Semantic Description of Distributed Business Processes

Sudhir Agarwal and Sebastian Rudolph

Institute of Applied Informatics and
Formal Description Methods (AIFB),
University of Karlsruhe (TH), Germany.

{agarwal, rudolph}@aifb.uni-karlsruhe.de

Abstract

Today, more and more business processes are distributed in
nature, involving business processes of other organizations
that are exposed as services. Since a business process can
be very complex in general, there is a need for automated
support for checking whether a business process complies to
organization’s policies. On the other hand, the fast growing
market of services and the need for continuously improving
the business processes to cope with the competition, auto-
mated methods are required to find appropriate services and
compose business processes. Fulfilling these requirements is
a challenging task needing formalisms for describing busi-
ness processes and services, specifying organization’s poli-
cies and algorithms for discovery of services as well as veri-
fication and composition of business processes.

In this paper, we present formalisms for describing executable
distributed business processes and for describing functional
and non-functional properties of services. The novelty of the
formalism for describing distributed business processes lies
in the combination of the polyadic m-calculus and the de-
scription logic SHOZN (D) with DL-Safe rules. When the
functionality of business processes are exposed as services,
the quality of service attributes and access control policies
need to be described in addition to the functional properties.
For this purpose, we introduce semantic-SPKI/SDSI certifi-
cates and credential based access control. Hence, our formal-
ism allows modeling of dynamic behavior including creden-
tial based access control along with the involved resources
(information or real world objects) and quality attributes of
business processes in a unifying way.

1 Introduction

Today, more and more business processes are collaborative
business processes, involving many parties and running in
a distributed environment. Organizations need to perform
various tasks in order to achieve a more flexible and compre-
hensible management of their business processes. Figure 1
shows the major business process management tasks.

Analysis In the analysis phase domain experts and man-
agers identify and define requirements for a new business
process. These requirements determine the desired function-
ality of the business process considering any policies of the

Copyright (© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Andreas Abecker
Research Center for
Information Technologies (FZI),
Karlsruhe, Germany.
abecker@fzi.de

Analysis

Requirements

Query.

Service
Repository

Service

Descriptions
Process Model

Requirements Execution

Instance Data

Evaluation

Figure 1: BPM Lifecycle

Service
Description

Abstraction

organization. Examples of such policies could be ’when-
ever something is purchased, payment should be done af-
ter the purchased good is delivered’ or *whenever the price
of a good to be purchased is more than 1000 Euro, depart-
ment manager must approve the purchase, before the order
is placed’.

Design In this phase, engineers design the executable busi-
ness process by considering all the requirements identified in
the analysis phase.

Before a business process is executed, it needs to be
checked, whether it behaves as desired and complies to or-
ganization policies. In order to enable computer support
during this task, the requirements and the executable pro-
cesses need to be specified formally such that automatic ver-
ification algorithms can be developed for them. For spec-
ifying requirements, typically modal logics are used. The
field of temporal logics provides a plethora of candidates for
this. In fact, in the approach presented in (Agarwal 2007b;
2007a), an extension of the p-calculus is proposed. With
such a formalism at hand, model checking techniques can
be applied to automatically verify whether a process descrip-
tion has desired properties or not.

Designing an executable process from existing services
and business processes can be seen as composition. While

composing a business process, the engineers consider which
parts of the business process can be performed by business
processes of other organizations exposed as services, which
parts are covered by already designed processes of the orga-
nization and which parts need to be implemented new. For
finding appropriate services for some part of the business
process, engineers need to formulate an appropriate query
and send it to a repository of services descriptions, which
in turn sends back the matching service descriptions. As
in case of verification, in order to enable computer support
for composition, one needs languages for specifying require-
ments, describing services as well automatic discovery and
composition algorithms for these languages.

Abstraction A distributed business process uses business
process of other organizations exposed as services. Descrip-
tions of such services are published such that other organiza-
tions can find and bind them in their business processes. In
this task, a service description is created from a business pro-
cess description by abstracting from details that the provider
may not wish to disclose or users are not interested in.

Execution In this phase, a distributed business process is
executed. During the execution, the execution environment
interacts with the execution environments of other organiza-
tions if their services are embedded in the business process.
That is it invokes the services as specified in the process de-
scription. Typically, a business process is designed to be ex-
ecuted more than once. A particular execution of a process
can be termed as a run of the process. During the execution
phase, information about the particular run, instance data is
also stored.

Evaluation This phase consists of reasoning over the pro-
cess runs. From the insights that one gains from process
runs, one can derive new requirements and feed into the de-
sign stage to modify the process. In this phase, it is checked
whether at process instance stage whether a running process
complies with internal policies or the higher-order properties
it has been annotated with.

In order to enable computer support for above mentioned
management tasks, business processes, their instances (runs)
and services must be described formally. The formal de-
scription of business processes must cover behavior, in-
volved resources and changes in the resources of various
actors involved in the process. Whereas services should be
described in a way, such that (1) their descriptions are com-
patible with the process description language so that they
can be embedded in a process. (2) users are able to reason
about their quality attributes and (3) user are able to check
whether they have access to a service or not. The approach
we provide in this paper accomplishes this goal by integrat-
ing well-established formalisms from the areas of semantic
knowledge representation, process specification, and certifi-
cate theory. A preliminary version of the approach has been
presented in (Agarwal & Studer 2006).

The paper is structured as follows. In Section 2, we
present a language to model the dynamic behavior of a dis-

Business
Process

Dynamic
Behaviour

described by described by described by

Resources [¢———uses—————

OWL-DL
Ontology

Pi-Calculus

¢————uses——|
Process

Figure 2: Our Business Process Modeling Approach

tributed business process, involved resources and changes in
the resources its execution in a unified way and with for-
mal semantics. The formalism is a novel combination of
the process algebra polyadic 7-calculus and description log-
ics SHOZIN (D) with DL-Safe rules. In Section 3, we
turn our attention to modeling services. When business
processes are offered as services, the quality of service at-
tributes and access control policies become important. We
present Semantic-SPKI, our semantic extension to the Sim-
ple Public Key Infrastructure (SPKI) and show how prov-
able non-functional properties can be modeled as Semantic-
SPKI certificates and how credential based access control
can be integrated in behavioral description of a service. In
Section 4, we present our prototype for modeling and man-
aging descriptions business processes and services. The pro-
totype mainly consists of a graphical user interface, an API
and a repository. Finally, we conclude in Section 6 after dis-
cussing some related work in Section 5.

2 Modeling Executable Business Processes

The main focus of the existing business process descrip-
tion languages is the execution of the processes. Execution,
though certainly important, is one of the later phases of the
whole business process life cycle. In order to support other
stages, e.g. verification and composition, business processes
need to be described with formal semantics. Many of the
existing approaches either do not have formal semantics or
only the formal semantics for the dynamic behavior of the
process. In practice however, it is equally important to be
able to reason about the involved resources. Mere reasoning
about the dynamic behavior of the processes is not enough.

In general, a distributed business process involves sev-
eral actors that communicate with each other by exchanging
messages. The messages contain resources that can be real
world objects or information objects.

Figure 2 shows the main idea behind our business pro-
cess modeling formalism. We consider resources and dy-
namic behavior of business processes. We model resources
as SHOZN (D) ontologies with DL-safe rules and dynamic
as behavior as m-calculus process. Our main contribution
regarding modeling of functional properties is the establish-
ment of the connection between process descriptions and on-

tologies.

We denote the finite set of all agents with 4. Each agent
A € A has a finite set R 4 of resources available. We use
the description logic SHOZN (D) for modeling resources
and resource schemas in an interoperable and machine un-
derstandable way (Baader et al. 2003).

2.1 Modeling Resources

Short Introduction to SHOZN (D) A SHOZN (D) de-
scription logic knowledge base consists of a set of ax-
ioms, which can be distinguished into terminological axioms
(building the so-called TBox 7°) and assertional axioms or
assertions (constituting the ABox .4). Based on names for
concepts (as C, D,...), roles (R, S,...), and individuals (a,
b,...), SHOZN (D) provides the following constructors to
build complex concepts from simpler ones: negation —C,
conjunction C'11 D, disjunction C'U D, existential quantifier
JR.C, universal quantifier VR.C, cardinality constraints
> nS and < nS, nominals {ay,...,a,}. Further, it sup-
ports concrete datatypes and there exist corresponding ax-
ioms for quantifiers and cardinality constraints for roles with
a datatype range. A TBox consists of a finite set of concept
inclusion axioms C' T D, where C and D are either both
concepts or relations. The A-Box consists of a finite set of
concept assertions C(a), role assertions R(a,b), individual
equalities a = b, and individual inequalities a # b. Those
assertional axioms or assertions introduce individuals, i.e.
instances of a class, into the knowledge base and relate in-
dividuals with each other. The semantics of SHOZN (D)
is based on an interpretation (AZ,-Z), where AZ is a non-
empty set (the domain) and -Z assigns to each concept name
C a subset C7 of AT and to each role name R a subset
R? of AT x AT. Based on those assignments, the valid-
ity of inclusion atoms and assertions is decided. For details
about the semantics of SHOZN (D) constructors, T-Box
axioms and A-Box axioms, we refer to (Baader ef al. 2003;
Horrocks & Patel-Schneider 2004; Motik, Sattler, & Studer
2004). A decidable rule extension of SHOZN (D), socalled
DL-safe rules was presented in (Motik, Sattler, & Studer
2004).

Definition 1 (DL-safe Rules) Ler N¢ denote the set of con-
cept names, Ny, the set of abstract roles names and Ny, the
set of concrete roles names. Let Np be the set of predicate
symbols such that No U Np, U Nr, € Np. A DL-atom
is an atom of the form A(s), where A € N¢ or of the form
R(s,t), where R € Ng,UNRg,. A rule r is called DL-safe if
each variable in r occurs in a non-DL-atom in the rule body.

Modeling Resources We specify concrete resources as
description logic individuals, among which relationships
“="and “#” can be specified. These relationship types are
necessary to achieve interoperability in the descriptions of
individuals and are directly provided by expressive descrip-
tion logics, e.g. SHOZN (D), which the decidable variant
OWL-DL of the Web ontology language OWL! is also based
on. The resources can be further classified into sets that can
be hierarchically ordered according to the subset relation-

"http://www.w3.0rg/2004/0WL/

ship. Again, expressive description logics provide the “C”
relationship type to relate the sets. So, R 4 is a description
logics ontology whose A-Box describes resources and re-
lationships among them and whose T-Box contains axioms
about the classification of resources of an agent A € A.

2.2 Modeling Behavior

Now, we turn our attention to modeling the behavior of a
business process. While the A-calculus formed the founda-
tion for many computer science related topics like program-
ming languages, the description of workflows required a dif-
ferent approach. In a typical workflow tasks are not only ex-
ecuted in sequential order, rather tasks are executed in paral-
lel by different employees to speed up the processing. These
different — then again sequential — processing paths have to
be created and joined at some points in the business process.
Even further, parallel processing tasks could depend on each
other. The optimization of business processes usually adds
parallelism and dependencies as this is an effective way to
reduce the throughput time.

These kinds of parallel processes are hard to describe in
terms of the A-calculus. To overcome the limitations of se-
quential systems, an approach to represent parallel systems
called Petri nets has been adapted for workflow representa-
tion. Petri nets have a simple but yet powerful mathematical
foundation as well as a strong visual representation. They
use the concept of an explicit state representation for parallel
systems. Each Petri net is always in a precisely defined state
denoted by the distribution of tokens over places contained
in the net. The state of the system could then be changed by
firing transitions which relocate the token distribution over
the places. Petri nets have been adapted by many systems
that are used in the business process management domain to
describe business processes.

Beside the advantages of Petri nets for the business pro-
cess management domain, that include strong visualization
capabilities, mathematical foundations, as well as their main
purpose, the description of parallel systems, Petri nets also
have some drawbacks. The main drawbacks are the static
structure of the nets (that do not support dynamic process
structures) as well as the missing capabilities for advanced
composition as for instance recursion. Of course, Petri have
been extended with support for dynamic structure, like self
modifying Petri nets, recursion, and objects. However, these
enhancements also complicate the theory of the nets and thus
have reached restricted usage only. A broad research on the
capabilities of Petri nets regarding common patterns of be-
havior found in business processes showed that they fulfill
basic tasks like splitting and merging process paths easily,
while they fail at advanced patterns like multiple instances
of a task with dynamic boundaries. Whereas there exist ap-
proaches to overcome some or all of the limitations regard-
ing the behavior, the static structure and limited composition
of Petri nets remains (van der Aalst & van Kees 2002).

To overcome the limitations of Petri nets, theories of mo-
bile systems have been developed. Thereby a mobile system
is made up of entities that move in a certain space. The space
consists of processes, and the entities that move are either
links between the processes (link passing mobility) or the

processes themselves (process passing mobility). A theory
for mobile systems, the m-calculus, overcomes the limita-
tions of Petri nets regarding the static structure and limited
composition capabilities at the cost of a more complex rep-
resentation. The m-calculus represents mobility by directly
expressing movements of links in an abstract space of linked
processes (i.e. link passing mobility). Practical examples are
hypertext links that can be created, passed around, and dis-
appear. The m-calculus does not, however, support another
kind of mobility that represents the movement of processes.
An example is code that is sent across a network and exe-
cuted at its destination. The m-calculus uses the concept of
names with a certain scope for interaction between different
parallel processes. Names are a collective term for concepts
like channels, links, pointers, and so on. As the mobile sys-
tem evolves, names are communicated between processes
and extrude or intrude their scope regarding to certain pro-
cesses. As the synchronization between processes is based
on interaction and received names are also used as commu-
nication channels, the link structure is changed dynamically
all the time the mobile system evolves.

Our language for modeling behavior of distributed busi-
ness processes is based on 7-calculusSo we first introduce
it briefly and refer to (Milner, Parrow, & Walker 1992;
Sangiorgi & Walker 2001) for more details.

Short Introduction to Polyadic 7-calculus 7-calculus is
a formalism for modeling labeled transition systems. The
syntax for specifying agents can be summarized as fol-
lows:

P == 0lylvr...,v).Ply(z1...,2,).P |
TP |[x=y|P| P || P+ P
QA{y1,...,Yn}

The syntax of m-calculus is defined recursively. Null pro-
cess 0 is a process that does nothing. This process is
used to denote the termination of a process. Input pro-
cess y[vi, ..., vy]. P is a process that inputs arbitrary names
Z1,...,%n at port y, binds them to names v; ..., v, and
then behaves like the process P{z;/v;}, where z;/v; de-
notes substituting z; for v;. The names vq,...,v, are
bound by the input process y[vi,...,v,].P. Output pro-
cess y{x1,...,x,).P is a process that outputs the names
r1...,Z, at port y and then behaves like the process P.
The Silent process 7. P performs the silent action 7 and then
behaves like the process P. Match process [x = y|P is a
process that compares two names x and y for equality and
behaves like the process P, if x and y are equal or like O
if they are not equal. Composition Py || P, consists of Py
and P, acting in parallel. The components may act inde-
pendently; also, an output action of P; (resp. P») at any
output port x may synchronize with an input action of P»
(resp. Pp) at x, to create a silent (7) action of the com-
posite agent Py || P». Summation Py + P, denotes the
non-deterministic choice and behaves either like P; or like
P5. In contrast to deterministic choice, in which a process
evolves depending on the truth value of some condition, e.g.
equality, in case of non-deterministic choice, the user of the
process selects one of the alternatives and the selected al-

ternative is executed. In m-calculus process expressions can
be given a name, such that complex process expressions do
need to be defined every time they are used but embedded
by invoking the named process expression. This is similar
to defining a method in a programming language and invoke
the method in other methods instead of copying the body
of the method everywhere it should be used. The named
process expression is called Agent Identifier. For any agent
identifier A (with arity n), there must be a unique defining

equation A(z1,...,2,) def P, where the names x4, ..., T,
are distinct and are the only names which may occur un-
bound in P. Now, the process Agent QA{y; ..., y,} be-
haves like P{y1/x1,...,Yn/xn}. Note that defining equa-
tions provide recursion, since P may contain any agent iden-
tifier, even A itself.

Connecting the Ontology with Behavior Polyadic -
calculus is a powerful tool for describing the dynamics
of communicating mobile processes. However, 7-calculus
names, i.e. the objects that are communicated among ac-
tors do not have any structure and any semantics. This is
because m-calculus is a pure process algebra not designed
for reasoning about the meaning of the involved static ob-
jects in a process. Consequently, static objects are just con-
sidered as strings. In practice however, as in case of busi-
ness processes, one needs to reason about dynamic behav-
ior and resources at the same time. E.g. one may wish to
know whether a business process sends an order confirma-
tion about the ordered book before it actually delivers the or-
dered book. To overcome this problem, we need a technique
to connect the resource descriptions with the behavioral de-
scription.

We model a business process as an agent identifier. As de-
scribed above, the names z1, ..., x, in the definition of the
agent identifier A(x1,...,x,) are the only names that may
occur unbound in the defining process expression. While
defining a business process as an agent identifier, the names
Z1,...,T, correspond to the elements of the ontology as-
sociated with the business process. In order to simplify the
modeling, our agent identifier expressions only contain one
parameter, which denotes the URI of the associated ontology
instead of a list of all the elements of the ontology.

Communication Channels In 7-calculus agents commu-
nicate via exchanging messages over a communication
channel. However, m-calculus channels do not have any
structure. In practice however, information about the type
of communication protocol and the type of messages that
can be transmitted over a channel is very useful. E.g. one
may wish to know whether the book selling business process
will send the book via HTTP as PDF or via surface mail as
hardcopy. To overcome this deficiency, we introduce chan-
nel types.

Definition 2 (Channel Type) A communication channel
type C'is a tuple (P, A, T'), where P is a protocol, A an ad-
dress and T' a message type. A protocol can be e.g. “http”,
“phone”, “fax”, “surface mail” etc. Each protocol sup-
ports a set of MIME types that it can transport. For example,
“http” supports “XML” and “HTML” that can not be sent

by “surface mail”. An address determines the communica-
tion target and its format is dependent on the protocol. For
example, if the protocol is “http”, the address is some Web
URL and if the protocol is “phone”, the address is a phone
number.

Polyadic 7-calculus supports sorts to ensure that the com-
munication only takes place if the arity of the incoming mes-
sage matches with the expected arity. However, it does not
ensure that the communication only takes place if the re-
sources sent by one party are of the type that the receiving
party expects.

Definition 3 (Message Type) A message type T is a set of
message parts pi, . . . , Pp With each part p; having the type
T;. Each T} is a DL concept.

For communication activities (input as well as output ac-
tivities), we use C; in place of y, where C' is a channel type
and ¢ is the unique identifier of the instantiation of C' thereby
associating y with a channel type and thus a structure. Fi-
nally, by modeling channel types as description logic indi-
viduals we make sure that channel descriptions can be sent
and received just like any other resources and thus the mo-
bility is preserved.

In an input process expression ylvy,...,v,].P,
v1,...,V, are variables. =~ We model variables as DL
A-Box individuals within the name space of the correspond-
ing actor. The reason for doing this is that variable v can be
bound to a value o (which is again an A-Box individual)
by adding an A-Box individual equality axiom v = z in
the knowledge base. Once, we have such an axiom in the
knowledge base, the variable v can be used just as a value
as in case of programming languages. In an output process
y(z1,...,zn).P, x1,...,2, are resources, which are also
modeled as DL A-Box individuals and are available since
all the individual names of the associated ontology can
occur freely in the process expression.

Local Operations m-calculus suggests and provides the
necessary expressivity to model even the simplest tasks like
adding two number as processes. Thus modeling processes
of practical interest with pure 7-calculus syntax is tedious
and one obtains unnecessarily long process expressions. An-
other consequence of modeling everything as processes is
that one cannot support black box views which are impor-
tant in practice.

To overcome this problem, we introduce local operation
types. A local operation is a decidable procedure that up-
dates the A-Box of the agent that executes the local oper-
ation. A local operation may perform a query on the lo-
cal knowledge base or some calculation to create add new
individuals and add corresponding axioms in the knowl-
edge base to relate the individuals with each other. It
can also remove existing DL axioms from the knowledge
base. So, we define a local operation type L(z1,...,2,)
as as a list of change types A , where each change type
0 € A is a parameterized proposition. Furthermore, a
change type § is adorned with “+” or “-” which indicates
whether the proposition corresponding to ¢ is added to
or removed from the knowledge base. For example, if

the change type {+classMember(xz1,x2)} belongs to the
change types of a local operation type L(x1,x2), executing
L with arguments Peter and Person will add the axiom
classMember(Peter, Person) in the knowledge base. A
concrete invocation | = L; of a local operation type L is the
i-th instance of the local operation type L with appropriate
parameters.

Deterministic Choice The process expression of type
match, [x = y] P of the pure 7-calculus supports only equal-
ity check of two names x and y. This is mainly due to the
fact that the pure m-calculus abstract from the structure of the
names. In practice however, one needs to check richer con-
ditions, e.g. whether the income of person z is higher than
the income of person y. Another problem with the match
expression is that it does not allow to specify the process
that should be executed in case the condition is not true. To
overcome these problems, we introduce the process expres-
sion w?P: () that behaves like P if the condition w is true,
and otherwise like Q).

The condition w can be any predicate in the ontology
of actor that checks the condition. These include concept
names, relation names defined in the T-Box, rule heads of
DL-safe rules in the R-Box of the ontology and any predi-
cate symbols, the implementations of which lie outside the
description logic reasoner. This allows to model very ex-
pressive conditions the check for whose truth value is still
decidable.

2.3 Semantics

The operational semantics of m-calculus maps a 7 process
expression to a labeled transition system by viewing oper-
ations (communication operations and silent operation) as
transitions and process expressions as states (Milner, Par-
row, & Walker 1992). In the following, we present the
semantics of our formalism that we call 7-DL by defining
mappings from its process expressions to a labeled transi-
tion system (LTS) in a similar fashion.

Definition 4 (Labeled Transition System) A labeled tran-
sition system is a tuple (S, A, —), where S denotes a set of
states, A a set of actions and — C S x A X S a transition

relation. We often write s > t for (s, a,t) €—.

As we have mentioned earlier, a business process can be
in general a complex process involving many actors. In
our model, we consider the behaviors and the knowledge
bases of the involved actors. So, we described a state of an
LTS with a set of w-calculus process expressions and the set
of DL A-Boxes of the actors involved in the business pro-
cess. Intuitively, a state describes the current snapshot of the
knowledge bases of the actors and the actions that the ac-
tors can perform in the state. When actors perform actions
(input, output or local actions), the A-Boxes of the actors
involved in an action may change, bringing the system to a
new state.

We now give the formal semantics of our formalism for
modeling functional properties of business processes. The
semantics specifies how the behaviors of the involved actors
in a business process evolve by performing actions. Note,

that in our approach every actor corresponds to a 7-calculus
agent identifier with its behavior corresponding to the defin-
ing process expression of the agent identifier.

Local Operations A process P = I(z1,...,2,).Q can
evolve to the process () without any preconditions. This
means that an actor that can perform a local operation in
current state, can perform the local operation independent
of what other actor can do.

(21, 20).Q 5™

Communication Operation Two processes can commu-
nicate with other only if they are running in parallel and one
of them performs an input activity and the other an output
activity. Note, that the processes running in parallel may be-
long to the same actor or to different actors. Furthermore,
the type of data that is sent by the output process should be
a sub type of the data type expected by the input process.
Since, we model the involved data with DL ontologies and
the data types as ontology concepts, it corresponds to the
sub-concept relationship between the concepts.

"5 ' typeOf(y) C typeOfi(2)
PlQL P || Q{y/=}

P p

Deterministic Choice A process with deterministic con-
ditional branching can evolve to any of the successors, de-
pending on whether the condition is true of false.

[e%

w?P':P" = P w=true 2

w?P":P" = P" w= false

«

W?P" P % P/ w?P' P % pr

Composition The parallel composition of two processes
can evolve to the any of the successors of the two processes.

Q= Q
PlQ=P|Q

P p
PlQSP|Q

Non-Deterministic Choice A process with non-
deterministic choice evolves to either one or the other
choice.
P& p
P+rQ5% P

Q= Q
P+Q5Q

3 Modeling Services

In the previous section, we have seen how executable busi-
ness processes can be modeled. As we have mentioned in
Section 1, organizations offer their business processes to
other organizations as services. Services are interfaces be-
tween the business processes of different organizations and
can be seen as means to access the corresponding business
processes. Web services can be seen as a special case of ser-
vices, that can be invoked by using standard Web protocols

like HTTP. A Organization uses a business process of an-
other organization by embedding the corresponding service
offered by the latter organization.

In order to embed a service in an executable process,
the communication pattern the service offers must match
with the communication pattern the business process ex-
pects. Furthermore, the types and properties of the resources
that are exchanged between the service and the business pro-
cess must have the desired characteristics. The properties of
a service on the basis of which it can be decided whether
it offers the desired functionality and can be integrated in a
business process as functional properties.

In a large service market where millions of services are
offered, there will be more than one service providing the
same functionality. This is analogous to having more than
one shop where one can buy clothes. So, the credentials
of services become very important, so that the potential
users can decide which of the many alternatives they should
choose. This is analogous to the phenomenon that despite
having a large offer of clothes shops, most people usually
go to their favorite shops because they like the atmosphere
in the shop, or they find the salespersons friendly or they go
to a shop that has been recommended to them by someone
whom they trust in matter of clothes. We call such proper-
ties non-functional properties. Current approaches for de-
scribing non-functional properties abstract from the issuer
of credentials, which is not practical. Comparing with the
clothes shops example, in which every cloth shop obviously
advertises that it has great atmosphere and very friendly
salespersons etc., if only service providers describe their ser-
vices, the description of the credentials of the services will
be hardly of any practical use. Rather, there is a need for
techniques in which parties different from the providers is-
sue credentials to services and users can build trust in ser-
vices on the basis of such credentials.

As we have mentioned above, services are basically
means for accessing a business process. For technical, eco-
nomical and legal reasons, the access to a business process
of an organization needs to be restricted. So, describing ac-
cess control policies is an important part of the service de-
scription, so that potential users can automatically check,
whether they have access to a service or not.

3.1 Modeling Non-Functional Properties

Simple Public Key Infrastructure (SPKI) The
credential-based public key infrastructure SPKI/SDSI
(Ellison et al. 1999a; 1999b) allows each principal to
issue credentials. Unlike other public key infrastructures,
SPKI/SDSI requires no central certification authority. Thus,
anyone can issue and trust credentials independently of
others and may even define his own trust structure.

Definition 5 (Local and Extended Name) A local name
is a sequence of length two consisting of a public key
K followed by a single identifier. Typical local names
might be “K Alice” or “K project-team”. Here,
K represents an actual public key. The local name “K
A” belongs to the local name space of key K. An ex-
tended name is a sequence consisting of a key followed

by two or more identifiers. Typical extended names
might me “K Alice mother”, “K microsoft
engineering windows project-mgr” or “K

”»

UNIKA personnel-committee”.

Let V7, denote the set of all local names and A7, (K') denote
the local name space of key K. The SPKI/SDSI expressions
are called “terms”. Intuitively, a term is something that may
have a value. In SPKI/SDSI, values are always sets of keys.

Definition 6 (Term) A term is either a key or a name. Let
T = K UN denote the set of all terms.

A name certificate provides a definition of a local name (e.g.
K B) belonging to the issuer’s (e.g. K’s) local name space.
Only key K may issue (that is, sign) certificates for names
in the local name space N7, (K). A name certificate C' is a
signed four-tuple (K, A, S, V)

e The issuer K is a public key; the certificate is signed by
K.

o The identifier A (together with the issuer) determines the
local name “K A” that is being defined; this name belongs
to the local name space N7,(K) of key K. It should be
noted that name certificates only define local names (with
one identifier); extended names are never defined directly,
only indirectly.

e The subject S is a term in 7. Intuitively, the subject S
specifies a new additional meaning for the local name “K
A”.

o The validity specification V provides additional informa-
tion allowing anyone to ascertain if the certificate is cur-
rently valid, beyond the obvious verification of the certifi-
cate signature. Normally, the validity takes the form of a
validity period (t1,t2): the certificate is valid from time
t1 to time to, inclusive.

Semantic-SPKI SPKI - though being simple and power-
ful — has the drawback that the names of the properties are
simple strings, which does not allow certification of com-
plex properties, e.g. AIFB-Employee and above25 in a
way that one can automatically reason about them. We over-
come this problem with Semantic-SPKI by viewing SPKI
names as DL concept descriptions and public keys as DL in-
dividuals. This means that in a name certificate, we use a
DL concept expression at the place of the identifier A. This
makes it possible to issue complex properties, since complex
properties can be constructed by using DL constructors for
building complex concepts. The subject of a name certificate
is either a key or a name. In a semantic-SPKI name certifi-
cate (K, C,S,V),if S is a key, we view the name certificate
equivalent to the ABox assertion C(5), if it is a name we
view it equivalent to the TBox assertion S C C.

Modeling Non-Functional Properties with Semantic-
SPKI Having seen, how actors can certify expressive
properties to other actors in a distributed environment with
semantic-SPKI, it is rather straightforward to use this tech-
nique to model non-functional properties of services. We
only need to assign a public key with each service and each
actor that wishes to act as a certification authority. Actors

can then issue certificates to services certifying them quality
of service properties. The set of certificates issued to a ser-
vice represents the non-functional properties of the service.
Other actors can build their trust in a service on the basis of
its non-functional properties.

Definition 7 (Trust Policy) A trust policy P is either a pub-
lic key or a concept expression. If it is a public key only ser-
vice with public key K = P satisfies the trust policy P. If
it is a concept expression, service with public key K € P
satisfies the trust policy.

Given a trust policy and a set of credentials, finding a
chain of certificates that satisfies the trust policy can be done
by the so called certificate chain discovery algorithm (Clarke
et al. 2001).

3.2 Modeling Functional Properties and Access
Control Policies

A service is essentially a process that mediates between a
client business process and the provider business process.
The business process of the provider can be seen as the func-
tionality that the service offers. Thus, the functional proper-
ties of a service can be modeled by the formalism presented
in Section 2.

We model checking of access eligibility as a condition by
using a predicate symbol CC D(C, P), that is true iff the set
C of certificates fulfills the trust policy P according to the
certificate chain discovery algorithm (Clarke et al. 2001).

Recall the process expression w?P: () for deterministic
choice from Section 2. In such an expression, w can be
any n-ary predicate. In order to support credential based
access control, we simply use the predicate CC'D in place
of w in the process expression for deterministic choice. Ac-
cording to the semantics of deterministic choice, a process
CCD(C, P)?Q: R means that the process evolves to @ if
the actor mentioned in the policy P can be trusted, other-
wise the process evolves to R.

4 Implementation

e FOAM
automatically found
New or modified BP Ontolog

y Mappings
Descriptions, Ontologies
and Ontology|Mappings

BP Descriptions,

KAON2 Ontology - Ontologies and
Management API ontgllogy

Mappings

Business Process

Description API

Figure 3: Architecture of Karlsruhe Business Process Mod-
eling Framework

Figure 3 shows the architecture of our prototypical im-
plementation. In the following, we will discuss each of the
components in detail.

4.1 Business Process Ontology

The prototype needs to maintain a large number of busi-
ness process descriptions in our formalism. In general, ev-
ery business process description may be associated with a
separate ontology and there may be mappings among such
ontologies. So, the system also needs to manage a large set
of ontologies. We use KAON2? to manage the repository.
KAON?2 is an infrastructure for managing OWL-DL ontolo-
gies with DL-Safe rules. The Business Process Descriptions
API allows to work with the business process descriptions in
the repository.

While the domain ontologies associated with business
processes can be directly managed by KAON2, we devel-
oped an extra component to manage the behavioral descrip-
tions of business processes. Although the KAON2 repos-
itory together with a repository of behavioral descriptions
fulfilled the purpose, it was hard to manage them since they
have to be synchronized all the time. Another drawback of
having two repositories was that we needed to implement
methods for the retrieval of information about the behavior
needed by the reasoning algorithms. The fact that KAON2
can efficiently manage any type of information expressible
with OWL-DL and provides efficient query answering, that
is retrieval of the information led us to the idea that model-
ing the behavior of business processes as an ontology would
save us to manage a separate repository.

Figure 4 shows the main components of the DL ontology
that we developed to maintain descriptions of business pro-
cesses and services with KAON?2.

The concept Agentldentifier represents a named process.
An executable business process, BusinessProcess and a
service Service are special type of processes. An Agentl-
dentifier has an ontology of type Ontology that represents
its knowledge base. The behavior of an Agentldentifier is
represented by the property definition with range Process.
The behavior of an Agentldentifier is further defined by de-
scribing the 7-calculus syntax with concepts Null, Prefix,
Composition, Summation, and IfThenElse. The sequen-
tial process (Prefix) can either contain a communication or
a local operation followed by another process modeled via
the property next. The communication operation is mod-
eled with the concept Communication and a local oper-
ation is modeled with the concept Local. A communica-
tion operation can either be an input or an output operation,
modeled as sub-concepts Input and Output of the concept
Communication. Communication takes place over a chan-
nel (Channel), that has a message type (MessageType), a
protocol (Protocol) and an address of type String. A mes-
sage type consists of many parts, called message parts mes-
sageParts. A type of a message part is a concept from the
domain ontology and hence the process description is con-
nected to the domain ontology via message parts. A condi-
tion in the IfThenElse expression is any predicate the truth

2http: //kaon2.semanticweb.org

value of which can be calculated by the reasoner local to the
agent. A Service has non-functional properties represented
by the property has with range Credential. A credential is
described by three properties, namely issuer, recipient and
about, that show to the issuing agent, receiving agent and
the certified property respectively.

4.2 Business Process Description API

While the above described business process and service on-
tology defines the structure of business process descriptions
modeled as instances, description logics and consequently
description logic modeling tools like KOAN2, do not pro-
vide any mechanism for enforcing the structure on the ABox
instances. To overcome this problem, we have developed the
business process modeling API, a Java API for modeling the
business processes. The API roughly contains

e A Java class RepositoryFactory for creating a
new repository or loading an existing repository of
business process descriptions. A repository is an
OWL ontologies that contains instances representing
the business process descriptions. For this pur-
pose the class RespositoryFactory provides meth-
ods createRepository and openRepository
with parameters St ring physicalURI and String
logicalURI and return type Repository.

e The Java class Repository contains methods for cre-
ating and retrieving process descriptions. For this pur-
pose, it contains methods createX and getAl1X for
each concept X in the process description ontology with
return types X and Set <X> respectively. The createX
and getA11X methods call the appropriate KAON2 on-
tology management API methods in order to create and
retrieve instances of corresponding concepts.

e A Java interface X for each concept X defined in the busi-
ness process and service ontology. Each such interface
has getP and setP methods for each property P the
concept X is a domain concept for. The return type of a
getP method is Y if P is a functional property with range
concept Y, otherwise the return type is Set<Y>. Simi-
larly, the parameter of a setP method is Y or Set<Y>.
The implementations of the interfaces call the appropriate
KAON?2 ontology management API methods to retrieve
and set the property instances.

The business process descriptions API encapsulates the
KAON2 domain independent ontology management API
and thus provides a domain specific Java API which the soft-
ware engineers can work with as they are used.

4.3 Graphical User Interface

The Graphical User Interface component supports a user to
do various tasks.

o It allows to describe a new business process including the
corresponding domain ontology graphically and save it in
the knowledge base.

o It allows to load an existing business process description
along with the domain ontology and modify or delete it.

Credential recioient

has
about
issuer @ hasHead messageParts
hasBody:
Property
condition
M -
Certification- messageType t%rs;‘;’:\ege
Authority

address

Figure 4: Karlsruhe Business Process and Service Modeling Ontology

e Since the ontology mappings found automatically by
FOAM can be semantically faulty, the GUI allows to man-
ually edit the ontology mappings and add new more ex-
pressive ones (Haase & Motik 2005).

5 Related Work

There are quite a few approaches to describe business pro-
cesses and services declaratively. The earlier approaches
focus on the execution of business processes inside an or-
ganization and are best known as workflow systems. Later
the workflow systems has been extended to so-called inter-
organizational workflow systems, that can describe pro-
cesses involving across organizational boundaries.
BPEL4AWS (Andrew et al. 2003) is a popular formal-
ism for modeling business processes in the Web. It com-
bines XLANG and WSFL. However, it still lacks formal
semantics and reasoning procedures. Therefore, our work
is complementary to BPEL4WS as our formal model may
be used in its extended form to specify formal semantics
for BPEL4WS, which is needed in order to prove certain
properties of reasoning algorithms based on BPEL4WS.
Note, that all the attempts to define formal semantics of
BPEL4WS cover only the dynamic behavior of BPEL4WS.
Resource schemas that are an essential part of multi party
business processes have not been considered. Furthermore,
BPEL4WS views Web services as black boxes with one in-
put and one output activity. In our model, we do not have
this restriction. In our view, services can have multiple in-
teractions with the user. BPML? is similar to BPEL4WS in
the sense that it focuses more on the execution of a business
process than on reasoning about properties of a process.
OWL-S formerly known as DAML-S (Sycara et al. 2003)
is perhaps the first initiative to address the need of describing
Web services semantically. However, OWL-S suffers from
many problems. Firstly, the OWL-S process model does not

3http://www.bpmi.org

have a formal execution semantics. Note, that the execution
semantics presented in (Ankolekar, Huch, & Sycara 2002)
is of one of the first versions of DAML-S. Since OWL-S is
an OWL ontology, OWL-S process model has a description
logics semantics. However description logics can not cap-
ture behavioral semantics, in particular that of changing A-
Boxes of the participating actors. We believe, that this is the
major reason for the non-availability of matchmakers based
on OWL-S process model. OWL-S matchmaker presented
in (Sycara et al. 2003) actually matches the subsumptions
among the input and output parameter of a Web service,
which is, not sufficient for automation. OWL-S however
has identified and modeled some important non-functional
properties of business processes. We believe, that our for-
mal model can be used to provide formal execution seman-
tics to OWL-S, since the OWL-S process model seems sim-
ilar to our business process ontology. Furthermore, OWL-S
though addresses the need for pre- and postconditions of a
Web service, it does not provide with any concrete formal-
ism for modeling them. We have shown how preconditions
and effects can be modeled with the help of deterministic
choice and local operations respectively.

WSMO (Web Service Modeling Ontology) provides the
conceptual underpinning and a formal language for seman-
tically describing Web services in order to facilitate the au-
tomatization of discovering, combining and invoking elec-
tronic services over the Web (Roman et al. 2005). WSMO
is more a formalized bird-eye view than a concrete Web ser-
vice description language. There are reference implementa-
tions like WSML that technically realize WSMO. Our work
is complementary to WSML in many ways. Firstly, WSML
does not support the description of behavior Web services.
Secondly, it does not provide with a concrete technique to
model non-functional properties and access control policies.
Furthermore, similar to OWL-S though WSMO addresses
the issue of pre-conditions and effects, WSML does not pro-
vide with language elements to model them.

WSDL-S does not provide a formalism for describing
Web services semantically. Rather, it extends WSDL by pro-
viding extensibility elements to connect semantic descrip-
tions to WSDL documents. So, our approach is comple-
mentary to WSDL-S in a sense that the descriptions of Web
services with our formalism can be connected to WSDL-S
documents.

Perhaps, the work that is closest to our work is (Berardi
et al. 2005), in which an approach is presented to charac-
terize Web services with their transition behavior and their
impacts on the real world (modeled as relational databases).
Our work (though following similar thoughts) is different
in some aspects. Firstly, we presented a concrete syntax
for modeling the dynamic behavior whereas (Berardi et al.
2005) does not. Secondly, we model the local knowledge
bases of the participating actors with decidable description
logics, which can be very helpful while proving important
properties like decidability, soundness and completeness of
any reasoning algorithms for discovery, composition, selec-
tion etc. Modeling knowledge bases of the involved actors
with description logics is also more suitable since the Web
ontology language OWL standardized by W3C is based on
description logics.

6 Conclusion and Outlook

In this paper, we have presented formalisms for describ-
ing distributed business processes and services semantically.
The formalism for modeling executable distributed business
processes is a novel combination of the well known process
algebra the m-calculus and description logic SHOZN (D)
with DL-safe rules extensions. We have also presented the
formal semantics of this formalism. For modeling services,
We differentiated between functional and non-functional
properties. Resources, behavior and changes in resources
constitute the functional properties whereas the quality at-
tributes build the non-functional properties. Furthermore,
we argued that access control policies are an important as-
pect of the behavior of a service. We argued that it is not
practical to abstract from the issuer of the non-functional
properties and hence they must be modeled in a way such
that users can build their trust in them. We borrowed ideas
from the field of security in distributed systems and pro-
posed a semantic extension of SPKI for modeling non-
functional properties of services that allows to annotate
properties certified via SPKI/SDSI certificates with descrip-
tion logic concepts. We showed how credential based ac-
cess control policies can be described and embedded as con-
ditions in the behavioral description of services. Finally,
we presented a prototype for describing distributed business
processes and services and a repository for managing such
descriptions.

The formalisms provided in this paper are different from
existing formalisms mainly due to their expressivity, formal
semantics and unified nature. Existing approaches with for-
mal semantics either cover only the behavioral part or con-
sider services as black boxes and cover only the types of in-
put and output parameters. Note, that in real world business
processes, there dependencies between behavior and data

and therefore, considering only one of the aspects is not suf-
ficient for practical purposes. On the other hand, approaches
that can describe both the aspects lack formal semantics so
that it is difficult to develop comprehensible algorithms. Fi-
nally, to the best of our knowledge, ours is the only work
that has shown how the quality attributes can be modeled in
a way, such that the users can build their trust in them and
how credential based access control policies can be modeled
and integrated in the behavior of a service.

Semantic descriptions of business processes and services
is a necessary step to enable automated reasoning about
them. In this paper, our focus was on the descriptions
of business processes and services with formal semantics.
The development of algorithms for verification, discovery,
composition and selection etc. that make use of such rich
descriptions is still an open and interesting research is-
sue. In (Agarwal 2007c), we have presented a prelimi-
nary version of model-checking based discovery. In (Agar-
wal 2007a), a language for specifying constraints on service
properties has been presented, that together with the for-
malisms presented in this paper can build the basis for rea-
soning algorithms about distributed business processes and
services.

Acknowledgements

Research reported in this paper was partially supported by
the EU in the IST project NeOn (IST-2006-027595, http:
//www.neon-project.org/)) and the German Min-
istry of Education and Research (BMBF) project SESAM.

References

Agarwal, S., and Studer, R. 2006. Automatic Matchmak-
ing of Web Services. In Zhang, L.-J., ed., I[EEE 4th In-
ternational Conference on Web Services, 45-54. Chicago,
USA: IEEE Computer Society.

Agarwal, S. 2007a. A Goal Specification Language for
Automated Discovery and Composition of Web Services.
In International Conference on Web Intelligence.

Agarwal, S. 2007b. Formal Description of Web Services for
Expressive Matchmaking. Ph.D. Dissertation, University of
Karlsruhe (TH).

Agarwal, S. 2007c. Model Checking Expressive Web Ser-
vice Descriptions (Short Paper). In IEEE 5th International
Conference on Web Services. Salt Lake City, Utah, USA:
IEEE Computer Society.

Andrew, T.; Curbera, F.; Dholakia, H.; Goland, Y.; Klein,
J.; Leymann, F; Liu, K.; Roller, D.; Smith, D.; Thatte,
S.; Trickovic, I.; and Weerawarana, S. 2003. Business
Process Execution Language for Web Services. Technical
report, BEA Systems, IBM Corp., Microsoft Corp., SAP
AG, Siebel Systems.

Ankolekar, A.; Huch, F.; and Sycara, K. 2002. Concurrent
Execution Semantics for DAML-S with Subtypes. In Hor-
rocks, 1., and Hendler, J. A., eds., Proceedings of the First
International Semantic Web Conference: The Semantic
Web (ISWC 2002), volume 2342 of Lecture Notes in Com-
puter Science (LNCS), 14-21. Sardinia, Italy: Springer.

Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.;
and Patel-Schneider, P. F., eds. 2003. The Description
Logic Handbook: Theory Implementation and Applica-
tions. Cambridge University Press.

Berardi, D.; Calvanese, D.; Giacomo, G. D.; Hull, R.; and
Mecella, M. 2005. Automatic Composition of Transition-
Based Semantic Web Services with Messaging. In Bohm,
K.; Jensen, C. S.; Haas, L. M.; Kersten, M. L.; and Per-ke
Larson, B. C. O, eds., VLDB ’05: Proceedings of the 31st
international conference on Very large data bases, 613—
624. Trondheim, Norway: ACM.

Clarke, D. E.; Elien, J.-E.; Ellison, C. M.; Fredette, M.;
Morcos, A.; and Rivest, R. L. 2001. Certificate Chain
Discovery In SPKI/SDSI. Journal of Computer Security
9:285-322.

Ellison, C. M.; Frantz, B.; Lampson, B.; Rivest, R. L.;
Thomas, B. M.; and Ylonen, T. 1999a. Simple Public
Key Certificate. http://world.std.com/cme/html/spki.html.

Ellison, C. M.; Frantz, B.; Lampson, B.; Rivest, R. L.;
Thomas, B. M.; and Ylonen, T. 1999b. SPKI certificate
theory. Internet RFC 2693.

Haase, P., and Motik, B. 2005. A Mapping System for the
Integration of OWL-DL Ontologies. In Hahn, A.; Abels,
S.; and Haak, L., eds., IHIS 05: Proc.s of the Ist Int.
Workshop on Interoperability of Heterogeneous Informa-
tion Systems, 9-16. ACM Press.

Horrocks, 1., and Patel-Schneider, P. F. 2004. A Proposal
for an OWL Rules Language. In Proceedings of the Thir-
teenth International World Wide Web Conference (WWW
2004),723-731. ACM.

Milner, R.; Parrow, J.; and Walker, D. 1992. A Calculus
of Mobile Processes, Part I+11. Journal of Information and
Computation 1-87.

Motik, B.; Sattler, U.; and Studer, R. 2004. Query Answer-
ing for OWL-DL with Rules. In Mcllraith, S. A.; Plex-
ousakis, D.; and van Harmelen, F., eds., Proc. of the 3rd.
Int. Semantic Web Conference (ISWC 2004), volume 3298
of LNCS. Hiroshima, Japan: Springer.

Roman, D.; Keller, U.; Lausen, H.; de Bruijn, J.; Lara,
R.; Stollberg, M.; Pollers, A.; Feier, C.; Bussler, C.; and
Fensel, D. 2005. Web Service Modeling Ontology. Applied
Ontology 1(1):77-106.

Sangiorgi, D., and Walker, D. 2001. PI-Calculus: A Theory
of Mobile Processes. New York, NY, USA: Cambridge
University Press.

Sycara, K.; Paolucci, M.; Ankolekar, A.; and Srinivasan,
N. 2003. Automated Discovery, Interaction and Composi-
tion of Semantic Web Services. Journal of Web Semantics
1(1):27-46.

van der Aalst, W., and van Kees, H. 2002. Workflow Man-
agement: Models, Methods and Systems. The MIT Press.

