
Towards a Quantitative, Platform-Independent Analysis of Knowledge 
Systems† 

Noah S. Friedland1, Paul G. Allen1, Michael Witbrock2, Gavin Matthews2, Nancy Salay2,  
Pierluigi Miraglia2, Jurgen Angele3, Steffen Staab3, David Israel4, Vinay Chaudhri4,  

Bruce Porter5, Ken Barker5, Peter Clark6 

 
1Vulcan Inc., 505 5th Ave S, Seattle, WA 98104 

2Cycorp Inc., Suite 100, 3721 Executive Center Drive, Austin, TX 78721 
3ontoprise GmbH, Amalienbadstraße 36, 76227 Karlsruhe, Germany 

4SRI International, 330 Ravenswood Ave., Menlo Park, CA 94025 
5Computer Science, University of Texas at Austin, Austin, TX 78712 
6Boeing Phantom Works, The Boeing Company, Seattle, WA 98124 

 
 Abstract 

The Halo Pilot, a six-month effort to evaluate the state-of-
the-art in applied Knowledge Representation and Reasoning 
(KRR) systems, collaboratively developed a taxonomy of 
failures with the goal of creating a common framework of 
metrics against which we could measure inter and intra 
system failure characteristics of each of the three Halo 
knowledge applications. This platform independent 
taxonomy was designed with the intent of maximizing its 
coverage of potential failure types; providing the necessary 
granularity and precision to enable clear categorization of 
failure types; and providing a productive framework for 
short and longer term corrective action. 
Examining the failure analysis and initial empirical use of 
the taxonomy provide quantitative insights into the 
strengths and weaknesses of individual systems as well as 
raises some issues shared by all three. These results are 
particularly interesting when considered against the long 
history of assumed reasons for knowledge system failure. 
Our study has also uncovered some shortcomings in the 
taxonomy itself, implying the need to improve both its 
granularity and precision. It is the hope of Project Halo to 
eventually produce a failure taxonomy and associated 
methodology that will be of general use in the fine-grained 
analysis of knowledge systems. 

Introduction  
Since the first expert systems forty years ago, a great many 
knowledge-representation and reasoning (KR&R) systems 
have been fielded. Some – very few – have been carefully 
evaluated; these evaluations, typically, have yielded data on 
the systems’ overall performance, and occasionally have 
drawn comparisons with other systems or with the 
performance of people. Our goal is to go beyond 
evaluations of KR&R systems to an analysis of them. We 
seek to understand why these systems fail when they do, the 
                                                 
Copyright © 2004, American Association for Artificial Intelligence  
 (www.aaai.org). All rights reserved. 
† Full support for this research was provided by Vulcan Inc. as part of 
Project Halo  
 

relative frequency of each type of failure, and the ways 
these failures might be avoided or mitigated. 
This is a major undertaking, and we have taken only the 
initial steps. First, we have designed a taxonomy of failures 
that fielded KR&R systems might experience. This step is 
necessarily speculative, since we have not studied a large 
sample of systems or surveyed their developers, but it is 
based on the authors' collective experience building many 
systems using a variety of different technologies. Second, 
we have built three KR&R systems using state of the art 
technologies and carefully evaluated their performance in a 
pilot study. Although the systems did quite well overall, 
they nevertheless exhibited many shortcomings, yielding a 
large corpus of failures. Third, we analyzed each of these 
failures and attempted to place it within the taxonomy. We 
studied the resulting data to draw lessons about the 
taxonomy, the systems, and (by extrapolation) the current 
state of KR&R technologies for building fielded systems. 

A Class of Knowledge-based Systems: The 
Halo Pilot 

This effort to analyze KR&R systems and to better 
understand the causes of their failures arises in the context 
of Project Halo, a multi-stage effort funded and managed 
by Vulcan Inc to develop a “Digital Aristotle”, an 
application that will encompass a substantial amount of 
scientific knowledge and be capable of answering 
unanticipated questions using advanced problem solving. 
Vulcan sees two primary functions for the Digital Aristotle: 
first, as a tutor capable of instructing students in the 
sciences; and second, as a research assistant with broad 
interdisciplinary skills able to help scientists in their work.  
The data for our study was produced by the Pilot phase of 
Project Halo. This was a 6-month effort to evaluate the 
state of the art in fielded KR&R systems performing deep 
reasoning. Three teams were contracted to participate in the 
evaluation: a team led by SRI International with substantial 
contributions from Boeing Phantom Works and the 
University of Texas at Austin; Cycorp; and Ontoprise. The 



objective of the evaluation was to determine whether 
current KR&R technologies were capable of correctly 
answering novel (previously unseen) questions and of 
providing concise, readable answer justifications.  
Significant attention was given to domain selection for the 
evaluation. It was important, given the limited scope of this 
phase of the project, to adapt an existing, well known 
evaluation methodology with easily understood and 
objective standards. Several standardized test formats were 
examined. A 70-page subset of Advanced Placement (AP) 
chemistry was selected because it was reasonably self-
contained and did not require solutions to other hard AI 
problems, such as spatial or uncertain reasoning, or 
understanding diagrams. Topics included: stoichiometry 
calculations with chemical formulas; aqueous reactions and 
solution stoichiometry; and chemical equilibrium. This 
scope was large enough to produce many novel, and hence 
unanticipated, question types. One analysis of the syllabus 
identified nearly 100 distinct rules, suggesting that it was 
rich enough to require complex inference. It was also small 
enough to be represented in 4 months, the time allocated to 
the teams for knowledge formulation. 
Each team developed their KR&R systems using their 
existing, and very different, technologies. Team SRI’s 
implementation was based upon their SHAKEN system, [1] 
which uses the frame-based KM language and inference 
engine [2]. They employed an existing component library 
(CLIB) of representations of reusable, generic events, 
entities, roles, and relations to facilitate rapid development 
of knowledge [3]. Cycorp built the OpenHalo chemistry 
knowledge base upon their public OpenCyc technology, 
extended as needed by constructs from the main Cyc 
engine. The Cyc system is designed with the intention of 
representing the broad range of knowledge required by a 
general Artificial Intelligence, and achieves a partial 
functional partition into consistent functional domains 
using hierarchies of ontologies called microtheories. The 
knowledge in all Cyc systems is represented in CycL, 
Cycorp’s formal language, which includes first-order logic 
and some second-order and modal constructs [4]. Ontoprise 
built their OntoNova system on top of their OntoBroker® 
technology, [5, 6] which uses F-Logic [7], a logic-
programming language similar to Prolog but with an 
object-oriented syntax. This implementation was 
constructed without the benefit of any pre-existing 
knowledge infrastructure like that represented by the SRI 
CLIB or the Cycorp upper ontology. The final SRI and 
Ontoprise knowledge bases were on the order of 500 
concepts, rules and relations, while Cycorp’s openHALO 
included about 15,000 concepts, of which approximately 
14,000 were preexisting general terms from OpenCyc, and 
approximately 1000 were added to support the AP 
Chemistry task.  
The three teams also employed very different approaches to 
answer justification. Cycorp used its generative English 
capabilities to produce English language explanations from 
its proof trees. Meta-reasoning was used to remove 
explanation components that would be extremely obvious 

to the domain expert or that addressed Cyc’s internal 
inference methodology and would not be easily understood 
by a domain expert. Ontoprise used a dual inference 
process in its question answering. The first process 
attempted to derive the answer. If successful, the second 
process used the first proof tree along with rule specific 
human-authored explanation templates to produce the 
explanation. SRI also relied on human-authored 
explanation templates associated, in this case, with 
chemical “methods” built into their knowledge 
representation.  
Upon completion of the knowledge formulation, all three 
systems were sequestered on identical servers. Then the 
challenge exam was released to the teams, who were given 
two weeks to encode its questions in their respective formal 
languages. The exam consisted of three sections: 50 
multiple-choice questions and two sets of 25 multipart 
questions. Upon completion of the encoding effort, the 
formal question encodings of each team where evaluated by 
a program-wide committee to guarantee high fidelity to the 
original English. Once the encodings were evaluated, 
Vulcan personnel submitted them to the respective 
sequestered systems. The evaluations ran in batch mode. 
The Ontoprise system completed its processing in 2 hours, 
the SRI system in 5 hours and the Cycorp system in a little 
over 12 hours. 
Three chemists were engaged to evaluate the exams. 
Adopting an AP-style evaluation methodology, they graded 
each question for both correctness and the quality of its 
explanation. The exam encompassed 168 distinct gradable 
components consisting of questions and question sub-parts. 
Each of these received marks—ranging from 0 to 1 point 
each for correctness and explanation quality for a 
maximum high score of 336. All three experts graded all 
three exams. The scoring of all three chemistry experts was 
aggregated for a maximum high score of 1008. The graded 
exams were distributed to the Halo teams to serve as the 
basis for their failure analysis. The guidelines for the 
analysis included producing written explanations for every 
point loss on a question-by-question basis and association 
of every point loss to a category in the taxonomy of types 
of failures. Details about the Halo Pilot – including the 
exam, the systems’ answers and explanations, and the 
graders’ scores and comments – are available at the 
Project’s website: http://www.projecthalo.com. 

A Taxonomy of Types of Failures 
Our goal was to design an implementation neutral 
taxonomy of failure types, exhibiting these qualities:  
Coverage: The taxonomy must be broad enough to account 
for virtually every type of failure that a fielded KR&R 
system might experience. 
Precision: The categories in the taxonomy should be 
clearly defined so that every failure can be unambiguously 
classified into one or more categories.  
Granularity: The categories should be defined at a fine 
enough level so that they capture distinctions among 



interesting classes of problems. If all errors fall into one 
category, the categories are too coarse. If each category has 
only one instance of a problem, the categories are probably 
too fine-grained. 
Productivity: The categories should be defined in a way 
that they clearly suggest an action that could be taken to 
address it. It should also be clear how each type of failure, 
if uncorrected, would affect system performance. 
To meet the requirement of coverage, we created top-level 
categories in the taxonomy for the primary issues in 
building a question-answering system for the chosen subset 
of AP chemistry – one that receives previously unseen 
queries in a formal language and generates answers and 
justifications appropriate to the user. These categories are: 
(MOD) Knowledge Modeling: the ability of the 
knowledge engineer to model information or write the 
needed axioms.  
(IMP) Knowledge Implementation/Modeling Language: 
the ability of the representation language to accurately and 
adequately express the axioms. 
(INF) Inference and Reasoning: the ability of the 
inference engine to do the reasoning required to compute 
correct answers. 
(KFL) Knowledge Formation and Learning: the ability 
of the system (KB + inference engine) to acquire and 
merge knowledge through automated and semi-automated 
techniques 

(SCL) Scalability: the ability of the KB to scale. 
(MGT) Knowledge Management: the ability of the 
system to maintain, track changes, test, organize, document 
its current state; the ability of the knowledge engineer to 
inspect and revise knowledge. 
(QMN) Query Management: the ability of the system to 
robustly answer queries.  
(ANJ) Answer Justification: the ability of the system to 
provide justifications for answers in the correct context and 
at the appropriate level of detail.  
(QMT) Quality Metrics: the ability of the developers to 
evaluate the knowledge base throughout its development. 
(MTA) Meta Capabilities: the system's ability to employ 
meta-reasoning or meta-knowledge. 
To meet the precision and granularity requirements, we 
refined the top-level categories into 24 more specific ones, 
grouped under the ten original ones. For example, for 
failures due to the implementation/modeling language 
(IMP), we created three sub-categories, including failures 
due to the language being insufficiently expressive (B-
IMP-1) or being overly expressive (B-IMP-2). Although 
increased expressiveness has obvious benefits for 
knowledge engineering, it can, in the limit at least, come at 
the expense of tractable inference [8]. Distinguishing 
between failures of these two types might enable analysts to 
measure the costs and benefits of such enhancements. See 
Table 1. 

Table 1: A Taxonomy of Types of Failure 

Category Type Name and Description 
B-MOD-1 Modeling Error Failure. The knowledge engineer fails to model domain 

knowledge properly in their modeling (the act of writing the axiom). 
B-MOD-2 Modeling Assumption Failure. Implicit “context” assumptions are not 

articulated, making it difficult for knowledge engineers to model/extend/modify 
information. Designers working from disparate assumed “context models” 
introduce conflicts into the KB. Resolving multiple contexts creates large, 
unwieldy rule sets. 

B-MOD-3 Modeling Primitive Failure. Limitations of the KR language make 
straightforward representation difficult resulting in errors or complex 
representations. 

Modeling 

B-MOD-4 “Islands of Knowledge” Failure. The knowledge engineer fails to make 
explicit connections between the domain model and the existing ontology/KB. 
The system cannot take advantage of existing knowledge to achieve the desired 
reasoning performance. 

B-IMP-1 Under-expressive Language Failure. The KR language is not expressive 
enough to model the domain knowledge. The resulting convoluted 
representations or approximations give unexpected or undesirable results. 

B-IMP-2 Over-expressive Language Failure. The KR language is overly expressive. 
Certain representations make inference intractable. 

Implementation, 
Language 

B-IMP-3 External Module Interface Failure. The KR language allows representations 
that do not readily translate to the representation states of external modules. 

Management B-MGT-1 Large KB Learning Failure. The knowledge engineer has difficulty learning 
the existing ontology/KB due to its size and complexity. Poor search and 
documentation tools compound this problem. 



Category Type Name and Description 
B-MGT-2 Large KB Extension Failure. The knowledge engineer has difficulty extending 

the existing large, highly interconnected KB. The number of modeling errors 
(B-MOD-1) increases with KB magnitude and connection factor. 

 

B-MGT-3 Large Team Failure. The development team fails to communicate modeling 
assumptions, track versions, coordinate changes, etc. among team members. The 
assumptions, errors or conflicts lead to unpredictable system performance. 

B-KFL-1 Information Extraction Failure. Information Extraction techniques over 
unstructured data produce insufficiently deep models of domain knowledge. The 
system is unable to reason adequately over shallow domain representations. 

Formation, 
Learning 

B-KFL-2 Knowledge Mapping Failure. The knowledge engineer fails to merge 
structured knowledge from multiple sources appropriately (either due to 
merging errors or irreconcilable representational differences). The system either 
cannot take advantage of knowledge from multiple sources or suffers from 
inconsistencies. 

B-INF-1 Inference Engine Conceptualization Failure. The knowledge engineer 
models domain knowledge based on faulty understanding of the inference 
algorithms. The inference engine produces unexpected results. 

B-INF-2 Inference Engine Bug Failure. Errors in the implementation of the inference 
engine cause unexpected or undesirable results. 

B-INF-3 “Practical Incompleteness” Failure. The resource challenges of deep KBs 
prevent exhaustive search. The system fails to return an answer even though the 
information exists in the KB. Sensitivity to initial conditions makes search 
success unpredictable. 

B-INF-4 Consistency Failure. Hard contradictions cause deductive reasoning systems to 
fail. Large KBs that encompass many topics are susceptible to contradictions. 

Inference, 
Reasoning 

B-INF-5 Numeric Instability Failure. Failure to factor numerical aspects of 
computation into query responses leads to incorrect or inappropriate answers. 

B-QMN-1 Query Scoping Failure. The query encoding misses implicit assumptions or 
incorrectly includes irrelevant information from the query. The missing or 
extraneous information prevents the system from answering the query 
successfully. 

Query 
Management 

B-QMN-2 Query Encoding Failure. Sensitivity to the query encoding leads to 
unexpected or undesirable results. 

B-ANJ-1 Exposition Failure. Answer justifications are overly dependent on 
idiosyncrasies of the reasoning steps and/or proof tree. The resulting 
explanations may contain irrelevant, redundant or out-of-sequence information, 
making them unintuitive to a human reader. 

B-ANJ-2 Answer Template Failure. Manually created answer justification templates 
produce static justifications at fixed resolution independent of context. 

Answer 
Justification 

B-ANJ-3 Context Justification Failure. The answer justification mechanism is unable to 
produce user- and context-appropriate justifications. 

Quality Metrics B-QMT-1 Quality Metrics Failure. The KB quality metrics fail to provide needed 
feedback on the knowledge engineering process. The knowledge engineers 
cannot accurately determine coverage and completeness, resulting in gaps in the 
KB. 

Meta-capabilities B-MTA-1 Meta Capabilities Failure. The KB lacks required meta-knowledge (either due 
to omission or KR language insufficiency). The system performs poorly on 
questions requiring meta-reasoning. 

Other OTHER Failure for reasons other than the above. 

To meet the requirement of being productive, we 
elaborated the descriptions of each type of failure with the 
following attributes:  
A list of influences: the high-level influences that typically 
contribute to failures of this type 

An example: the symptoms (in terms of system behavior) 
that this type of failure might cause 
Mitigating factors: technologies and methods that might 
mitigate failures of this type 
Long-term research: research directions that might reduce 
or eliminate failures of this type 



Table 2: Complete Taxonomy Entry for B-MOD-1

Failure Influences Description Example Mitigation Future Research 

B-MOD-1 MOD, QMT Modeling Error Failure 
The knowledge engineer fails to 
capture domain information 
properly in their modeling (the 
act of writing the axiom). 
 

Classifying chemical 
as an Acid 
independent of the 
reaction. 
 

Review processes to validate 
that domain specific 
information is captured 
correctly; SME testing of the 
system; SME involvement 
throughout 

Tools to better facilitate 
knowledge modeling by 
domain experts; Automated 
techniques to vet 
completeness and coverage 
of KB formation 

Table 2 gives the complete entry for the failures of type B-
MOD-1, a prevalent and intriguing type of failure of the 
Halo Pilot systems. 

Evaluation of the Taxonomy of Failure 
InFehler! Verweisquelle konnte nicht gefunden werden. 
Figures 1 through 3 we summarize the results of the failure 
analysis for the three systems. The numbers against each 
slice of the pie charts represent the points lost that could be 
attributed of the corresponding category. For example, in 
Figure 1, Cycorp’s loss of 64.63 points could be ascribed 
to B-ANJ-1 in the system’s ability to produce readable 
answer expositions appropriate to the context and user (AP 
chemistry exams, and their graders, respectively). The 
process of ascribing points of failure to positions in the 
taxonomy may not have been uniform, since it was 
performed by different groups for each system, working 
independently. The Cycorp analysis reported significant 
problems in 7 categories, and the SRI and Ontoprise 
systems reported significant problems in 4 categories each. 
Each of the three teams attributed a significant number of 
failures to the “other” category, meaning that the 
performance problem could not be attributed to any of the 
categories in the taxonomy. In SRI’s case most of these 
points reflected failures due to gaps in knowledge 
attributed to lack of implementation time. Most of Cycorp’s 
“other” scores were attributed to points lost on answer 
justifications for questions that were not scored as having 
been answered correctly. Ontoprise reported a number of 
reasons for classifying points lost in the “other” category. 
Some of these were related to disputes over the details of 
question grading and whether the final questions were 
within the design scope of the pilot evaluation1.  
                                                 
1 These disputes were not confined to Ontoprise, and were 
surprisingly many in number in the light of the standardized 
nature of the test. For the purposes of the pilot evaluation, 
these were resolved by simply accepting the scoring 
produced by the judges.  

487

5.5

6

7

143

B-MOD-1

B-IMP-1

B-INF-2

B-ANJ-1

OTHER

19.6
46.1

20

29.6

25.1

46.5

61.5
408.5

B-MOD-1

B-MOD-2

B-MOD-3

B-MOD-4

B-MGT-2

B-INF-3

B-ANJ-1

OTHER

Figure 1: Cycorp Failure Analysis. Most of 
the points lost due to failure were the result 
of a failure to represent some element of 
Chemistry knowledge (B-MOD-1), difficulty 
in producing justifications in the form 
expected by domain experts (B-ANJ-1), and 
a lack of inference completeness with respect 
to the available knowledge (B-INF-3). 
 

Figure 2: Ontoprise Failure Analysis. Most 
of the points lost due to failure were the 
result of a failure to represent some element 
of Chemistry knowledge (B-MOD-1). 



107

63.5

37.5

26

261

B-MOD-2

B-IMP-1

B-ANJ-3

B-MTA-1

OTHER

 
Figure 3: SRI Failure Analysis. Most of the points lost 
due to failure were the result of inappropriate modeling 
assumptions (B-MOD-2), difficulty in modeling 
knowledge due to the expressiveness of the KR 
language (B-IMP-1), and inflexible justification 
generation (B-ANJ-3). 
 
Table 3, below, displays the categories used by each of the 
three systems. Interestingly, there is no category that was 
used in analysing the errors of all three systems, even 
though there are several that were used in the analysis of 
two of the three systems. In general, modeling problems 
affected all three systems. B-MGT-2 and B-INF-3, which 
are associated with the size of the knowledge base, 
primarily affected the Cyc system. Ontoprise and SRI were 
both affected by B-IMP-1 which represents problems due 
to lack of expressiveness. 
 

 Cycorp Ontoprise SRI 
B-MOD-1 û û  
B-MOD-2 û  û 
B-MOD-3 û   
B-MOD-4 û   
B-MGT-2 û   
B-IMP-1  û û 
B-IMF-2  û  
B-IMF-3 û   
B-ANJ-1 û û  
B-ANJ-3   û 

B-MTA-1   û 

Table 3: Failure Category Usage 

Given the above observations, it is worth reviewing the 
original goals of the failure taxonomy to see how well they 
were met. Since the taxonomy was designed with the 
functional components of early versions of the various 
Halo systems in mind, it should have been expected to 
display good coverage of forms of failure exhibited by 
those systems. The substantial use of the “other” category, 
and some possible overuse of the B-MOD-1 category 
suggest that the proposed taxonomy does not have enough 

precision; Given a failure, it is not always possible to 
clearly and precisely attribute it to a failure category. Many 
of these problems could have been remedied procedurally 
during the project by establishing a reconcilliation process 
to ensure that the taxonomy was employed correctly and 
consistently by all reporting teams. Clearly such a process 
will need to be tested, and suggested modifications to the 
taxonomy will need to be applied before it is ready for 
more widespread use. 
Nevertheless, the taxonomy did prove to be suggestive in 
indicating functional areas of weakness in the three 
systems. Our failure analysis suggests three broad lessons 
that can be drawn across the board for the three systems:  
Modeling: A common theme in the modeling problems 
across the systems was that the incorrect knowledge was 
represented, or some domain assumption was not 
adequately factored in, or the knowledge was not captured 
at the right level of abstraction. Addressing these problems 
requires us to have direct involvement of the domain 
experts in the knowledge engineering process. The teams 
involved such experts to different extents, and at different 
times during the course of the project. The SRI team, which 
involved professional chemists from the beginning of the 
project, appeared to benefit substantially. This presents a 
research challenge, since it suggests that the expositions of 
chemistry in current texts are not sufficient for building or 
training knowledge based systems. Instead, a high-level 
domain expert must be involved in formulating the 
knowledge appropriately for system use. Two approaches 
to ameliorating this problem that are being pursued by 
participants are: 1) providing tools that support direct 
manipulation and testing of KRR systems by such experts, 
and 2) providing the background knowledge required by a 
system to make appropriate use of specialised knowledge 
as it is presented in texts.  
Answer Justification: Explanation, or, more generally, 
response interpretability, is fundamental to the acceptence 
of a knowledge base system, yet for all three state-of-the-
art systems, it proved to be a substantial challenge. A part 
of the reason for this was a failure to fully grasp the vital 
role played by the explanation mechanism in a deployed 
question-answering system. Since the utility of the system 
will be evaluated end-to-end, it is to a large degree 
immaterial whether its answers are correct, if they cannot 
be understood. Reaching the goals of projects like the 
Digital Aristotle will require an investment of considerably 
more resources into this aspect of systems to realize robust 
gains in their competence. Exactly what direction this 
research should take is not clear; deriving explanations 
automatically from the system’s proof strategy is neither 
straightforward nor particularly sucessful, especially if that 
strategy has not been designed with explanation in mind. 
On the other hand, designing explanation templates that are 
tightly bound to specific problem types is also likely to 
engender brittleness when Halo systems move towards 
applying their knowledge to a wider, more heterogeneous 
set of scientific questions. One approach to this problem, 
that is being pursued by all three teams in different ways, is 



to develop a meta-reasoning capability that applies to the 
proof tree to construct a readable explanation. 
Scalability for Speed and Reuse: There has been 
substantial work in the literature on the tradeoff between 
expressiveness and tractability, yet managing this tradeoff, 
or even predicting its effect in the design of fielded systems 
over real domains is still not at all straightforward. To 
move from a theoretical to an engineering model of 
scalability, the KR community would benefit from a more 
systematic exploration of this area driven by the empirical 
requirements of problems at a wide range of scales. For 
example, the three Halo systems, and more generally, the 
Halo development and testing corpora, can provide an 
excellent test bed to enable KR&R researchers to pursue 
experimental research in the tradeoff between 
expressiveness and tractability.  
In addition to the primary sources of failure experienced by 
the system, it is important to note that several types of 
failure did not occur, even though they were predicted by 
previous research. Davis and King, in their seminal paper 
on rule-based systems [9], predicted that systems might fail 
because of unforeseen and incorrect rule interactions, and 
that the risk of these failures would increase with the size 
of the rule base. In our taxonomy this type of failure is B-
MGT-2. Very few of these errors were experienced by the 
Halo systems. 
The “uncertainty in AI” community predicts that KR&R 
systems might fail due to the use of axiomatic rules in 
uncertain environments. In general, this prediction might 
well be right. However, the Halo Pilot systems ignored 
uncertainty, used only axiomatic rules, and did not fail 
because of it. It is important to note, however, that the 
system did not have to deal with raw data from the 
environment, which would necessarily introduce an 
important source of uncertainty. 
Finally, the “commonsense reasoning” community predicts 
that KR&R systems might fail if they are unable to “fall 
back” on general principles. For example, this prediction 
has been an explicit motivation for the Cyc project [10]. 
Two of the the Halo Pilot systems (the ones built by 
Cycorp and the SRI team) had access to some degree of 
commonsense knowledge (i.e. general knowledge outside 
the domain of chemistry), but gained little benefit from it in 
this domain, and very few failures were attributed to lack of 
commonsense knowledge.  
Undoubtedly, “hard science” domains, such as AP level 
chemistry, largely avoid issues of uncertainty and 
commonsense, but we were surprised that these issues 
scarcely arose at all. It is important and encouraging for the 
Digital Aristotle project that this class of KR&R systems 
can be at least somewhat successful in the absence of 
immediate solutions for these difficult problems in AI.  

Additional Related Work 
The cycle of fielding implemented systems, analyzing their 
performance, learning from that performance, and fielding 
the augmented version reflects the maturity of any scientific 

discipline. Not surprisingly, in the software engineering 
community several aspects of system building have 
benefited by characterizing the system failures, and 
learning from them [11] [12]. Of course, there have been 
several efforts at documenting and analyzing the 
experience of implemented systems, [13], [14, 15]. 
DARPA’s recent HPKB and RKF have made a pioneering 
effort to analyze and document the performance of the 
knowledge base performance [16, 17]. The present paper 
improves upon the HPKB and RKF evaluations by being 
more thorough and systematic, and by adopting an 
evaluation standard, such as an AP test, that is independent, 
objective and extensive enough to support a coherent long 
term development program. 

Summary 
Although many knowledge-based systems have been 
fielded and some have been evaluated, few have been 
analyzed to determine why they fail, the relative frequency 
of each type of failure, and the ways these failures might be 
avoided or mitigated. That is the goal of our work. We 
presented a taxonomy of failures that fielded KR&R 
systems might experience, and we have used the taxonomy 
to analyze failures of 3 question-answering systems built 
using state of the art technologies for the challenging 
domain of AP chemistry. This analysis revealed important 
shortcomings of the KR&R technologies, as well as several 
weaknesses in the taxonomy itself.  

References 

 
1. Clark, P., et al., Knowledge Entry as the Graphical Assembly 
of Components, in Proc 1st Int Conf on Knowledge Capture (K-
Cap'01). 2001. p. 22-29. 
2. Clark, P. and B. Porter, KM -- The Knowledge Machine: Users 
Manual. 1999. 
3. Barker, K., B. Porter, and P. Clark, A Library of Generic 
Concepts for Composing Knowledge Bases, in Proc. 1st Int Conf 
on Knowledge Capture (K-Cap'01). 2001. p. 14--21. 
4. Guha, R.V. and D.B. Lenat, Cyc: A Mid-term report. AI 
Magazine, 1990. 11(3). 
5. Angele, J., Operationalisierung des Modells der Expertise mit 
KARL, . 1993, DISKI, Infix Verlag. 
6. Decker, S., et al., eds. Ontobroker: Ontology-based Access to 
Distributed and Semi-Structured Information. Database 
Semantics: Semantic Issues in Multi-media Systems, ed. R. 
Meersmann. 1999, Kluwer Academics. 
7. Kifer, M., G. Lausen, and J. Wu, Logical Foundations of 
Object Oriented and Frame Based Languages. Journal of the 
ACM, 1995. 42: p. 741--843. 
8. Levesque, H.J. and R.J. Brachman, Expressiveness and 
Tractability in Knowledge Representation and Reasoning. 
Computational Intelligence, 1987. 3(2): p. 78-93. 
9. Davis, R. and J. King, The Origin of Rule-based Systems in AI, 
in Rule-Based Expert Systems: The Mycin Experiments of the 



Stanford Heuristic Programming Project, B.G. Buchanon and 
E.H. Shortliffe, Editors. 1984, Addison-Wesley: Reading, MA. 
10. Lenat, D.B. and R.V. Guha, Building Large Knowledge-
Based Systems: Representation and Inference in the CYC Project. 
1990: p. 336. 
11. Young, M. and R.N. Taylor. Rehinking the Taxonomy of 
Falult Detection Techniques. in 11th International Conference on 
Software Engineering. 1989. Pittsburgh. 
12. Perry, D.E., An Empirical Study of Software Interface 
Faults, 1985, AT&T Bell Laboratories: Murray Hill. 
13. Brachman, R.J., et al., Reducing CLASSIC to ``Practice'': 
Knowledge Representation Theory Meets Reality. Artificial 
Intelligence Journal, 1999. 114: p. 203-237. 
14. Keyes, J., Why Expert Systems Fail? IEEE Expert, 1989. 4: 
p. 50-53. 
15. Batanov, D. and P. Brezillon, eds. First International 
Conference on Successes and Failures of Knowledge-based 
Systems in Real World Applications. 1996, Asian Institute of 
Technology: Bangkok, Thailand. 
16. Cohen, P., et al., The DARPA High Performance 
Knowledge Bases Project. AI Magazine, 1998. 19(4): p. 25--49. 
17. Cohen, P., et al., Does Prior Knowledge Facilitate the 
Development of Knowledge-based Systems, in Proceedings of 
the AAAI-99. 1999. p. 221-226. 
 
 
 
 


