crowd sourcing and to publish them as Fresnel lenses [1]. The SUMMA
API could be used for interpreting such class-level lenses and for delivering the
respective content accordingly. In addition, the SUMMA API explicitly enables
entity-specific summaries that are beyond the scope of Fresnel.

Federated SPARQL queries22 offer the possibility to query knowledge bases
distributed over multiple endpoints with a single query. Summaries that are
computed offline could be stored at one endpoint while the actual summarized
knowledge base that contains further information (such as labels) is available
at a different endpoint. A single federated query would retrieve triples specific
to an entity while the SPARQL LIMIT clause would enable different summary
sizes. As in our approach, the endpoint for the summary can be easily exchanged.
Summaries that are computed online (e. g., depending on the user’s geolocation,
language, the time of the day, etc.) can get too complex in order to be retrieved
with SPARQL queries of any kind. Intermediately storing the result in an end-
point in order to make it retrievable with SPARQL adds significant overhead to
a process that needs to be performed in a range of few 100 milliseconds.

Roa-Valverde et al. introduce a vocabulary for sharing ranking computations
over RDF data [9]. This enables to provide detailed information about ranking
computations in RDF. Properties include ranking values and time stamps as
well as algorithm descriptions and configurations. We use the vRank vocabulary
in order to provide ranking values to the client interface.

21 Fresnel Selector Langauge (FSL) – http://www.w3.org/2005/04/fresnel-info/

fsl/
22 SPARQL 1.1 Federated Query – http://www.w3.org/TR/sparql11-federated-

query/

http://www.w3.org/2005/04/fresnel-info/fsl/
http://www.w3.org/2005/04/fresnel-info/fsl/
http://www.w3.org/TR/sparql11-federated-query/
http://www.w3.org/TR/sparql11-federated-query/

Harth introduces VisiNav [4], a system that allows for new interaction prin-
ciples within the Web of Data. The system is based on four key concepts that
support search and navigation: Keyword Search, Object Focus, Path Traversal,
and Facet Selection. Our API clearly supports Object Focus as it is specifically
designed to deliver entity-specific summaries. We also support Path Traversal
and Facet Selection. However, the two concepts become quite similar if you do
not distinguish between incoming and outgoing connections. More specifically,
we slightly reinterpret the Facet Selection concept as we form the union rather
than the intersection (“... the user can reformulate the query and obtain increas-
ingly specific result sets” [4]). Like our approach VisiNav also provides ranked
views on data. VisiNav strongly couples the user interface and the back end. As
such, the rankings and views on the data can only be displayed with the VisiNav
system. In this paper, we provide a way to enable decoupling of the interfaces
and their respective ranking back end.

In conclusion, we can state that the idea of browsing Linked Data with concise
presentations is well established and real-world applications are taking up this
idea [7,10,17]. To the best of our knowledge, all previous research approaches for
presenting RDF data in a concise way are based on schema patterns and do not
provide the data itself. In this paper we introduce a novel approach that supports
the evaluation, exchange, and comparison of entity summaries in a lightweight
way.

6 Conclusion & Future work

We introduced an API that enables entity summarization systems to publish
summaries in a uniform way. Further, it enables consumers to access summaries
of Linked Data entities from a multitude of summarization services through
a single lookup mechanism. Our empirical evaluation shows that the SUMMA
API could be applied to already existing commercial systems while the refer-
ence implementations provide evidence for feasibility and facilitate adoption.
The SUMMA API for comparison and evaluation is already deployed for use in
industry and research.

We are currently in the process of implementing SUMMA adapters to other
summarization systems. In addition, we plan to implement a portal where dif-
ferent entity summarization services are gathered and described also in accor-
dance to their non-functional properties, e. g. response time and availability.
Also, context-specific and personalized summaries that lead to the extensions of
the SUMMA API are currently ongoing work.

Acknowledgement. The research leading to these results has received fund-
ing from the European Union Seventh Framework Programme (FP7/2007-2013)
under grant agreement no. 611346 and by the German Federal Ministry of Ed-
ucation and Research (BMBF) within the Software Campus project “SumOn”
(grant no. 01IS12051).

A Appendix

Listing 1.3. Example response in Turtle (common namespaces omitted).

1 @prefix : <http :// purl.org/voc/summa/>.

2 @prefix vrank: <http :// purl.org/voc/vrank# >.

3 @prefix dbpedia: <http :// dbpedia.org/resource/>.

4 @prefix dbpedia -owl: <http :// dbpedia.org/ontology/>.

5

6 <http ://ex.com/summary?

7 entity=dbpedia:Barack_Obama&topK =2& language=en&maxHops =2&

8 fixedProperty=dbpedia:birthDate ,dbpedia:birthPlace >

9 a :Summary ;

10 :entity dbpedia:Barack_Obama ;

11 :topK "2"^^xsd:Integer ;

12 :language "en" ;

13 :maxHops "2"^^xsd:Integer ;

14 :fixedProperty dbpedia -owl:birthDate ;

15 :fixedProperty dbpedia -owl:birthPlace ;

16 :statement

17

18 [rdf:type rdf:Statement ;

19 rdf:subject dbpedia:Barack_Obama ;

20 rdf:predicate dbpedia -owl:birthDate ;

21 rdf:object "1961 -08 -04"^^xsd:date ;

22 :group <http ://ex.com/group/12> ;

23 vrank:hasRank [vrank:rankValue "3213.101"^^xsd:float]] ,

24

25 [rdf:type rdf:Statement ;

26 rdf:subject dbpedia:Honolulu ;

27 rdf:predicate dbpedia -owl:areaCode ;

28 rdf:object "808"@en ;

29 vrank:hasRank [vrank:rankValue "2323.433"^^xsd:float] ;

30 :path [rdf:type rdf:Statement ;

31 rdf:subject dbpedia:Barack_Obama ;

32 rdf:predicate dbpedia -owl:birthPlace ;

33 rdf:object dbpedia:Honolulu]] .

34

35 <http ://ex.com/summary?

36 entity=dbpedia:Barack_Obama&topK =2& language=en&maxHops =2&

37 fixedProperty=dbpedia:birthDate ,dbpedia:birthPlace#id>

38 owl:sameAs dbpedia:Barack_Obama .

39

40 dbpedia:Barack_Obama rdfs:label "Barack Obama"@en .

41 dbpedia -owl:birthDate rdfs:label "birth date"@en .

42 dbpedia:Honolulu rdfs:label "Honolulu"@en .

43 dbpedia -owl:areaCode rdfs:label "area code"@en .

44 dbpedia -owl:birthPlace rdfs:label "birth place"@en .

45 <http ://ex.com/group /12> rdfs:label "Important Dates"@en .

References

1. Ahmad Assaf, GhislainA. Atemezing, Raphal Troncy, and Elena Cabrio. What Are
the Important Properties of an Entity? In The Semantic Web: ESWC 2014 Satellite
Events, Lecture Notes in Computer Science, pages 190–194. Springer International
Publishing, 2014.

2. Tim Berners-Lee. Read-Write Linked Data. August 2009. Avaiable at http://

www.w3.org/DesignIssues/ReadWriteLinkedData.html, accessed 26th November
2012.

3. Christian Bizer, Emmanuel Pietriga, David Karger, and Ryan Lee. Fresnel: A
Browser-Independent Presentation Vocabulary for RDF. In Proc. of 5th Interna-
tional Semantic Web Conference, Athens, GA, USA, November 5-9, 2006, LNCS
4273, 2006.

4. Andreas Harth. VisiNav: A system for visual search and navigation on web data.
Web Semantics: Science, Services and Agents on the World Wide Web, 8(4), 2010.

5. Tobias Käfer and Andreas Harth. Billion Triples Challenge data set. Downloaded
from http://km.aifb.kit.edu/projects/btc-2014/, 2014.

6. Reto Krummenacher, Barry Norton, and Adrian Marte. Towards Linked Open
Services. In Proceedings of the 3rd Future Internet Symposium (FIS’10), volume
6369 of Lecture Notes in Computer Science, Berlin, Germany, 2010. Springer.

7. Richard Qian. Understand your world with bing. http://blogs.bing.com/

search/2013/03/21/understand-your-world-with-bing/, 2013.
8. L. Richardson and S. Ruby. RESTful Web Services. O’Reilly Media, 2007.
9. Antonio Roa-Valverde, Andreas Thalhammer, Ioan Toma, and Miguel-Angel Si-

cilia. Towards a formal model for sharing and reusing ranking computations. In
Proc. of the 6th Intl. Workshop on Ranking in Databases In conjunction with VLDB
2012, 2012.

10. Amit Singhal. Introducing the knowledge graph: things, not strings.
http://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-

things-not.html, 2012.
11. Sebastian Speiser and Andreas Harth. Integrating Linked Data and services with

Linked Data Services. In Proceedings of the 8th Extended Semantic Web Conference
(ESWC’11) Part I, volume 6643 of Lecture Notes in Computer Science, pages 170–
184, Heraklion, Crete, Greece, 2011. Springer.

12. Steffen Stadtmüller, Sebastian Speiser, Andreas Harth, and Rudi Studer. Data-
fu: A language and an interpreter for interaction with read/write linked data. In
Conference on World Wide Web, 2013.

13. Marcin Sydow, Mariusz Pikua, and Ralf Schenkel. The notion of diversity in graph-
ical entity summarisation on semantic knowledge graphs. Journal of Intelligent
Information Systems, pages 1–41, 2013.

14. Andreas Thalhammer, Magnus Knuth, and Harald Sack. Evaluating entity summa-
rization using a game-based ground truth. In International Semantic Web Con-
ference (2), volume 7650 of Lecture Notes in Computer Science, pages 350–361.
Springer, 2012.

15. Andreas Thalhammer and Achim Rettinger. Browsing DBpedia Entities with Sum-
maries. In The Semantic Web: ESWC 2014 Satellite Events, Lecture Notes in
Computer Science, pages 511–515. Springer International Publishing, 2014.

16. Andreas Thalhammer, Ioan Toma, Antonio J. Roa-Valverde, and Dieter Fensel.
Leveraging usage data for linked data movie entity summarization. In Proc. of the
2nd Int. Ws. on Usage Analysis and the Web of Data (USEWOD2012) co-located
with WWW 2012, Lyon, France, 2012, volume abs/1204.2718, 2012.

http://www.w3.org/DesignIssues/ReadWriteLinkedData.html
http://www.w3.org/DesignIssues/ReadWriteLinkedData.html
http://blogs.bing.com/search/2013/03/21/understand-your-world-with-bing/
http://blogs.bing.com/search/2013/03/21/understand-your-world-with-bing/
http://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html
http://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html

17. Nicolas Torzec. Yahoo’s knowledge graph. http://semtechbizsj2014.

semanticweb.com/sessionPop.cfm?confid=82&proposalid=6452, 2014.
18. Ruben Verborgh, Thomas Steiner, Davy Van Deursen, Rik Van de Walle, and

Joaquim Gabarr Valls. Efficient runtime service discovery and consumption with
hyperlinked RESTdesc. In Proceedings of the 7th International Conference on Next
Generation Web Services Practices (NWeSP’11), Salamanca, Spain, 2011.

19. Erik Wilde. REST and RDF granularity, 2009. Available at http://dret.

typepad.com/dretblog/2009/05/rest-and-rdf-granularity.html.
20. Danyun Xu, Gong Cheng, and Yuzhong Qu. Preferences in wikipedia abstracts:

Empirical findings and implications for automatic entity summarization. Inf. Pro-
cess. Manage., 50(2):284–296, 2014.

http://semtechbizsj2014.semanticweb.com/sessionPop.cfm?confid=82&proposalid=6452
http://semtechbizsj2014.semanticweb.com/sessionPop.cfm?confid=82&proposalid=6452
http://dret.typepad.com/dretblog/2009/05/rest-and-rdf-granularity.html
http://dret.typepad.com/dretblog/2009/05/rest-and-rdf-granularity.html

	SUMMA: A Common API for Linked Data Entity Summaries

