Some Notes on Pseudo-closed Sets*

Sebastian Rudolph
Institute AIFB
University of Karlsruhe (TH)
Germany
rudolph @aitb.uni-karlsruhe.de

Abstract

Pseudo-intents (also called pseudo-closed sets) of formal contexts have gained
interest in recent years, since this notion is helpful for finding minimal representa-
tions of implicational theories. In particular, there are some open problems regard-
ing complexity. In our paper, we compile some results about pseudo-intents which
contribute to the understanding of this notion and help in designing optimized al-
gorithms. We provide a characterization of pseudo-intents based on the notion of
a formal context’s incrementors. The latter are essentially non-closed sets which
— when added to a closure system — do not enforce the presence of other new at-
tribute sets. In particular, the provided definition is non recursive. Moreover we
show that this notion coincides with the notion of a quasi-closed set that is not
closed, which enables to reuse existing results and to formulate an algorithm that
checks for pseudo-closedness. Later on, we provide an approach for further opti-
mizing those algorithms based on a result which correlates the set of pseudo-intents
of a formal context with the pseudo-intents of this context’s reduced version.

1 Introduction

Pseudo-intents are of significant interest in formal concept analysis. One central re-
sult ([5]) states, that the implication set {P — P! | P pseudo-intent of K} (called
stem base) constitutes a so-called implicational base, i.e., a minimal set of implica-
tions generating the implicational theory of the formal context K. In this regard it is
also important to note that for an arbitrary implication, checking whether it is seman-
tically entailed by a set of implications can be decided in linear time ([2, 8]). Thus,
pseudo-intents become relevant for problems related to small (yet quick to query) rep-
resentation of implicative knowledge.

The complexity of determining for a given context K = (G, M, I) and attribute set
A C M, whether A is a pseudo-intent (or: pseudo-closed) with respect to K is still
an open problem (see [9]). The prevailing assumption seems to be that the problem’s

*Supported by the Deutsche Forschungsgemeinschaft (DFG) under the ReaSem project.

complexity is rather high (at least beyond polynomial time). Partial results ([7, 6])
show that it is in coNP.

In our paper, we compile some results about pseudo-intents and provide optimized
algorithms for checking for pseudo-closedness.

In detail, we will proceed as follows: In Section 2, we recall the fundamental defini-
tions and propositions of FCA needed to specify and deal with the topic. Section 3
provides and verifies an algorithm which allows to convert an arbitrary set of implica-
tions into a stem base. Section 4 introduces the notion of incrementor and shows how
it can be used to provide a non-recursive characterization of pseudo-intents. In the end,
this notion shows to have a direct correspondence to that of a quasi intent introduced
in [3]. Resulting from these preceding considerations, Section 5 presents an algorithm
which checks for pseudo-closedness. Section 6 shows how pseudo-closedness can be
checked even by examining the reduced version of the considered context and pro-
vides a corresponding algorithm. Finally, Section 7 concludes and outlines possible
directions for further research.

2 Preliminaries

In this section, we will introduce the notions from formal concept analysis necessary
for our work.

First of all, note that we use the notation “C” to indicate the strict subset, i.e. A C B
means A C B and A # B.

Deviating from the usual line of presentation, we will introduce implications and pseudo-
closed sets just on the basis of closure operators. This allows to talk about those notions
independently from concrete formal concepts and facilitates the presentation of some
results in the sequel. However, note that this is not a proper generalization, since every
closure operator can be represented by the (.)!/-operator of an appropriately chosen
formal context (e.g. the context ({A | ¢(A) = A}, M, 3)). Thus, the cited definitions
and results — although defined on basis of a formal context — carry over to our way of
introducing those notions.

The following considerations are based on an arbitrary set M. We will first define
the fundamental notion of a closure operator M. Roughly spoken, applying such an
operator to a set can be understood as a minimal extension of that set in order to fulfill
certain properties.

Definition 1 Let M be an arbitrary set. A function ¢ : P(M) — P (M) (where P(M)
denotes the powerset of M) will be called

— EXTENSIVE, if A C p(A) forall A C M,
— MONOTONE, if from A C B follows ¢(A) C o(B) forall A, B C M, and
— IDEMPOTENT, if ¢(p(A)) = ¢(A) forall A C M.

If ¢ is extensive, monotone, and idempotent, we will call it a CLOSURE OPERATOR. In
this case, we will additionally call

— ¢(A) the CLOSURE of A,
— A CLOSED (or ¢-CLOSED), if A = ¢(A).

The family of all closed sets is also called CLOSURE SYSTEM. Furthermore, any clo-
sure system constitutes a lattice with set inclusion as the respective order relation.

In the sequel, we show, in which way closure operators are closely related to implica-
tions.

Definition 2 Let M be an arbitrary set. An IMPLICATION on M is a pair (A, B) with
A, B C M. To support intuition, we write A — B instead of (A, B).!
A set C C M RESPECTS an implication A — B if

ACC implies B CC.

Furthermore, for C C M and a set J of implications on M, let C7 denote the smallest
set with

- CCC’and
— C7 respects i for every implication i € 3.

It is well known, that the operation (.)” is a closure operator on M. So, according to
Definition 1, if C = C?, we call C (J-)CLOSED.

Definition 3 We say J ENTAILS A — B (written: 3 = A — B), if every C C M that
respects all implications of J also respects A — B.

An implication set J will be called NON-REDUNDANT, if for any i € J, we have that
I\ {i} does not entail i.

An implication set J will be called an IMPLICATION BASE for a closure operator o if

— it is NON-REDUNDANT, i.e. for any i € J, we have that 3\ {i} does not entail i,

— itis SOUND, i.e., any implication on M entailed by T is respected by all p-closed
sets, and

— it is COMPLETE, i.e., any implication on M respected by all p-closed sets is
entailed by J.

Well-known facts concerning the entailment of implications are
—~ J = A — Bexactly if B C A” and

— Jis non-redundant iff B ¢ AMA—5B} forall A — B € 7.

ITo facilitate reading we will occasionally omit the parentheses, i.e., we will write a, b — ¢ instead of
{a, b} — {c}.

ZNote, that this is well-defined, since the mentioned properties are closed wrt. intersection.

Below, we will now define the central notion of this paper. Opposed to the usual way
of presentation, we will define the notion of pseudo-closedness independently from a
particular formal context, just referring to a given closure operator. Besides the more
general definition this will facilitate our considerations in section 3.3

Definition 4 For a given closure operator ¢, a set P C M will be called PSEUDO-
CLOSED if o(P) # P and ©(Q) C P holds for every pseudo-closed) C P.

Note that this definition is recursive. Since the set M is always assumed to be finite in
the sequel, it is nevertheless correct. However, directly using this definition to check
whether an attribute set is a pseudo-intent requires a recursion as well and is there-
fore computationally costly. This led to the complexity questions mentioned in the
introduction.

Regarding pseudo-closed sets, we give corollaries of the Propositions 24 and 25 from

[4].

Proposition 1 If P and Q) are closed or pseudo-closed sets with P @ and Q € P,
then PN Q is a closed set.

The first Proposition directly yields the fact that the set of all closed and pseudo-closed
sets (of a closure operator) constitute a closure system themselves (for another clo-
sure operator).

Proposition 2 Every (wrt. a closure operator) sound and complete set of implica-
tions contains an implication A — B with A C P and ¢(A) = ¢(P) for every
pseudo-closed set P.

Moreover, for every closure operator, the family of its pseudo-closed sets can be used
to define a canonical implication base called stem base ([5]):

Theorem 1 Let o be a closure operator. Then the set
6B := {P — ¢(P) | P pseudo-closed for ¢}
is an implication base of .

In the remainder of this section, we will very briefly recall well-known basic facts from
FCA for later reference.

Proposition 3 Properties of the derivation operator (.)!.

- (.)” is a closure operator on G as well as on M, i.e., it is extensive (ext!?),
monotone (mon'?) and idempotent (idp’”).

— forall A#0, AT =, c.0a. decomp

3Trivially, this coincides with the notion of pseudo-intent of a formal context if we set ¢ = (.)IZ.

We use Z(K) to denote the family of all concept intents of K.

The concept intents of a formal concept are exactly those attribute sets closed wrt.
(), ie, I(K) = {A | A = A" C M}. In other words, the set Z(K) coincides
with the closure system generated by (.)/f on M. Consequently, the family Z(K) of
all concept intents of a formal context is closed wrt. intersection (closN).

We proceed by giving a Proposition which is the dual of Proposition 30 from [4].

Proposition 4 [f G C H then every intent of (G,M,I N (G x M)) is an intent of
(H,M,I).

In words, the preceding proposition just states that adding an object with arbitrary
intent to a context preserves all previous intents.

3 Generating Stem Bases from Implication Sets

In this section, we present an algorithm which is a slight modification of the one pre-
sented in [1] and provide a self-contained proof for its correctness.

Given an arbitrary finite set J = {i,...,1,} of implications on an attribute set M, the
algorithm from Fig. 1 will convert this set into a stem base &5 with &8 = A — B
exactly if J = A — B.

function: stembase (J)

1. Set 6B :=0.

2. For every A—B€J
substitute A — B by A — (AUB)”.

3. As long as J#0,

(a) select an A — B from J,
(b) delete A— B from J,
(c) calculate AYSB,
(d) if AYSB £ B then

add A’YS® . B to GB.

4. Output &8 and terminate.

Figure 1: Algorithm stembase (J) for calculating the stem base of the implicational
theory generated by J.

Theorem 2 The algorithm stembase computes a stembase for the closure operator

()’

Proof: We have to show two properties: For any set J of implications on M, we have

- () =

— stembase(J) is a stembase.

(.)stembase(j) and

The first property will be proved by iteratively showing that every single action carried
out by the algorithm does not change the closure operator (.)?“S% . By “concatenating”
those arguments and with the observation that B = () in the beginning and J = () in
the end, we can conclude that this first property indeed holds.

So, first, we consider the actions carried out in line 2. Let § = 3\ {A — B} U{A —
(AU B)?} for an arbitrary A — B € J. Now consider an arbitrary C' C M. We have
to show, that C' respects all implications from J exactly if it respects all implications
from $).

“«": This is trivial, since B C (AU B)?.

“=": Assume C respects all implications of J. Now, the only way for C to not respect
all implications of $) would obviously be A C C' and B’ ¢ C'. On the other hand,
since C respects A — B, we know that B C C. Furthermore, B is by definition
the smallest set (wrt. set inclusion) containing B and respecting all implications of J.
Hence, we have B” C C, leading to a contradiction.

Now, we consider the actions of point 3. Let J and &8 be the sets before carrying out
an a-b-c-d block and J* and GB™ the respective values afterwards. Again, considering
an arbitrary C' C M, we have to show, that C' respects all implications from J U &8
exactly if it respects all implications from J* U &B™.

“=": This is obvious, since clearly for every implication A — B from J* U &8" we
have an implication D — B from J U &8 with D C A.

“«<": Suppose C respects all implications from J* U GB*. Assuming that is does not
respect all implications of J U &8 would imply A C C' and B € C. Yet, knowing
that C respects A7Y®® — B (being also trivially true for AYS® = B), we have
to conclude that A7YS® ¢ (. But, again by definition, A7YS® is the smallest set
containing A and respecting all implications from J U &8, enforcing A7Y®® C C
and therefore yielding a contradiction.

Let B = stembase(J). We prove the second property by showing that for all A —
B € &%, the set A is pseudo-closed wrt. (.)®. Note that from the construction of
the algorithm and the previous proof (including the fact that (.)?“©?® remains constant)
follows that, for all A — B € &8,

A= AG‘B\{AHB}. (*)

Now we assume A were not pseudo-closed for an A — B € &*B. Obviously, it is not
closed either. So there must exist a pseudo-closed set P C A with PS® ¢ A. Now,
consider Q := PS®\{A—5} By monotonicity, we then have Q C A. So the only
possibility to make PS® ¢ A true is that () does not respect A — B. Yet, this would
imply @ = A and consequently PS® = B. Now due to Proposition 2, we know, that
&% has to contain an implication C — D with C C P and C®% = PS® = B,
Moreover, due to the construction we know that D = C®® = B. Since (A — B) #
(C — B),wehave that C — B € 6B\ {A — B}. Yet, from this and C' C A follows
B C ASB\{A=B} contradicting the equation (*). O

Calculating the J-closure (without preprocessing) can be done in time O(|J]) due to
[8]. Hence, the presented algorithm runs in O(|J|?) i.e. quadratic time (this complexity
bound for the task accomplished by the algorithm had already been shown in [10]).
Mark that this algorithm naturally also determines all pseudo-intents (being just the
premises of the implications of &B).

4 Characterizing Pseudo-intents

Now, we will introduce notions that are essential for our aim to characterize pseudo-
intents non-recursively.

Definition 5 Ler K = (G, M, I) be a formal context and let P C M. We define
K[P] := (H, M, Ip) (say: K AUGMENTED BY P) as follows:

— H := GU/{gp} (where we presume gp & G) and
~ Ip=TU({gr} x P)
The following results are immediate consequences of this definition:

Lemma 1 Let K = (G, M, I) be a formal context and let P C M. Then

— forall g € G, we have g'? = ¢/, consl

— forall A C G, we have Alr = AL cons2

— forall A C M, we have AT = AP \ {gp}, cons3

— forall A C M with gp & AP, we have ATP1r = AT and cons4

— forall A C M with gp € AP, we have ATP1P = P AL cons5
Proof:

— consl This is trivial, since {m | gIlam} = {m | gI'm}.

— cons2 Due to decomp, we have Af4 = N geA g'4. Due to consl, this equals
ngeA g' = Al

— cons3 Consider an arbitrary g € G = H \ {gp}. The statement g € A" is
equivalent to gIpm for all m € A. Since - due to the definition - Ip and [
coincide on all objects but gp, this is equivalent to gIm for all m € A, which in
turn is the same as g € A”.

— cons4 From cons3, we conclude A/P1P = (Alr \ {gp})lr = AllP and by
cons2 follows Al1r = AT,

— cons5 From A'? = {gp}U(A'"\{gp}), we can conclude A'*'» = _ 1, g*
gF N Nyearrgry 97 = PN (A" \ {gp})'". Due to cons3, this equals
P N AP and due to cons2 this is just P N AL,

Proposition 5 Properties of augmentations.
A € T(K[A]), i.e., Ais an intent of K[A], cont[]

I(K) C Z(K[A]), i.e., every formal concept intent of K is also a concept intent
of K[4], mon|]

If A € I(K) then Z(K[A]) = Z(K), i.e., if an object is added to the context,
the intent of which is already an intent of K, the overall set of intents remains
unchanged. intid[]

Proof:
cont[]: Obviously, (947474, A) is a formal concept of K[A].
mon[]: This property follows directly from Proposition 4.

intid[]: Assume the contrary, i.e., there were a B € Z(K[A]) \ Z(K). Due
to decomp, we know B = Blala_ Obviously, g4 has to be in B4, since
otherwise B/afa = B!l by consd, contradicting B ¢ Z(K). Thus, due to
cons5, B = Blala = AN B!, Yet, knowing that A is an intent of K and due to
closn, the intersection of the two closed sets A and B’! has again to be closed,
we have found a contradiction to the assumption.

0O
To facilitate the intuition about context augmentations, consider Fig. 2, which shows
some augmentations of a small context and the impact of this on the set of concept
intents.
For our further line of argumentation, the motivating intuitive idea is (also conveyed by
the name) that a pseudo-intent is “almost an intent”. Since we know that augmenting
a context by an intent does not change the corresponding intent set, we could expect
that adding a pseudo-intent would result in just a very slight change. Considering the
slightest change possible we define the notion of an incrementor.

Definition 6 We say that P is an INCREMENTOR of K, if
— P is not a concept intent of K and

— for every concept intent A C M of K[P] we have B = P or B is a concept
intent of K.

Looking back at Fig. 2, we see, that in this case, the empty set would be an incrementor
of K. Moreover, it takes little consideration to verify that it is also a pseudointent of K.
The following theorem partly justifies our intuition by ensuring that every pseudointent
is indeed an incrementor.

Theorem 3 Let K be a formal context and P be a pseudo-intent of K. Then P is an
incrementor of K.

K Z(K)
(K [[ma [| ol
I1 x . {ma,ms},
92 X X {mi,ma, ms},

K[{m1, m3}] Z(K[{m1,m3}])
0.{m1}.{ma}, {ma},

g1 X X

9o > X }21,22};3?,7”3},{7”2,”13},
Iimrima} X X 1, M2, M3
K[{m2}] Z(K[{m2}])

| [ma [ms | ms | {ma},

g1 X X {ml,m2},
g2 X | % {ma, ms},
9{ms} X {m1,ma, ms3}
K[0] Z(K[0])

L [[my [ms] 0, {ms},

g1 X X {mhmz},

g2 X X {ma,m3},

9o {mlﬁm%m?’}

Figure 2: Examples for context augmentations and their consequences for the set of
concept intents. Intents added by the augmentation are underlined.

10

K Z(K)

L Lma [ma [ms [my] {ma, m3, ma},

L9 | [x [x [x] {ma, ma, m3,ma},
K[{m2, ms}] Z(K[{ma, ms}])

’ \ my \ mo \ ms \ my \ {mq, m3},

q x [x [x {ma2,ms, ma},
9{ms,m3} X X {mlvaam37m4},
K[{mo}] Z(K[{m2}])

| [[ma [mg [ma | {ma},

g X X X {ma, mg, my},
9{m2} X {m1, ma, mz, ma},

Figure 3: Counterexample for the coincidence of pseudo-intents and incrementors.

Proof: Consider the context K[P]. Let (A, B) be a formal concept of K[P]. We know,
that B = AP = N{a!? | a € A} (due to decomp).

Obviously, if gp & A, we have that (4, B) is a concept of K as well, since a/? = a
forall a # gp.

If gp € A, we have that B = g% N({a'? | a € A\ {gp}} which yields B =
POM{a! |ae A\ {gr}}.

Supposing pseudoclosedness of P, from Proposition 1 follows that B is an intent of K,
provided there exists some a € A\ {gp} with P Z a’. In the other case, we would
have B = P. Thus (P!#, P) is the only additional formal concept of K[P] compared
to K. This shows that P is an incrementor. o
Now it remains to investigate, whether this necessary condition for being a pseudo-
intent is also sufficient. Unfortunately, this is not the case as Fig. 3 illustrates: in this
example, {mqy, m3} is an incrementor of K but not a pseudo-intent since it contains the
pseudo-intent (} but not its closure {maq, ms, m4}.

Yet, examining this counter-example a bit further, we see that the set being an inremen-
tor but not a pseudo-intent contains a set being again an incrementor (namely {ms}) —
with no intent “in between”. This justifies to strengthen the condition accordingly. Yet,
prior to proving that this leads to the desired characterization, we show a lemma that
will facilitate the subsequent proof.

I

Lemma 2 Let K be a formal context and A be an incrementor of K. Then for any
pseudo-intent Q of K with Q C A and Q' ¢ A we even have A C Q1.

Proof: Assume the contrary, i.e. A Z Q!. Then, considering B := A N Q!!, we see
that B C A.

By cont[] and mon[], respectively, we know A4, Q' € T (K[A]) and hence by closN
also B € Z(K[A]).

11

On the other hand, B can not be an intent of K, since Q C B (following from Q C A
and Q C Q! — the latter by ext’’) but Q’/ ¢ B (this is because) C B implies
Q' C B by mon’! and B being an intent of K would mean B = BI)

So B must be an intent of K[A] that is neither A itself nor an intent of K. Yet, this
contradicts the assumption of A being an incrementor. O
Now we will provide and prove the announced non-recursive characterization for pseudo-
intents.

Theorem 4 Let K = (G, M, I) be a formal context and let P C M. P is a pseudo-
intent of K if and only if

P is an incrementor of K and inc
for every incrementor QQ C P, there is an intent R with Q C R C P. min
Proof:

oy
That every pseudo-intent is an incrementor has already been shown by Theorem 3.
We will prove the second condition min indirectly. Thus, we assume we have a pseudo-
intent P violating min, i.e., there is a () C P being an incrementor and for all R with
() C R C P, the set R is not an intent. Note that, from Theorem 3, we know that P is
an incrementor as well. () cannot be an intent (as this would contradict the definition
of incrementor), thus we consider the two remaining possibilities:

— Suppose @) is a pseudo-intent.

This would (due to the definition of pseudo-intent) naturally require @’/ to be
contained in P. Altogether this would mean: @ C Q' C P contradicting our
assumption. Hence, R cannot be a pseudo-intent.

— Now, suppose (is neither an intent nor a pseudo-intent.

Then — due to the definition of pseudo-intent — there has to exist a pseudo-intent
S C Qwith ST Z Q.

From Lemma 2 then additionally follows Q C S'/.

Since the definition of pseudo-intent requires P to contain S'/, we have the
setting: Q C ST C P. Yet, again, this obviously contradicts our assumption.

Thus, it is impossible that () is neither closed nor pseudo-closed wrt. K.

Concluding, @) can be neither an intent nor a pseudo-intent nor none of both. Hence,
the assumption of its existence must be false.

e
Assume the contrary, i.e., both conditions inc and min be fulfilled and yet P not be
a pseudo-intent. Obviously P is not an intent either (otherwise, it would not be an
incrementor by definition).

Therefore, P must be neither closed nor pseudo-closed. Then, by the definition of
pseudo-closedness, there must be a pseudo-closed set Q C P with Q! ¢ P.

12

function: incrementor (4,K)
—— Calculate AT, 1f AT =4,
output "NO" and terminate.

-— For all g€Q@,

- Calculate A:=g'NA.

If A=A then continue with next g.
- Calculate AT,
- 1f A# A then

output "NO" and terminate.

—— Output "YES" and terminate.

Figure 4: Algorithm incrementor (A, K) for checking whether A is an incremen-
tor of K.

From Lemma 2 follows that P C Q. Then, we have the setting @ C P C Q''.
Furthermore, note that Q C P C Q! entails Q! C P! C (Q'!)!! via mon!!
which together with idp’/ yields Q7! = P!!. But then, the very same argument yields
ST = QT for every S with Q C S C P (and therefore S # S!7). Clearly, this
contradicts the initial assumption min. a
After having established those results, it takes little consideration to see (referring to [3]
and [7]) that the incrementors of a formal context are just those quasi-intents which are
not intents. This allows to reuse the corresponding results. In particular, the following
corollary to the Proposition 2 from [7] can be used to check whether a given set is an
incrementor in polynomial time.

Theorem 5 P is an incrementor of K if and only if
— P is not an intent of K and

— forall g € G, we have P C g or g' N P is an intent of K.

S An Algorithm for Checking Pseudo-closedness

Applying the results cited and presented in the preceding sections, we will now provide
an algorithm for checking pseudo-closedness and analyze its complexity.* We start by
giving an algorithm computing whether for a given formal context K = (G, M, I), a
given attribute set A C M is an incrementor of K. This algorithm is shown in Fig. 4.

It is well-known, that the time complexity for computing the closure A’/ of a given
attribute set A is in O(|G/| - |M|) while comparing two sets or computing g’ for a given

4We expect the reader to be familiar with the basic notions from complexity theory

13

function: scan (A,K, check (.))

—-— For all ac A,
add A\ {a} to (previously empty) list L

-— Starting from the L’s first element
for every B from L

—If BH#AH,
continue with next list element.

— If check(B),
output "YES" and terminate.

- Otherwise, for every b€ B, append B\{b} to L
if not already contained.

-— if L processed,
output "NO" and terminate.

Figure 5: Algorithm scan for determining whether for a given A C M there is a
B c Awith B = AT and check (B).

object is less costly. Thus, regarding the time costs, the incrementor function con-
sists essentially of the |G|+ 1-fold calculation of the closure, hence its time complexity
isin O(|G|? - | M]).

Next, we provide an algorithm which for a given attribute set A, “scans” whether there
exists a set B C A with B! = A fulfilling an arbitrary computable criterion (de-
noted by the function check). This algorithm is shown in Fig. 5.

In general the time complexity of this algorithm is bounded by 2/*! times the com-
plexity of check

Finally, we employ the incrementor and the scan functions to formulate the al-
gorithm which actually checks for pseudo-closedness. This algorithm is displayed in
Fig. 6.

Resulting from the earlier complexity considerations, we find that its the time com-

function: pseudolntent (4,K)

—— Check whether incrementor (4,K).
If not so, output "NO" and terminate.

—-— If scan(A4,K, incrementor(.,K)),
output "NO" and terminate,
otherwise, output "YES" and terminate.

Figure 6: Algorithm pseudoIntent (A, K) for checking whether A is a pseudo-
intent of K.

14
plexity is in O(2/M1.

6 Optimization: Operating on the Reduced Context

We will now discuss in which way this algorithm can be optimized. One of the straight-
forward issues to think about would be whether the problem of identifying pseudo-
intents of a formal context K can be solved by checking for pseudo-closedness in the
reduced version of K. This should be possible, since — roughly spoken — a reduced
context contains the same implicative information as the original one.

Theorem 6 Let K = (G, M, I) be a formal contextand K* = (H, N, J) (with H C G
and N C M as well as J = I N (H x N)) the corresponding reduced context. Let
furthermore m* = m!! N N for any m € M. The fact that K* is a reduced version of
K then yields m* = !,

A set P C M is a pseudo-intent of K exactly if one of the following is true:

— there is a pseudo-intent P* of K* such that P = P*U{m € M\ N | m* C P*},
- P={m}UD foran m* # 0, or

-P=m*U{me M\N | m C m*}foranm € M\ N if there is no
pseudo-intent Q* of K* with Q*J‘] =m*.

15

Proof:
First note that the set

J=6B"uU{{m}—->m*|meM\N}U{m" — {m}|meM\N}

(where G9B”" is the stembase of K*) is sound and complete for the closure operator
(). So we will just show, that applying the stembase-algorithm from Section 3
just yields an implication set where the premises are exactly the sets presented above.
First we consider the result of point 2 of the algorithm:

— Every P* — P*’7 ¢ &%B* will be transformed to

P — P*JJ U {m ‘ m* C P*JJ}.
— Every {m} — m* will be transformed to
{m} - m*u{m | m" Cm*}.
— Every m* — {m} will be transformed to
m* —m*uU{m|m" Cm"}.
Now consider point 3:

— Every P* — P*!T will be transformed to
P*U{me M\N |m*c P*} — P

— Every {m} — m*!! will be

— deleted if m* = () or

— otherwise, transformed to {m} U ¢/ — m*!’,

— Bvery m* — {m}!! will be

— deleted, if there is a pseudo-intent Q* of K* with Q*”7 = m* or

— otherwise, transformed to
m*U{me M\ N|m cm*}— {m}’

O
These observations allow an optimization of the pseudo-closedness checking algorithm
from Fig. 6 in Section 5.
Considering the complexity, we can state the following. Due to [4], a formal context
can be reduced in O((|G|+|M|)-|G|-|M|) time (and is hence rather cheap). Therefore,
this optimization could be potentially beneficiary in cases where the context is not
already reduced, since the upper bound for the time complexity is decreased to O(Q‘N |).

16

function: pseudoIntentRed (A4, K)
—— Check whether incrementor (4,K).

If not so, output ''NO’’ and terminate.

—-- Calculate reduced context K* = (H,N,J)

-- Calculate P! and m* for all me M\ N.

-— I1f A\P!={a} C M\ N then
output ‘'WES’’ and terminate.

—— Calculate P*:=ANN.

—- Check whether A=P*U{me M\ N |m*C P*}.
If so, check whether pseudoIntent (P*,K*).
If so, output ''YES’’ and terminate.

—-— Check whether A=m*U{me M\ N |m*x C mx*}
for an me M\ N.
If so, check whether
scan (A, K*, incrementor (., K*)) .
If not so, output ‘'WES’’ and terminate.

—— Output "NO" and terminate.

Figure 7: Algorithm pseudoIntentRed for checking whether a set A is a pseudo-
intent of a formal context K.

7 Conclusions and Further Work

In our paper, we presented several results regarding pseudo-intents. We showed how
an arbitrary implication set can be turned into a stem base (the premises of which are
per definitionem just the pseudo-intents). Furthermore, based on a characterization of
pseudo-intents via incrementors and using known results about quasi-intents, we pro-
vided an algorithm which allows to decide for a given formal context K and an attribute
set P whether P is a pseudo-intent of K Moreover, we showed how this algorithm can
be further optimized by calculating with the reduced version of the considered context.
Although the complexity questions mentioned in the beginning remain unsolved, we
hope that the structural insights presented in this paper might contribute to their solu-
tion. Of course this would be a main goal of further research.

On the other hand, comprehensive experiments would be the next step to investigate
how the algorithms proposed here perform in practical cases (albeit not having sub-
stantial evidence for this, our conjecture is that the average complexity would be much
better than suggested by our worst-case analyses).

Finally, if this should be the case, the provided algorithms could be used for developing
new data-mining and exploration methods.

17

References

[1]

(2]

(3]

[4]

[6]

(7]

(10]

Alan Day. The lattice theory of functional dependencies and normal decomposi-
tions. International Journal of Algebra and Computation, 2(4):409—-431, 1992.

William F. Dowling and Jean H. Gallier. Linear-time algorithms for testing the
satisfiability of propositional Horn formulae. J. Log. Program., 1(3):267-284,
1984.

Bernhard Ganter. Two basic algorithms in concept analysis. Technical Report
831, FB4, TH Darmstadt, 1984.

Bernhard Ganter and Rudolf Wille. Formal Concept Analysis: Mathemati-
cal Foundations. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1997.
Translator-C. Franzke.

J.-L. Guigues and Vincent Duquenne. Familles minimales d’implications infor-
matives resultant d’un tableau de données binaires. Math. Sci Humaines, 95:5-18,
1986.

S. O. Kuznetsov. On the intractability of computing the Duquenne-Guigues base.
Journal of Universal Computer Science, 10(8):927-933, 2004.

Sergei O. Kuznetsov and Sergei A. Obiedkov. Counting pseudo-intents and #P-
completeness. In Rokia Missaoui and Jiirg Schmid, editors, ICFCA, volume 3874
of Lecture Notes in Computer Science, pages 306-308. Springer, 2006.

David Maier. The Theory of Relational Databases. Computer Science Press,
1983.

Uta Priss. Some open problems in formal concept analysis. http://www.
upriss.org.uk/fca/problems06.pdf, FEB 2006.

Marcel Wild. Implicational bases for finite closure systems. In Wilfried Lex,
editor, Arbeitstagung Begriffsanalyse und Kiinstliche Intelligenz, pages 147-169.
Springer, 1991.

