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Abstract
Paper type: Research paper

Purpose: In Evolutionary Robotics (ER), robotic control systems are subject to a developmental
process inspired by natural evolution. In this article, a control system representation based on Finite
State Machines (FSMs) is utilized to build a decentralized online-evolutionary framework for swarms
of mobile robots.

Design/methodology/approach: A new recombination operator for multi-parental generation of
offspring is presented and a known mutation operator is extended to harden parts of genotypes involved
in good behavior, thus narrowing down the dimensions of the search space. A storage called Memory
Genome for archiving the best genomes of every robot introduces a decentralized elitist strategy. These
operators are studied in a factorial set of experiments by evolving two different benchmark behaviors
such as Collision Avoidance and Gate Passing on a simulated swarm of robots. A comparison with a
related approach is provided.
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Findings: The framework is capable of robustly evolving the benchmark behaviors. The Memory
Genome and the number of parents for reproduction highly influence the quality of the results, the
recombination operator leads to an improvement in certain parameter combinations only.

Research limitations/implications: Future studies should focus on further improving mutation
and recombination. Generality statements should be made by studying more behaviors and there is a
need for experimental studies with real robots.

Practical implications: The design of decentralized ER frameworks is improved.

Originality/value: The framework is robust and has the advantage that the resulting controllers
are easier to analyze than in approaches based on Artificial Neural Networks. The findings suggest
improvements in the general design of decentralized ER frameworks.

Keywords: Evolutionary Robotics; Swarm Robotics; Online; Decentralized; Onboard; Finite State
Machine

1. Introduction

Evolutionary Robotics (ER) is a broad field today, composed of techniques for the develop-
ment of robotic controllers based on Darwinian evolution, i. e., the principle of a survival
of the fittest. Evolution is capable of finding control systems which outperform manually
designed solutions in terms of effectiveness in solving the task and simplicity of the con-
troller [Walker er al. (2003)]. This has been shown in large swarms of robots, exploiting
the emergence of collective behavior [Bonabeau et al. (1999)], as well as in single robots,
by a previously performed evolution in simulation, or in many other scenarios [Nolfi and
Floreano (2001); Floreano et al. (2008)].

Most of the learning techniques utilized in ER can be divided into offline techniques
and online techniques. In an offline setting a robotic system (i.e., a swarm or a single
robot) learns to solve the desired task in an artificial environment (real or simulated) before
performing it in a real environment and actually solving the task. In online settings a robotic
system has to learn in an environment in which it simultaneously has to solve the task.
This means that during a run, currently evolved robotic behavior is evaluated by observing
its performance on the task to solve. In fact, different from offline evolution, one cannot
wait for an eventually evolved behavior of sufficiently high quality, but has to employ and
evaluate intermediate behaviors online. The requirement of learning behaviors online is
given when robots have to adapt quickly to a new and possibly unknown situation or when
they have to learn how to deal with novel objectives (see examples below).

Another discrimination, which is typical to swarm robotics, is made between central-
ized and decentralized (onboard) techniques. Centralized means that there is an observ-
ing computer outside of the swarm which can provide the individual robots with global
information while decentralized means the absence of such an observing computer. In a
decentralized system, every robot has to make all decisions based on local observations,
only. Popular examples of centralized evolution in multi-agent systems are experiments
with self-assembling s-bots, e. g., by Grof3 and Dorigo [2004]; a popular example of decen-
tralized evolution is DAEDALUS (“Distributed Agent Evolution with Dynamic Adaptation
to Local Unexpected Scenarios”) by Hettiarachchi and Spears [2006] and Hettiarachchi
[2007].

While offline and centralized techniques are known to converge quickly to good so-
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Iutions for several tasks, there is a broad range of applications for which they cannot be
used. The framework presented in this article is designed to evolve robotic behavior in an
online and decentralized manner, because there are innumerable important applications in
swarm robotics for which these properties are essential. Whenever swarms of robots are
supposed to solve tasks in new and (partly) unknown areas which are not accessible to hu-
mans or other global observers, a decentralized approach is required. And whenever such
an area may change while the robots are inside, which implicitly changes the desired target
behavior, an online approach is essential.

Applications range from those which are presently accomplishable, like recovering vic-
tims in disaster areas by rescue robots or unmanned discovery of the mars surface by ex-
plorer robots, to those which are more futuristic, like injecting a swarm of nano-robots in
the human body to heal diseases. Of course, the benchmark behaviors studied in this article
are much simpler than these advanced behaviors. However, when further improved, and
perhaps in combination with other approaches, we are confident that our framework has
the potential of being utilized for such applications.

Controller representation. In the last decade, Artificial Neural Networks (ANNs) have
been used frequently as a representation of robotic control systems (inside and outside of
ER), since they are easy to implement. Learning operations are well-studied and quite in-
tuitive for ANNs. However, in many cases these benefits come at the cost of resulting
controllers which have a complicated structure and are hard to interpret. In the case of ER,
this is due to the randomized changes to the genotype introduced by evolutionary opera-
tors like mutation or recombination which optimize the phenotypical performance without
respecting any structural benefits for the genotype. The consequence is that evolved con-
trollers are hard to analyze from a genotypical point of view (while it may seem plausible
by observation that they have learned a certain behavior). This comes as an additional dif-
ficulty to the problem observed by Valentin Braitenberg [Braitenberg (1984)] that it is hard
to predict robotic behavior from knowledge of the controller only. While this may seem
acceptable in some areas, there are many robotic applications for which it is crucial to
guarantee that tasks are solved every time with the same precision or in the same manner
(e. g., in medical applications where errors can cost lives or on space missions where erro-
neous behavior can be very expensive). Therefore, we use Finite State Machines (FSMs)
for the representation of robotic controllers, introducing a model called Moore Automa-
ton for Robot Behavior (MARB) (based on the preliminary work by Konig ef al. [2008a];
[2009]; Konig and Schmeck [2008b]). The MARB model relies on the rather simple theory
of FSMs which is much more comprehensive than, e. g., ANNSs that are Turing-complete in
general. The approach is justified by an extensive evidence for the effectiveness of evolving
FSMs [Fogel, L. J. et al. (1966); (1995); Fogel, L. J. (1999); Fogel, D. B. (2006); Spears
and Gordon (2003)].

In this article, the structural benefits of the MARB model are exploited by a mutation
operator which is designed to harden parts of the automaton involved in good behavior.
Other parts of the automaton stay loosely connected and can get deleted within few muta-
tions. In this way, the complexity of the automaton gets adapted to the complexity of the



4 Konig et al.

task which is being learned (inspired by an approach by Stanley and Miikkulainen [2004]).
Experiments show that this property is achieved in the resulting automata, e. g., for Colli-
sion Avoidance which is a simple behavior and can basically be described in a reactive way.
Here, in most cases, evolution finds solutions where only two or three states are involved
depending on how sophisticated the maneuver is. The hardening works independently of
the fitness function which can be designed purely with respect to the task to be learned.

However, the price for analyzability and simplicity of FSMs is their low degree of ex-
pressiveness. Yet, we argue that most existing controllers learned with ANNs could as well
be represented as FSMs. Another disadvantage is that evolutionary operations on FSMs
(i. e., mutation and recombination) are less intuitive, therefore, special attention has to be
paid to their design and the genotypic representation.

In a related study, Spears and Gordon [2003] evolve FSMs for the solution of resource
protection problems by representing a genotype as a matrix assigning to each state/input
pair an action and a next state (this is called a Mealy automaton whereas a Moore automaton
assigns actions to states). They observe that evolution is capable of finding the appropriate
number of states necessary to learn a behavior of a certain complexity. Furthermore, they
find that the recombination operator has a great positive influence on evolution. We can
approve that evolution can find the appropriate number of states depending on the com-
plexity of the target behavior, however, in our approach a hardening property is added to
the mutation operator to aid this process. In the approach presented here, evolution is also
capable of finding the appropriate number of transitions. Using a recombination operator
similar to that described by Spears and Gordon we find that it has a rather small effect on
evolution which is positive in certain parameter combinations only. However, our approach
differs from that of Spears and Gordon by using Moore automata instead of Mealy au-
tomata, a different automaton representation (a matrix representation is not feasible, since
the input set is huge, consisting of all combinations of possible values of the 7 sensors of a
robot, i. €., 2567 input symbols; see Section 2 for details), a multi-parental recombination
operator, and by evolving in a different scenario.

The reality gap. A well-known problem in ER is the transfer of simulated results
into real-world applications. It has been shown for many pairs of simulation environ-
ments and corresponding real robot hardware that controllers which are evolved in sim-
ulation have a very different behavior when transferred onto real robots [Nolfi and Flo-
reano (2001)]. This problem, often referred to as the reality gap, arises from several
real-world factors which are inherently hard to simulate: unknown changes in the envi-
ronment, unpredictable locomotive and sensory differences between robots, mechanical
and software failures, etc. As there are obvious advantages — in terms of computational
and cost efficiency — of utilizing simulation when evolving robot controllers, there have
been different attempts to avoid the reality gap. A common method is to use a sophisti-
cated simulation engine with physics computation and artificially added noise to create
unpredicted situations. To deal with the high computational complexity of these simula-
tions, different levels of detail can be defined [Jakobi (1997); Ampatzis et al. (2005);
Ampatzis et al. (2006)]. Another way is to combine evolution in simulation with evolu-
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tion on real robots [Walker et al. (2003)]. Following this approach, it is possible to use
the measured differences between simulation and reality as a feedback in an “anticipation”
mechanism to adjust the simulation engine [Hartland and Bredeche (2006)]. Another idea
of combining simulation and reality is to adjust evolutionary parameters and operators in
a quite simple simulation and to actually evolve behaviors onboard of real robots. This
avoids the reality gap under the reasonable assumption that the mechanisms of evolution
work on real robots basically in the same way as in simulation. This article follows the
latter approach. All experiments presented here have been performed in simulation.

Konig et al. [2008a] and Konig and Schmeck [2008b] propose an evolutionary frame-
work which is completely decentralized and, therefore, can be implemented in simulation
as well as on real robot platforms. The framework is designed to work onboard of robots
(simulated or real), accomplishing an evolutionary algorithm without any central control.
In that sense, it is an application of the so-called “embodied evolution” proposed by Wat-
son et al. [2002]. Due to the decentralization, the framework scales well to large swarms
of robots and can be easily implemented for different simulations and robot platforms. This
framework is extended here.

In this article, a new recombination operator Cross is presented for the framework
which is capable of performing multi-parental offspring generation. Its effects are compared
to the use of a trivial reproduction operator which is simply cloning parental genomes, and
both are studied in combination with the usage of a newly proposed Memory Genome, stor-
ing a robot’s best controller found so far (a decentralized elitist strategy), and without the
Memory Genome. For both scenarios, two objective functions are studied: one for Colli-
sion Avoidance and one for Collision Avoidance with an additional task of finding a gate
in the middle of the field and passing it as often as possible (this behavior is called Gate
Fassing).

Furthermore, possible implementations of the recombination operator on real robots
are discussed, because multi-parental child generation is simple to implement in simulation
while in reality, communication and memory constraints have to be considered.

The main contributions of this article to decentralized evolution of robotic behavior are

o the property of hardening genotypic structures involved in good behavior through
mutation and selection,

o the new recombination operator, and

e a Memory Genome which is stored by every robot to save the best genome found
so far, representing a decentralized elitist strategy.

The remainder of this article is structured as follows: In Section 2, the automaton model
and the implementation in simulation are described. In Section 3, the evolutionary opera-
tors are introduced and differences to earlier implementations are pointed out. Section 4
describes the method of experimentation. Section 5 is dedicated to the results of the evo-
lutionary runs and a discussion of the influence of the evolutionary operators. Section 6
provides a conclusion and an outlook to future work.
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2. Automaton Model

This section provides a definition of the evolvable automaton model called Moore Automa-
ton for Robot Behavior (MARB). The states of an automaton define robotic actions to be
performed; the next state is chosen by transitions based on conditions over sensors of the
robot. Initially, the robot platform is described.

The platform. As the model is defined in a general way, it is applicable to different robotic
platforms. It is implemented and tested on the Jasmine IIlp robot which is also simu-
lated. The Jasmine IIIp series is a swarm of micro-robots sized 26 x 26 X 26 mm?>. Every
robot can process simple motoric commands like driving forward or backward or turning
left or right. Every robot has seven infra-red sensors (as depicted in Figure 1(a)) return-
ing values from O to 255 in order to measure distances to obstacles (cf. Figure 1(b) and
www.swarmrobot.org). In simulation, the return value of a sensor is calculated by the func-
tion d(x) = [255 . 510=Geab)/ 150J, where x is the distance from the middle of the robot
to the closest object in the range of the sensor (in millimeters) and r is the distance of the
sensor from the center of the robot. The variable a is 1 if the obstacle is a wall, and 2 if
it is another robot (simulating different reflecting surfaces); b is 1 for the sensors 2 to 7,
and 0.75 for sensor 1; this simulates that one of the sensors facing to the front can sense
obstacles at a greater distance by having a more narrow infra-red beam.

Forward movement

(@ (b)

Fig. 1. (a) Placement of infra-red sensors for distance measurement around a (simulated) Jasmine IIIp robot;
sensors 2 to 7 are using an infra-red light source with an opening angle of 60 degrees to detect obstacles in every
direction of vision. Sensor 1 has an angle of 20 degrees to allow detection of more distant obstacles in the front.
(b) Photography of a real Jasmine IIIp robot.

Preliminaries. As mentioned before, the sensors produce byte values to indicate distances.
Let B = {0,...,255} and B, = {1,...,255} be the sets of all and only the positive byte
values, respectively. Let H = {hy,...,h;} be a set of 7 sensor variables which contain the
input from the sensors on the robot, and v = (v,...,v7) € V = B’ the actual values of
the robot’s sensors. Here, A; is associated to the sensor labeled with 7 in Figure 1(a) and
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delivers the value v; for 1 < i < 7 (at a specific time step).

The set of conditions C over the sensor variables H is the set defined by:

¢ == true | false | zy <25 | (c1 o ¢2),

where 71,20 € By UH,
<€{<,>, <, 2,5, %, 7, #,

o € {AND, OR},
c1, ¢ are conditions (recursively).

The values true and false are called atomic constants, z; < 2, is called an atomic com-
parison. Therefore, a condition can be an arbitrary combination of atomic comparisons and
atomic constants, connected by AND and OR. A function E: C XV — {true, false} evalu-
ates a condition ¢ € C to true or false in the obvious way, depending on the current sensor
values v € V. For a,b € B, itis defined that a ~ b if and only if |a — b| < 5 and a # b if and
only if ma = b.

Example conditions are: true; false; hy < hy; 20 > hy; (hy = hy OR hy # 120).

A robot can execute operations op which are defined as a pair of a command cmd €
Cmd and a parameter par € B,:

op = (cmd, par) € Op = Cmd X By,

where Cmd = {Move, TurnLeft, TurnRight, S top, Idle}. For X € B, the meaning of these
operations is:

(Move, X): drive forward for at most X mm.

(TurnLeft, X): turn left for at most X degrees.

o (TurnRight, X): turn right for at most X degrees.

e (Stop, X): stop the current action and do nothing (X is ignored).
e (Idle, X): keep performing the current action (X is ignored).

The motion commands (Move, X), (TurnLeft,X) and (TurnRight, X) start an action that
is applied repeatedly as long as the specified distance or turning limit X is reached (i.e.,
multiple simulation cycles can be involved). The robot then moves forward for 4 mm or
turns around for 10 degrees each cycle until the maximum of X mm or X degrees is reached.
However, each operation except Idle stops the old operation that has been started in earlier
cycles.

We assume a function rand(S), which returns a random element out of an arbitrary
finite set S, based on a uniform distribution.

Automaton definition. The behavioral model is based on Moore automata (or Moore ma-
chines) as defined by Hopcroft and Ullman [1979]. The output op € Op at a state g of
an automaton is interpreted as one of the instructions to be executed by the robot (Op is
therefore the output alphabet of the automaton).

The transition function defines transitions between states depending on the evaluation
of conditions, i. e., every transition, has an associated condition. A transition is performed
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if the evaluation E(c, v) of the associated condition ¢, based on the current sensor values v,
results in true.

This is somewhat different from the regular definition of Moore automata where a tran-
sition is associated to a symbol a from the input alphabet and is performed if the current
input symbol is equal to a. From that point of view, the input alphabet can be considered
as B’, i.e., any combination of possible sensor values of the robot is a symbol of the input
alphabet. On the other hand, a transition between two states of a MARB can be seen as a
placeholder for a collection of classical transitions between the two states. Each combina-
tion of sensor values which lets a condition evaluate to true is covered by this condition.
A MARB transition, therefore, can represent a fusion of a large set of classical transitions,
greatly improving the compactness of the model. For example, two transitions associated
to hy < hy and hy > hy represent together the set of all 2567 possible outgoing transitions
of a state.

Here, two special cases have to be considered to make the model complete and deter-
ministic. (1) If for a state g none of the outgoing transitions has a condition that evaluates to
true, the model defines an implicit transition to the initial state; this approach is preferred
to the naive idea of simply defining g itself as the next state in such cases, since that could
lead to deadlocks. (2) If, on the other hand, more than one condition evaluates to true, one
of the corresponding transitions has to be chosen. In that case the first transition (in order
of insertion during creation of the automaton) which has a satisfied condition is chosen.
Figure 2 shows an example MARB with two states and an incomplete definition of transi-
tions. From both states, an implicit transition is inserted by the model for the case that the
other transition evaluates to false (dotted transitions).

Therefore, a Moore Automaton for Robot Behavior is defined as follows (note that there
are no final states as a robot should always be capable of reacting in the environment):

Definition 2.1 (Finite Moore Automaton for robot behavior (MARB))
A Finite Moore Automaton for Robot Behavior A is defined as

A=(0,%Z,Q,0,4,q).

For the set of conditions C, and the set of operations Op, the elements are defined as
follows:

o O =B, xXO0px(C X B,)" corresponds to the set of states.

Forqe Q: q= (id, op,(c1,idy),(c2,idr), .. ~,(C|q|a id|q|))’

where

id is the state’s unique identifier,

op = (cmd, par) € Op is the operation performed (e. g., (MOVE, 3)),

the (c;,id;) encode the outgoing transitions, c; being the condition, id; the
identifier of the following state,

|g| denotes the number of conditions of state q.



DECENTRALIZED EVOLUTION OF ROBOTIC BEHAVIOR USING FINITE STATE MACHINES 9

For any element x of A, the notation x1 denotes that x belongs to state q.
o The input alphabet > = V = (B,)H\.
o The output alphabet Q = Op.
o The transition function 5: Q XV — Q:

q, iftA(ck,idy)inq: id; = id? and (Efcy, v] = true and

o(g,v) = Yjel{l,...,lql} with Efcj,v] = true: k <))
qo otherwise
forge Q,veV.
o The output function 1: Q — Op: A(q) = op? = (cmd?, par?),
forqe Q.

o The initial state qy € Q.
Transitions of a MARB A are also identified by the set
T(A) e (B, xBy)xC
where

((idy,id») ,c) € T(A) & atransition (c, id,) exists in the state which has the identifier id; .

s
8
N ‘ . o
- e .
. P taas
J .
J "
s
"
K A

ih, < 30‘:: <:I implicit transitions

L

Fig. 2. An example MARB with two states. The dotted transitions are inserted implicitly by the model. The states
perform the operations (Move, 1) and (TurnRight,1) € Op, respectively. The automaton represents a simple
collision avoiding behavior moving forward as long as no obstacle is ahead (h; < 30) and turning right if an
obstacle is ahead (hy > 30).

Search spaces. The space of all MARB:s is called the genotypic search space I'. The space
of all robot behaviors is called the phenotypic search space I1. Mutation and recombination
are computed on I', while fitness evaluation is performed on IT.

3. Evolutionary Operators, Parameters

In this section, the proposed evolutionary operators, namely the mutation and recombi-
nation operators, fitness functions and the selection operator, are described. The mutation
operator is based on earlier work [Konig and Schmeck (2008b)], but has a newly presented
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quality of hardening parts of the automata which participate in good behavior during the
evolutionary process. The recombination operator Cross is presented here for the first time;
it is tested against the former method of only cloning one of the parental automata during
reproduction (called trivial reproduction).

Two fitness functions are studied, one designed for the task of simple Collision Avoid-
ance, the other for Collision Avoidance with an additional subtask of passing a gate in the
middle of the field (Gate Passing). Furthermore, a storing mechanism is presented to store
the best genome found so far for each robot in a storage space called Memory Genome. It
is an elitist strategy for decentralized evolution which has been applied in our earlier work
[Konig et al. (2009)], but is described and analyzed here extensively for the first time.

Fitness function. A robot’s behavior depends on the environment, and as in most cases in
ER, there is no direct mapping from the genotype to a fitness value. Instead, a mapping has
to be employed at the phenotypic level (robot’s behavior) by some kind of fitness predic-
tion. This has been studied in evolutionary computation, e. g., by Ong et al. [2003], Jin
et al. [2001] and Jin [2005]. Due to the decentralized approach presented here, the fitness
cannot be calculated by some global mechanism, but has to be determined by the sensor
values and the inner state of each single robot. Also, the behavior has to be observed over
time before an adequate fitness value can be calculated. This inherently leads to a delayed
fitness, rating not the current behavior, but the one performed in the recent past.

In this work, a robot’s fitness is calculated as the weighted sum of many fitness snap-
shots where a snapshot is an integer calculated from the sensor values received by the robot
at a certain moment. Snapshots are taken at a constant time interval for every robot sep-
arately. In principle, every change of the genome (i. e., mutation or recombination) leads
to a temporarily wrong fitness value, since the old value is not valid anymore, and the
new behavior has not been observed, yet. However, it is not likely that a single mutation
or recombination operation causes a drastic change of the behavior (by definition of these
operators, see below). Therefore, it is reasonable not to reset the fitness value after each
of these operations, since a recalculation from scratch is time-consuming. Instead, the fit-
ness value is only adapted to the changed automaton which is expected to be similar. For
this to work, the snapshots of old behaviors should lose their influence (evaporate) over
time (since otherwise, e. g., a formerly bad automaton which changed to a good one would
need a lot of time to compensate for the bad behavior in the past). This loss of influence is
achieved by an exponential decrease of the weights for the old snapshots over time making
them less influential to the total fitness sum.

The fitness calculation is divided into two parts which are constantly repeated during
the runs:

(1) Fitness snapshot: A rating snapx(t) of the current situation, perceived through the
sensors and the inner state at time step ¢, is added to the fitness f of the robot:
f = f + snapx(t) (X € {CollAvoid,GatePass},t € N). After a while, as more
and more snapshots are summed up, the expected error caused by the preconditions of
arobot is reduced and f is expected to adequately reflect the behavior.

(2) Fitness evaporation: The robot’s fitness f is divided by a constant E: f := f / E. The
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evaporation accomplishes the exponential decrease in snapshot weight over time.

Both parts of the fitness calculation are performed separately, the fitness snapshot every
tsnap = 50 simulation cycles, the evaporation every f.,,, = 300 simulation cycles. The
evaporation constant is set to E = 2.

More formally, the fitness fz of a robot R at a time step ¢ € N is:

Jr= 2 sx(@) - ¢

i=0

where

), ifi d tguap =0
sx(i) = {snapx(l) if i mo »

otherwise

and

i = E-Lt/teap J+ il evap |

Note that this idea of fitness calculation can be compared to that of eligibility traces
which are one basic mechanism of reinforcement learning [Sutton and Barto (1998)]. Based
on the assumption that an automaton A loses credit for the current behavior when it is re-
peatedly replaced by mutated versions M(A), M(M(A)), ... of itself, the snapshots calcu-
lated during the execution of the original automaton A should lose their influence on the
current fitness value.

For the fitness snapshot of Collision Avoidance, two properties are considered: the robot
must not stand still and it must not collide. The snapshot for Collision Avoidance is calcu-
lated by Algorithm 3.1.

Algorithm 3.1: Computation of fitness snapshot snapceiaveia for Collision Avoid-
ance.

input : Current operation op € Op of a robot R at a time step #; number of
collisions |Coll| of R since last snapshot before .
output: Fitness snapshot for R at time step .

int snap = 0;

if op = (Move, X), X € B then
| snap = snap + 1;

end

snap = snap — 3 - |Coll|;

return snap;
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The snapshot for Gate Passing has the additional property that a reward is given when
the robot passes the gate. It is calculated by Algorithm 3.2 which is based on Algorithm 3.1.

Algorithm 3.2: Computation of fitness snapshot snapga.pass for Gate Passing.

input : Current operation op € Op of a robot R at a time step ¢#; number of
collisions |Coll| of R since last snapshot before #; Boolean value Gate
indicating if the gate was passed since the last snapshot before .
output: Fitness snapshot for R at time step .

int snap ‘= SnaPColIAwid(OP, |C0”|)’

if Gate then
| snap = snap + 10;
end

return snap;

Mutation — general idea. The proposed mutation operator is intended to harden parts of
the automaton which are highly involved in the behavior. Through this mechanism, an
adequate search space structure for the evolving task is supposed to be found during the
evolution.

Using MARBs as genotypic representation leads to a “flexible” search space. This
means that the search space is infinite, but it is finite if the topology of the automata is
fixed and the condition size is limited. Therefore, inserting a state or a transition into a
MARB or extending a condition (by AND, OR) can be seen as a complexification of the
search space (or as adding a dimension to it), while removing states or transitions or re-
ducing a condition can be seen as a simplification (or as removing a dimension from the
search space). As described by Stanley and Miikkulainen [2004], with a flexible search
space there is no need to define the search space structure before the runs. Instead, there
is a possibility to include the search for an adequate search space complexity for a desired
behavior in the evolutionary process. To achieve this, the mutation operator in this article
is designed to have the following two properties:

(1) Both complexification and simplification are allowed to occur during a run, keeping
the search space flexible.

(2) By complexification, those parts of the topology are hardened which are expected to
have high influence on the behavior.

The first property is similar to the approach by Stanley and Miikkulainen, which, how-
ever, allows one of the two to occur in a single run only.

The second property is new to the approach proposed. Here, hardening means lowering
the probability of getting removed by mutation for certain parts of an automaton. On the
level of states, the states with many incoming transitions are expected to be most involved
in the behavior, so it should be unlikely to remove them through mutation. For transitions,
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the complexity of the associated condition and its proximity to frue can be used as an
indicator for the transition’s impact on the behavior.

During mutation, the hardening is only a random process, however, it gets directed
by selection. Since selection is based on behaviors, hardened parts are expected to influ-
ence selection more than other parts. Over time, this leads to a hardening of those parts
of automata which are most involved in a good behavior. For the other parts, mutation is
only a random change and they are not expected to get hardened meaning they are loosely
connected and can get removed within a few mutations.

Therefore, the complexity of the genome (i. e., the automaton) is expected to adapt to
the complexity of the behavior which has to be learned. This process is implicitly split in
two parts, where first the states, then the transitions are hardened.

Another advantage of using this idea for mutation is that most of the mutations defined
below (namely those of the kinds (1) and (2) and some of (3)) naturally affect only the
structure of the automaton, but have no impact on the behavior. This leads to large neutral
plateaus which have been shown to affect evolution positively [Kimura (1985)]. These
mutations are called syntactic while those which (potentially) affect the behavior are called
semantic.

Definition of the mutation operator. The mutation operator M is defined as a mapping
in the genotypic search space, depending on the state & of a random number generator:
M¢:T —T.

M consists of atomic mutations My, ..., M;; which, by the above reasoning, can be
divided into three general kinds:

(1) insert or remove states;
(2) insert or remove transitions;
(3) change labels (a: operations on state level, b: conditions on transition level).

The atomic mutations are listed here:

(1) States can always be inserted, but removed only if they do not have impact on the
behavior:

M, (syntactic): Insert a state without incoming or outgoing transitions, with random
operation and a random parameter.

M, (syntactic): Remove a random state with no incoming transitions (except the initial
state which can only be deleted if it is the only state in the automaton).

M3 (syntactic): Remove a random state associated with an /dle-operation and all out-
going transitions being associated with false.

(2) Transitions can be inserted with the associated condition false and removed if they are
associated to false (no impact on behavior):

M, (syntactic): Insert a transition associated with false between two arbitrary states
(this hardens the state to which the transition points).
Ms5 (syntactic): Remove a random transition associated with false.
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(3a) The state labels are mutated by randomly choosing a state and changing its parameter.
In addition to it, if the parameter would fall below zero by the change (which would be
inconsistent with the MARB definition), the operation of the state gets changed (the idea is
that, e. g., for small X, Y, (Move, X) is similar to (TurnLeft, Y)). This can still have a drastic
behavioral impact, therefore this mutation is used with a low probability (see Table 1):

Mg (semantic): For a random state’s output op = (c¢md, par) € Op, change this state’s
output to (cmd’, |par + c| + 1), where

cmd, if par+c¢>1
¢ =rand({-5,...,5}),cmd = ) .
rand(Cmd) otherwise

(3b) Transition labels are mutated by selecting a random transition and either performing a
simplification or complexification on its condition with no impact on the behavior (M7, Mg)
or by changing a random atomic part of the condition with slight impact on the behavior
(My), hardening the transition by complexifying and by moving towards true. Additionally,
single values and sensor variables in a condition can be changed (Mo, M;); this, however,
can have a drastic impact on the behavior and is used with a low probability:

M- (syntactic): For ¢ € C change:

(¢ AND true) to c,

(c AND false) to false,

(c OR true) to true, or

(c OR false) to c.
My (syntactic): For ¢ € C change:

cto (c AND true), or

cto (c OR false).
M, (semantic): An atomic part of a condition can be moved in small steps closer to true
or false. “P < (Q” means that P can get changed to Q and vice versa. When mutating
true and false into atomic comparisons, a, b are chosen randomly. Let a,b € B, UH
where H\{a, b} + H:

<b <b
false<—>a=b<—>azb<—>a_ o o azrhb o a#b o true
a>b & a>b

Mo (semantic): Change a number i € B within a condition to i + rand({-35, ..., 5}).
M (semantic): Change a sensor variable 4 € H within a condition to rand(H).

One single application of the mutation operator M is defined to choose one of the atomic
mutations randomly, based on the distribution shown in Table 1. These probabilities have
been determined by extensive studies and by reasonable assumptions like performing muta-
tions more often if the expected change of behavior is small. If the chosen atomic mutation
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cannot be performed (e. g., because no false transition exists to be deleted in the case of
M5), the mutation has no effect for that application.

Table 1. Probability distribution for M, ..., M.

My | My | Mz | My | Ms | Mg | M7 | Mg | My | Mo | My,

Prob | &4 | 32 | 32 | 2| 2| 1| 4|6 | 10| 3 | L

This mutation operator is complete in the sense that for each two MARBs A,A’ €
I', there exists an n € IN and states of the random number generator &,...,&, with
M¢(...(M%(A))...) = A’. This is apparent by the following proof sketch:

The empty automaton can be generated from every automaton A by

(1) reducing all conditions to false using M7 and Mo;
(2) deleting all transitions using Ms;
(3) deleting all states (which now cannot have any incoming transitions) using M5.

From the achieved empty automaton every topology can be derived by using M| and M. At
this point, all conditions are false. Using M7, ..., Mo, every condition can be produced from
false by complexification. As all state labels already are arbitrary, this approach can prove
that every automaton A’ can be derived from every automaton A by a repeated application
of M,i.e., M is complete.

Recombination and selection. Due to the onboard approach, selection cannot be defined
as a population-based operator. In the approach proposed by Konig et al. [2008a], two
robots mate when they come spatially close to each other. Offspring is produced by cloning
the parent with the best fitness. Since reproduction in this approach occurs unpredictably,
it is difficult to control the reproduction rate and the selection pressure.

In simulation, it is possible to control the reproduction rate and still use an approach
similar to that of Konig et al. For this, a clock triggered by the simulation environment
is used to synchronize reproduction. Therefore, the robots no longer reproduce when they
meet each other, but all robots reproduce simultaneously according to this global clock;
every robot mates with the one (or more) robot(s) it is spatially closest to. Although this is
opposed to the decentralized paradigm, it can be used to get better insights into the effects
of reproduction rate and selection pressure on evolution. These insights can then be used
in a purely decentralized approach.

Definition of the recombination operator. The recombination operator Cross is a map-
ping of a constant number p of parental genotypes Gy, ...,G, with corresponding fitness
values fi, ..., f, to p offspring genotypes: Cross : (I' x Z)" — T,

Given (G, f1),...,(Gp, f,) € (I’ X Z)?, one single offspring genotype is produced as
follows:
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(1) Choose the topology for the offspring fitness proportionally (based on fi, ..., f,) from
one of the parental topologies.

(2) For all states and transitions which are present in all of the parents, choose the accord-
ing label of the state or transition fitness proportionally from one of the parents and
insert it into the offspring.

The exact algorithm for the production of an offspring automaton from p parental au-
tomata is shown in Algorithm 3.3. The p offspring automata are then produced by repeating
the algorithm p times.

Algorithm 3.3: Computation of one child by the recombination operator Cross.

input : ((G1. fi).....(G). f,)) € T X Z)".
output: G € T.

Select a MARB G’ € {Gy, ..., G} by fitness proportional distribution®;
LetG .= G’;

for all states g which exist in G do

if a state g’ exists in all MARBs in (G, ...,G,} with id? = id? then
Select a MARB G’ € {Gy, ..., Gp} by fitness proportional distribution®;
Let ¢ be the (only) state in G’ with id? = id? ;
Set Op? == Op7 ;

end

end

for all transitions t = ((id?',id?*) ,c) € T(G) do
if a transition v’ = ((idqi , id"é) , . ) exists in all MARBs in {G1, ..., G,} with
id" = id% and id® = id"> then
Select a MARB G’ € {Gy, ..., G} by fitness proportional distribution®;
Let? = ((id’/l , id‘fﬁ) , c’) be the (only) transition in G’ with id?" = id% and

id® = id%;
Setc:=c';
end
end
return G;

* The probability to be selected is fitness proportional for positive fitness values
only; negative values are treated as 0. If all values are 0, the distribution is defined to
be uniform.

The recombination operator Cross does not affect the topologies of the parental au-
tomata, this is being done by mutation only. Instead, recombination on the one hand dis-
tributes the topologies in a new way according to the parental fitnesses. On the other hand,
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Table 2. The eight main sets of experiments; for every set, the number of parents for reproduction was varied from
1 to 10.

Memory Genome Fitness function Recombination Parents
1 no Collision Avoidance trivial reproduction 1-10
2 yes Collision Avoidance trivial reproduction 1-10
3 no Gate Passing trivial reproduction 1-10
4 yes Gate Passing trivial reproduction 1-10
5 no Collision Avoidance | new recombination Cross 1-10
6 yes Collision Avoidance | new recombination Cross 1-10
7 no Gate Passing new recombination Cross 1-10
8 yes Gate Passing new recombination Cross 1-10

the labels are combined from the parental automata producing intermediate genotypes.

Memory Genome. Each robot has a Memory Genome which is a storage for the automaton
with the highest fitness obtained so far. The Memory Genome’s function is to keep the
good genotypes over the course of evolution. In a constant interval, the current genotype is
replaced by the stored genotype if the current fitness is lower than the old one, and only if
the current fitness is negative or zero. The reason for the latter is that it could be shown that
non-positive fitness is a good indicator for trivial behavior while positive fitness is a good
indicator that the behavior is more complex and adapted to the desired task (cf. Section 4).
Therefore, by reactivating the stored genome only in the case of non-positive fitness, the
deletion of good new automata is avoided.

4. Method of Experimentation

Experiments have been performed to study the influence of

o the new recombination operator Cross against a trivial reproduction mechanism based
on cloning parental automata, cf. [Konig and Schmeck (2008b)],

o the number of parents for reproduction (varied between 1 and 10), and

o the Memory Genome against the classical approach without Memory Genome

on the quality of the resulting behaviors using the two different fitness functions for Colli-
sion Avoidance and Gate Passing, respectively. Every possible combination has been tested
to provide evidence of potential dependencies. This leads to the eight main sets of experi-
ments which are shown in Table 2.

For each of these sets, the number of parents for reproduction varied from 1 to 10,
therefore 80 different parameter combinations have been tested overall. Every combination
has been simulated for 80, 000 cycles, and every simulation has been repeated 26 times
with different random seeds to gain statistical significance. A total of 8 - 10 - 26 = 2080
simulations have been run.

The field. All experiments are performed on a rectangular field. For the Collision Avoid-
ance task the field is designed to be empty (Figure 3(a)), where for the Gate Passing task a
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wall with a gate in the middle is placed in the field (Figure 3(b)). No additional objects are
placed in the field which means that walls and robots are the only further obstacles. The
field is sized 1440 mm X 980 mm, the gate has an opening of 190 mm.
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Fig. 3. Experimental field with 26 robots for Collision Avoidance (a) and for Gate Passing (b).

General settings. 26 robots were placed randomly (positions and angles) on the field. Their
initial genome was set to be empty (i. e., an automaton without any states or transitions).
The experiments were run for 80,000 simulation cycles; this complies with a real-world
driving distance of about 320 m for a robot which is driving only straight forward or a real-
world time of about 15 min. Mutation and recombination were performed every 100 and
200 cycles, respectively. For reproduction, the number of parents ranged in p € {1, ..., 10}
for each of the eight experimental sets. The runs with p = 1 served as a control group only,
as they did not provide any selective reproduction. The only way to direct evolution towards
better fitness areas in these runs was to mutate and reuse the Memory Genome. The fitness
snapshot was calculated and added every t,,, = 50 cycles and the fitness evaporation was
performed every f.,,, = 300 cycles dividing the fitness by £ = 2. The interval for the
Memory Genome was 1000 cycles for the runs it is used in.

Definition of success. In this article, robotic behavior is said to be successful (according
to a fitness function) if it eventually leads to a positive (non-zero) fitness value when be-
ing executed in an environment. As argued before [Konig and Schmeck (2008b)], for the
described fitness functions, a negative or zero-fitness (after a proper time of execution) im-
plies a non-adapted behavior with a high probability, while a positive fitness implies with
a high probability an adapted behavior. The reason for this lies in the way fitness is cal-
culated, namely in the repeated rewards and punishments by adding the fitness snapshot.
A bad behavior is expected to get many negative snapshots during a run while a good one
is expected to get many positive snapshots; this leads over time to a discrimination at the
zero-fitness level. Structural analysis of evolved automata with negative fitness at the end
of the runs showed that in nearly all cases, they did not have both a reachable Move-state
and a reachable Turn-state. This means that they were not capable of performing any non-
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trivial behavior. On the other hand, about 90 % of the robots with positive fitness had both
state types reachable. (A state s of automaton A is said to be reachable if there exists a path
in A along the edges from the initial state g to s; here, satisfiability of the conditions is not
considered.)

Therefore, an evolved robot is called successful if it has a positive fitness in the final
population of a run. An evolutionary run (experiment) is called successful if at least one
successful robot exists in the final population.

Negative fitness. As argued above, negative fitness correlates with trivial behavior. There-
fore, it does not provide much information by the amount of negativity; rather it distorts
results if it is taken into consideration. For this reason, in the following evaluations negative
fitness is always treated as zero.

Comparison to previous results. As described by Konig and Schmeck [2008b], studies
were performed before in a similar scenario with the following differences: reproduction
was based on simple cloning without recombination; only two parents at a time were re-
produced; mutation was slightly altered; there was no Memory Genome; only Collision
Avoidance was used as fitness function; interval parameters like the fitness snapshot inter-
val t,,,,, the evaporation interval ¢,,,,, mutation and recombination intervals, etc. differed
slightly (this could not be avoided as the intervals were defined in real-world time in the
previous experiments; here, simulation cycles were used to define intervals which allows
for a more objective comparison between simulations on different computers).

The runs with two parents for reproduction, no Memory Genome, and no recombination
operator, in the scenario where Collision Avoidance was evolved, are supposed to reflect
these previous experiments (cf. Section 5). As the results show, despite the aforementioned
slight differences in the experimental setup, the outcomes are quite similar and comparisons
between the old and the new results seem to be valid.

5. Experimental results

This section describes the influences of the Memory Genome, the new recombination op-
erator and the number of parents for reproduction on the quality of the resulting behaviors
at the evolution of Collision Avoidance and Gate Passing, respectively. Also, it provides a
general analysis of the resulting automata.

Using the new operators, all four sets of experiments greatly outperformed previous
results [Konig and Schmeck (2008b)] where 2.6% of the robots evolved a successful be-
havior, and 11.0% of the runs were successful. The runs lasted for about 2, 000, 000 simu-
lation cycles compared to 80, 000 cycles here (a reduction by a factor of 25). For the eight
main sets of experiments conducted here, the following percentages of successful robots
and successful runs have been achieved:

(1) Successful robots: 74, 0%, successful runs: 93, 1%.
(2) Successful robots: 87, 6%, successful runs: 99, 5%.
(3) Successful robots: 73, 6%, successful runs: 87,2%.
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(4) Successful robots: 83, 0%, successful runs: 99, 5%.
(5) Successful robots: 75.3%, successful runs: 92.7%.
(6) Successful robots: 88.7%, successful runs: 99.6%.
(7) Successful robots: 65.0%, successful runs: 83.3%.
(8) Successful robots: 84.0%, successful runs: 100.0%.

For these numbers, the experiments with only one parent for reproduction have been
left aside. The reasons for the general improvement seem to be mainly

o the increased number of parents for reproduction (as two parents in the previous exper-
iments seem to gain too little selection pressure), and
o the Memory Genome which prohibits the loss of already found good behavior.

The recombination operator seems to have different influences when used with or without
the Memory Genome. Below is a detailed analysis of these factors.

5.1. Influence of the Memory Genome
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Fig. 4. Average results in terms of percentage of successful experiments, percentage of successful robots, and
mean fitness in the end of the eight main sets of experiments. Runs with Memory Genome (dark) and runs without
Memory Genome (light) are plotted next to each other.

The Memory Genome seems to be largely responsible for the aforementioned general
improvement. Figure 4 shows the average percentage of successful experiments, of suc-
cessful robots, and the mean population fitness in the last generation for the eight main
sets of experiments (note that the fitness value is expressed absolutely and not in percent;
it is still depicted in the same chart for compactness). The runs with Memory Genome are
plotted next to those without Memory Genome while the other parameter combinations
are grouped along the X-axis. In every parameter combination, and for all three indicators,
the runs with Memory Genome (dark bars) outperform the runs without Memory Genome
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(light bars). The plots in Figures 8, 9, 10 and 11 (see below) show that this outperformance
is present for all different numbers of parents for reproduction (except for one).

When studying the fitness during the runs, the reasons for this expected success of the
Memory Genome could be confirmed. In the previous experiments, populations tended to
lose already found good behaviors by mutation. Therefore, studying only the last genera-
tions did not take into account that good behaviors might have existed earlier in the runs.
Also, these good behaviors might have disappeared before evolution had a chance to im-
prove them, so they were not able to reach their full potential.

In the current experiments with Memory Genome, the fitness is prevented from falling
back into negative areas permanently, once a good, robust behavior has been achieved.
Figure 5 shows the average population fitness during an example run with 6 parents where
no Memory Genome is used. At about 50, 000 simulation cycles, a high fitness is achieved,
however, when approaching 60, 000 cycles, the fitness decreases drastically indicating that
a formerly good behavior has been lost. Later a fairly high fitness is reached again, but it
oscillates a lot and does not stabilize. In contrast, Figure 6 shows the average fitness during
a run with the same parameters except that the Memory Genome is used. A quite high
fitness is achieved at about 35, 000 cycles and it is conserved at a stable level until the end
of the run. We interpret this as an effect of the Memory Genome.

Average fitness

-40) Simulation cycles
0 20000 40000 60000 80000,

Fig. 5. Average fitness in a population during a run with 6 reproduction parents without Memory Genome evolving
Gate Passing.

As it is essential in an online-evolutionary approach that not only a good behavior
is resulting in the end of a run, but that it can be trusted in the stability of intermediate
behaviors [Konig ef al. (2008a)], we suggest to always use the Memory Genome or a
similar mechanism in online-evolutionary approaches.

5.2. Influence of the recombination operator

Figure 7 (as Figure 4) shows the average percentage of successful experiments, of success-
ful robots, and the mean population fitness in the last generation for the eight main sets of
experiments. The chart depicts the same data as Figure 4, except that the bars are ordered
differently to highlight the comparison between runs with trivial reproduction and runs with
the recombination operator Cross.



22 Konig et al.

Average fitness
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Fig. 6. Average fitness in a population during a run with 6 reproduction parents with Memory Genome evolving
Gate Passing.
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Fig. 7. Average results in terms of percentage of successful experiments, percentage of successful robots, and
mean fitness in the end of the eight main sets of experiments. Runs with new recombination (dark) and runs with
trivial reproduction (light) are plotted next to each other.

The chart shows that for runs without Memory Genome the trivial reproduction outper-
forms the recombination operator Cross (quite clearly for the right group evolving Gate
Passing, and rather slightly for the second group from the left evolving Collision Avoid-
ance).

For both groups with Memory Genome (first and third group from the left), however,
the recombination operator Cross slightly outperforms the trivial reproduction.

We interpret this results as follows: as the recombination operator Cross introduces
additional diversity in the population, the runs without Memory Genome are less capable
of keeping good behavior and the probability increases that it gets lost. In the runs with
Memory Genome, however, the operator is capable of improving the results as intended,
since already found good behavior is preserved and the additional diversity has a positive
effect here. As the usage of the Memory Genome seems reasonable in most cases, the
recombination operator Cross can be seen as a general improvement. However, as the
enhancement is rather small, the operator should be further studied and eventually replaced
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by a better one.

5.3. Influence of the number of parents for reproduction

Figures 8 and 9 show the average fitness of robots and the average number of successful
robots in the final populations for runs with trivial reproduction (i. e., main experimental
sets 1-4); different plot types denote the parameter usage (Memory Genome vs. no Memory
Genome and Collision Avoidance vs. Gate Passing); the X-axis plots the number of parents
for reproduction. Figures 10 and 11 show the same data using the recombination operator
Cross instead of trivial reproduction (i. e., main experimental sets 5-8).

As expected, the runs with only one parent were not able to achieve successful behavior
in neither case. Not even the runs using the Memory Genome reached a fitness significantly
above zero despite the possibility to improve behavior by a simple random search using
mutation only and storing the best genome found by pure chance. However, since negative
fitness values are treated as zero, the values for one parent are still slightly positive in all
charts.

The performance in runs with two parents was disproportionately better with the Mem-
ory Genome than without the Memory Genome (compared to runs with three and more
parents). This indicates that the Memory Genome is able to compensate for the lack of
selection pressure (as observed by Konig and Schmeck [2008b]) when having only two
parents for reproduction. However, independently of the Memory Genome, both fitness
and number of successful robots increase with the number of parents for reproduction un-
til an optimum is reached. The optimal number of parents seems to be between four and
seven.

Over all numbers of parents, the runs with Memory Genome perform best which is not
unexpected as it is a known result that elitist strategies can have positive effects if evolution
is not capable of keeping good solutions in the population.

5.4. Analysis of evolved automata

Among the non-trivial (successful) runs, the evolved behaviors can roughly be divided into
three groups: (1) Collision Avoidance, (2) “Altruistic” Gate Passing with Collision Avoid-
ance, and (3) “Egoistic” Gate Passing. In each of the groups, behaviors of different com-
plexity and robustness were evolved. The assignment of evolved behaviors to the groups
has been performed manually by observation and for a minor portion of the 2080 runs only.
Therefore, no exact count of behaviors per group can be given. However, in runs evolving
Collision Avoidance only behaviors from the first group occurred while in runs evolving
Gate Passing there were behaviors from all three groups.

Group 1: Collision Avoidance. The behaviors from this group use obstacle avoiding strate-
gies which range from very simple to highly adapted. Some simple automata are perform-
ing a circle-driving behavior without obstacle detection. This can lead to a situation where
nearly no collisions occur if the entire population is doing the same, however, the achieved
fitness is rather low. Some automata, on the other hand, are more sophisticated by not only
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Fig. 9. Average number of successful robots in last populations of the runs with trivial reproduction. The number
of parents for reproduction is depicted on the X-axis. The Y-axis shows the number of successful robots.

avoiding collisions, but, e. g., deciding on which side of an obstacle to drive past to mini-
mize the need for turning, thus maximizing the number of Move-operations.

It is notable that many behaviors which were evolved for Gate Passing still were as-
signed to this group. The reason seems to be that Collision Avoidance is a subtask of Gate
Passing and forms a local optimum in the fitness landscape where evolution tends to get
stuck in. To check this conjecture, a more objective and automated method for categorizing
behaviors is needed.
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Fig. 11. Average number of successful robots in last populations of the runs with recombination operator Cross.
The number of parents for reproduction is depicted on the X-axis. The Y-axis shows the number of successful
robots.

Figure 12 shows a trajectory of a robot from Group 1 in an empty field without other
robots. The X marks the starting position. Figure 13 shows a trajectory of the same robot in
a more complex environment. It collides one time at the beginning with the small obstacle
in the middle of the field, but afterwards it is capable of driving around without further
collisions.

Group 2: “Altruistic” Gate Passing with Collision Avoidance. Behaviors in this group
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Fig. 12. Trajectory of an evolved robot doing Collision Avoidance without passing the gate.

Fig. 13. Trajectory of the same robot as in Figure 12 in a more complex environment.

are the most effective ones in gaining fitness for the entire population. They have in com-
mon that the behavior includes an altruistic component which leads to a suboptimal indi-
vidual fitness for the collective good. Figure 14 shows the trajectory of a robot from this
group. The robot is driving close to the wall avoiding collisions until it recognizes the gate
and passes it (this does not happen every time it drives past, but sufficiently rarely that the
gate is never crowded). Then it performs a small loop on the other side and drives back
through the gate. Since the robot does not pass the gate every time, there is enough space
for the whole population to profit from the behavior. Figure 16 shows the corresponding
automaton which is analyzed below.

Group 3: “Egoistic”” Gate Passing. This group consists of robots which found a fitness
niche exploitable for at most one or two robots at a time, gaining, however, great fitness for
them. They developed a mechanism to recognize the gate and then drive constantly through
it, back and forth. In some populations, the gate passing robots interchanged, in others, one
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Fig. 14. Trajectory from group 2 produced by the automaton in Figure 16.

single robot performed the gate passing while other robots could not recognize the blocked
gate. In many of these populations, Collision Avoidance was not evolved since the constant
Gate Passing gained a high fitness. However, population fitness was lower than in group 2.
Figure 15 shows a trajectory of a robot performing this behavior.

Automata from groups 2 and 3 are typically hardly transferrable into new environments
as they implicitly need the gate to perform the evolved behavior accurately.

Fig. 15. Trajectory of an evolved robot from group 3 driving constantly through the gate.

Analysis of the structure of an example automaton. Figure 16 shows an automaton from
group 2, evolved to do Gate Passing as depicted in Figure 14. The automaton consists of
six states, however, the gray painted states are not reachable. Also, the gray transitions are
inactive. By the design of the mutation operator, the gray parts can be deleted within a small
number of mutations, as they are not hardened. If further evolved, these parts are expected
to either be involved in the behavior or deleted. Therefore, the automaton essentially con-
sists of 3 states and 5 transitions. The transitions have quite complex conditions which is
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plausible, since the robot is capable of recognizing the gate which is non-trivial. However,
there are also neutral elements in the conditions, e. g., all constant parts (true, false); they
could be removed leading to equivalent simpler conditions. During evolution, the inactive
elements serve as neutral plateaus which eventually get deleted by mutation if they are not
needed. In contrast, the hardened parts of the automaton are unlikely to get removed.

(h,l=h,&(h,=2211(153~h, | (78!~h,&(55~h, | (f| 165<=h,))))))

(hy/=h,&(h,~h, | h,=133))

Fig. 16. Automaton avoiding collisions and driving through the gate; cf. trajectory in Figure 14. Unreachable
states and unsatisfiable conditions are painted gray; they are not hardened and therefore can get deleted in a small
number of mutations. true is denoted by ’t’, false by ’f’.

5.5. Summary and overall results

The results show that a major improvement can be achieved by increasing the number of
parents at reproduction from two to about four to seven which raises selection pressure, and
by using the Memory Genome for preservation of good behavior. The recombination oper-
ator Cross has been shown to improve performance when used together with the Memory
Genome and to decrease it otherwise. This can be explained by the additional diversity
which is introduced by using a recombination operator.

Analyzing the resulting behaviors, roughly three groups can be identified: (1) Collision
Avoidance, (2) “Altruistic” Gate Passing with Collision Avoidance, and (3) “Egoistic” Gate
Passing.

Analyzing the structure of the resulting automata indicates that the hardening of good
parts of genomes leads to an adaptation of genome complexity to target behavior complex-

1ty.
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6. Conclusion and Outlook

It has been shown that a decentralized approach for online evolution based on the MARB
model is capable of robustly evolving Collision Avoidance and Gate Passing in a swarm
of simulated Jasmine IIIp robots. Overall, 78.3 % of the robots achieved positive fitness
(called successful robots) and in 93.9 % of the runs there were robots with positive fitness
in the final population (called successful runs). The runs lasted for 80, 000 simulation cycles
which can be compared to 15 minutes in an experiment with real Jasmine IIIp robots.

Due to the special design of the mutation operator, the complexity of the generated
automata is adapted to the problem complexity. This does not necessarily mean that the
automata have few states or transitions or very simple conditions. But those states or tran-
sitions which are not involved in the behavior can be deleted anytime within few mutations
and in the same way parts of conditions which do not affect the behavior can be simpli-
fied. Therefore, evolution has the possibility of exploring large neutral plateaus which are
only loosely connected to the automaton meaning that these parts can be deleted if they are
found to be useless.

The Memory Genome has been shown to greatly improve the quality of the evolved
behaviors while the new recombination operator Cross seems to work only when used
together with the Memory Genome. The best number of parents for reproduction seems to
be between four and seven.

As the framework is working fine with simple behaviors, an important goal for the
future is the evolution of more sophisticated behaviors. Wall Following is planned to be
evolved as well as the recognition of shapes and collaborative behaviors like moving heavy
objects. Also, dynamic environments will be studied. As the recombination operator seems
to affect evolution positively, similar operators will also be tested and the improvement will
be further optimized. Another objective is to improve the analysis on the genotypic level to
allow for more objective categorizations of evolved behaviors. Such an analysis has been
performed to confirm that positive fitness is a good indicator for evolutionary success (cf.
Section 4). However, a more advanced analysis on the genotypic level is planned for future
work to exploit the structural simplicity of the MARB model.
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