
Self-organized Invasive Parallel Optimization

Sanaz Mostaghim
Institute AIFB

Karlsruhe Institute of
Technology

Karlsruhe, Germany
sanaz.mostaghim@kit.edu

Friederike Pfeiffer
Institute AIFB

Karlsruhe Institute of
Technology

Karlsruhe, Germany
friederike.pfeiffer@kit.edu

Hartmut Schmeck
Institute AIFB

Karlsruhe Institute of
Technology

Karlsruhe, Germany
hartmut.schmeck@kit.edu

ABSTRACT
Self-organized Invasive Parallel Optimization (SIPO) is a
new framework for solving optimization problems on parallel
platforms. In contrast to existing approaches, the resources
in SIPO are self-organized and represented as a unified re-
source to the user who specifies the optimization problem
and its preferences to the system. SIPO starts working with
one resource and automatically divides the optimization task
stepwise into smaller tasks which are assigned to more re-
sources. This job assignment is decided on demand by the
resources. The novelty here is that there is no need to specify
the number of parallel computing resources in the beginning
of the optimization. This number is estimated during the
optimization process by the resources. The proposed new
framework of SIPO is described in this paper with respect
to multi-objective optimization problems but it has a much
larger scope. A comparative evaluation of using SIPO in
multi-objective optimization problems shows that this adap-
tive approach can obtain equally good or sometimes even
better solutions than other parallel and non-parallel meth-
ods which are not self-organized.

Categories and Subject Descriptors
1.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods and Search

General Terms
Algorithms, Performance

Keywords
self-organized optimization

1. INTRODUCTION
In recent years, we have been witnessing highly parallel

systems for computations such as grids, clouds and multi/many-
core systems [2]. These systems facilitate parallel computa-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
BADS’11, June 14, 2011, Karlsruhe, Germany.
Copyright 2011 ACM 978-1-4503-0733-8/11/06 ...$10.00.

tion of very difficult and time consuming scientific prob-
lems (e.g., optimizing parameters in pharmaceutical pro-
ducts) which could not be solved in the past. In the future,
even more computing resources will be available to solve
even harder problems. However, as it is difficult for users
to explicitly control highly parallel systems, we need to de-
sign new algorithms and frameworks to let the computing
resources work in a self-organized way. Optimization and
particularly multi-objective optimization algorithms as ma-
jor tools in computational science can significantly benefit
from performing computations on such parallel platforms.

In this paper, we introduce a new framework for parallel
optimization in a scenario where the computing resources co-
operate to solve an optimization problem. The computation
starts with one available computing resource to which the
problem and the user preferences are given. According to the
user preferences, the starting processor performs a rough op-
timization and divides its partition into smaller partitions.
It assigns the partitions for further optimization to other
processors in the platform. As soon as a processing unit gets
a job for optimization, it performs the same procedure de-
scribed above and either assigns new jobs to other processors
or stops the optimization process in its partition. In SIPO,
the approximation of the optimal solutions gets more pre-
cise over the successive divisions of the tasks. From another
point of view, the optimization starts from one computing
resource and then successively occupies more resources for
computation until the computing resources can not obtain
any better solutions. The parallel resources are released one
by one until there is no computing resource required for the
optimization and in fact, the system stops automatically. In
addition, the resources partition the tasks and synchronize
themselves over the optimization process. We call this ap-
proach Self-organized Invasive Parallel Optimization
(SIPO) as it is inspired by invasive computing in many-core
systems [1]. In contrast to other approaches in parallel opti-
mization where users set a preliminary number of resources
which are available in a laboratory, cluster or grid and run
the parallel algorithm on them, our approach has the ad-
vantage that the number of required processors need not to
be known in advance. For instance, in some versions of the
island model, the user divides the parameter or objective
space into a certain number of sub-spaces which are then
assigned to processors [19, 5, 13]. For unknown problems,
dividing the space is very difficult, yet very important for
estimating the number of required resources to obtain an
acceptable set of solutions. In our approach, these tasks are
performed by the resources on demand.

SIPO is a general framework for self-organized parallel op-
timization. However, in order to validate the functionality
of SIPO, we investigate multi-objective problems in this pa-
per. The main property of the optimization method in SIPO
is that it must be able to focus inside a given interval. This
kind of optimization for multi-objective problems is studied
in the context of guided multi-objective evolutionary algo-
rithms [4] and preference-based optimization e.g., [16, 22,
20] where the user specifies a desired area. However, focus-
ing and keeping the solutions in an interval in the objec-
tive space is very difficult as the optimization performs the
search in the parameter space. For this purpose, Particle
Swarm Optimization methods [16] are shown to be suitable
and therefore we investigate a variant of PSO in our paper.

In order to evaluate SIPO, we select a platform of paral-
lel resources which communicate through a shared memory.
We examine SIPO on three different kinds of continuous
multi-objective optimization problems with different shapes
of Pareto-fronts and observe the behavior of SIPO on several
parameters. In the experiments, we measure the maximum
number of required parallel processors on our self-organized
platform. Additionally, the speed-up factor is measured by
comparing our results with the results of baseline parallel
and non-parallel algorithms.

This paper is organized as follows: After a short descrip-
tion of multi-objective problems below, we outline our ap-
proach Self-organized Invasive Parallel Optimization (SIPO)
in Section 2. The division process in SIPO is explained more
into details in Section 3 and the optimization algorithm em-
ployed in SIPO is explained in Section 4. Section 5 contains
the experiments and the analysis of the results. The paper
is concluded in the last section.

Multi-objective Problems
Typically a Multi-Objective Problem (MOP) involves sev-
eral objectives which have to be optimized simultaneously,

i.e. the objective function is multi-dimensional ~f : Rn → Rm:

min
~x∈S⊂Rn

fi(~x) for i = 1 . . .m

We denote the image of S by Z ⊂ Rm and call it the ob-
jective space, the elements of Z are called objective vectors.
Since we are dealing with MOPs, there is not generally one
global optimum but a set of so-called Pareto optimal so-
lutions. A decision vector ~x1 ∈ S is called Pareto-optimal
if there is no other decision vector ~x2 ∈ S that dominates
it: ~x1 is said to dominate ~x2 if ~x1 is not worse than ~x2 in all
of the objectives and it is strictly better than ~x2 in at least
one objective. An objective vector is called Pareto-optimal
if the corresponding decision vector is Pareto-optimal.

2. SELF-ORGANIZED INVASIVE PARAL-
LEL OPTIMIZATION (SIPO)

The most important elements in designing a parallel opti-
mization algorithm are: 1- task partitioning, 2- task schedul-
ing and 3- task synchronization [6]. In this paper we aim to
design SIPO so that the computing resources collaborate
and communicate with each other and perform the above
tasks themselves without involvement of the users. This is
in contrast to most of the existing algorithms where these
tasks are pre-determined by users [19, 14].

To start SIPO, the user is asked to give a rough estimation
of the position of the Pareto-front in terms of one objective

in the objective space. This can be an interval, for instance
[0, 10] for one of the objectives with the true Pareto-front in
[0, 1]. This rough estimation is only used in the beginning
of the algorithm and can even contain an infeasible area.
In SIPO, every processing unit to which an interval (job) is
assigned must perform the following four steps:

1. Optimize inside a given interval to find a rough esti-
mation of the optimal solutions

2. Communicate the results to other resources through a
shared memory

3. Evaluate the obtained results in the interval: either
select the interval for further divisions or go idle

4. Assign jobs to other resources: in case of further divi-
sions, divide the interval into a number of smaller in-
tervals, take one interval for itself and assign the rest
of the intervals to other computing resources

In the above steps, the resources require two kinds of com-
munication: A) communicating the results and B) assigning
jobs to other resources. Communication of the results be-
tween the processors is achieved through a global archive
in a shared memory. The global archive is accessible to all
the computing resources and can be updated by them. As
soon as the optimization process in the given interval is fin-
ished, the obtained results are written in the global archive.
Thereby, the global archive is kept dominated-free. By us-
ing the concept of shared memory, it is not necessary to
synchronize the resources and SIPO can be performed on
heterogeneous as well as on homogeneous resources. The
other communication type in SIPO concerns the job assign-
ment strategy, i.e., a processing unit should be able to find
idle processors and assign jobs (intervals) to them. This can
be performed in different ways. For instance, every proces-
sor that is in idle mode can be reached by other processors
through a network addressing methodology such as anycast
or unicast. Another communication mechanism is to store
a list of idle processors in the shared memory. Before a pro-
cessor goes to idle mode, it stores its address in this list
which can be accessed by a processor looking for idle re-
sources. The problem-heap and tuple space approaches [12,
11] are other and well-known possibilities for self-organized
job assignment which is to write the optimization intervals
(jobs) in a shared memory called problem-heap or tuple
space which can be accessed, read and executed by other
processors.

SIPO is a mixture of island and master-slave model of
parallel optimization [19, 21]: every computing resource runs
an optimization algorithm on a subproblem, hence the island
model. In addition, every computing resource can assign
jobs to other resources as in a master-slave model.

Each computing resource to which a job is assigned for
optimization runs the same algorithm as illustrated in Al-
gorithm 1. In fact, the division process continues until no
interval survives the selection mechanism, i.e., there is no
interval to be optimized. As a consequence, the algorithm
stops automatically.

The output of Algorithm 1 is the global archive (A) lo-
cated in the shared memory. Function Optimize(I) indi-
cates an optimization algorithm which focuses on a given
interval I and produces a local archive (a) containing non-
dominated solutions. The solutions of this optimization al-
gorithm must be only a rough approximation of the optimal

Algorithm 1: SIPO

Input: I given Interval
Output: A global archive

a := Optimize(I)
Decide if I is kept for further divisions:
if (SelectInterval(I, A, a)== TRUE) then

A := Update(A, a)
ListI = Divide(I,NumofDivisions)
Assign-Jobs(ListI , NumofDivisons)

else
A := Update(A, a)
go idle

end

solutions in the interval. By the Function Update, the out-
put of the optimization a is merged into a dominated-free
global archive A. Before updating the global archive A, the
Function SelectInterval(I, A, a) decides if the interval I is
kept for further divisions or not (this is explained more into
detail in the next section). If the result is true, the Function
Divide(I,NumofDivisons) divides the input interval I into
NumofDivisions intervals listed in a List. The Function
Assign-Jobs indicates the job assignment strategy explained
above.

SIPO is a decentralized approach, but from a central point
of view, this invasive optimization is like successive divisions
of intervals through several iterations (depth) where each
interval is assigned to a processing unit.
Example: Suppose, we start from one computing resource
containing one interval I0 and divide the selected intervals
to 2 intervals each time the intervals are divided (Figure 1).
The parameter d indicates the depth (age) of divisions. The
intervals selected for further divisions are marked in gray
colors. The maximum value for depth parameter d is 5 and
the maximum number of parallel intervals (required proces-
sors) is indicated by the maximum number of intervals as
8 at depth 3. Altogether, we require 8 parallel processors
which are run simultaneously. Overall, an optimization al-
gorithm is run for 20 times. �

3. SPACE DIVISION
Space division is the most straightforward way of assigning

partitions to different processors. The first known approach
in multi-objective optimization is proposed by Branke et
al. [5] where the objective space is divided into cones. Other
similar approaches are reported, e.g. in [19, 10].

In our approach, the objective space is divided in terms
of one objective1. For starting our division process, the user
has to give a rough estimation about the position of the
Pareto-front. In addition, the user can specify the number
of processing units he wants to start with. In the following,
we explain how the division and deletion of the intervals
happen in our approach.

Interval Selection
The Function SelectInterval(I, A, a) decides, as explained in
Algorithm 1, whether an interval can be divided further into

1This can be employed to all of the objectives resulting in
many small intervals.

I [2]2I [1]2
I [3]2 I [4]2

I [1]3 I [2]3 I [3]3 I [4]3 I [5]3 I [6]3
I [7]3 I [8]3

I [1]4 I [2]4 I [3]4 I [4]4

depth

d = 5
I [1]

number of processors

5 I [2]5

I0

I [1]1
I [2]1

Figure 1: Example: Each box indicates an interval
assigned to a processor for optimization. Through a
selection process the gray colored boxes are further
divided into two smaller intervals.

smaller intervals or not. For making this decision, the results
a obtained in the interval are analyzed and compared with
the stored results in the global archive A. The interval I is
kept for further divisions, if:

1. a part of the global archive A is located within the
interval (except for depth zero) and

2. some improvements of the results a in terms of quality
are observed by comparing them with the results in
the global archive A.

For case (2), we employ the hypervolume measurement (smet-
ric in [23]). We compute the hypervolume of the results in
a and compare them with the hypervolume of the results of
A which are also located in the interval. If the difference is
greater than a threshold value T , the interval survives the
selection mechanism for further divisions. The value of T
can be set as a constant or can adaptively change based on
the depth of the interval. In the beginning, at depth 1 or
2, the solutions in a have better quality than those in A
(global archive), therefore we want to keep the interval and
further divide it. At this stage, the threshold value must
be very small so that almost all the intervals can survive.
For higher depth values such as 7 (an interval is divided
7 times), it is desired to stop if the results are not signifi-
cantly better. Therefore, T must be large enough. Thereby,
T can adaptively change over depth with T = sL× d2 with
significantLevel sL = 0.005.

One could select other methods for computing the im-
provement inside an interval, for instance comparing the
generational distance [7] between the global archive and the
obtained archive in the interval. The intervals which do not
survive the selection mechanism are not considered anymore
for the rest of the computations. In fact, after a certain num-
ber of depths, many intervals are not selected anymore and
the number of required processors reduces until the results
are not being improved and the algorithm stops automati-
cally.

This selection mechanism and the above mentioned crite-
rion for removing an interval from the list of intervals may

cause an undesired effect of producing gaps along the ob-
tained approximated front. The phenomenon is observed in
the subdivision method [18] where the front is reconstructed
by applying recovering methods to the obtained front at the
end.

4. FOCUSING MULTI-OBJECTIVE OPTI-
MIZATION

SIPO is considered to be a general framework for self-orga-
nized parallel optimization. In this paper, in order to illus-
trate its functionality, we work on population-based meth-
ods to solve multi-objective problems. While the goal in
many of the multi-objective algorithms is to find a set of op-
timal solutions with good diversity and convergence on the
true Pareto-front, the so called preference-based optimiza-
tion techniques or guided optimization methods are particu-
larly designed to focus on desired and preferred areas defined
by the user. These kinds of optimization methods are espe-
cially suitable for optimization in SIPO as the optimization
must focus inside some given interval. Recently, a catego-
rization of existing approaches for different preference speci-
fications required by the user has been given in [3, 20]. Since
it is straight forward to guide a population of solutions in
the objective space by Particle Swarm Optimization (PSO)
techniques, e.g. [16, 17, 22], we select PSO as a possible
approach for optimization in SIPO.

In Multi-Objective PSO (MOPSO), a set of N particles
are considered as a population Pt in generation t. Each
particle i has a position and velocity defined by ~xi and ~vi in
the search space S ∈ Rn. In generation t+ 1, a new velocity
and position for each particle i is generated by updating the
old ones as follows:

vj,t+1
i = Wvj,ti + c1R1(P j,t

i − x
j,t
i) + c2R2(P j,t

g − xj,ti)

xj,t+1
i = xj,ti + vj,t+1

i (1)

where j = 1, · · · , n, W is called the inertia weight of the
particle, c1 and c2 are two positive constants which we set
to one, and R1 and R2 are random values in the range [0, 1].

In Equation (1), ~P t
i denotes the best position which the par-

ticle i has obtained so far and is updated in every iteration.
~P t
g denotes the position of the so called global best particle

which is typically selected from a set of non-dominated solu-
tion. Since the global best particle has a great impact on the
diversity of solutions in MOPSO, we use it in the following
to focus on an interval. For a more extensive treatment of
MOPSO techniques in general, the reader is referred to [17].

Imagine a population of particles is supposed to focus on
an interval [a, b] in the objective space (Figure 2). We se-
lect the non-dominated particle closest to the middle of the
interval as the only global best particle ~P t

g for all other par-
ticles in the population and denote it as Gt. The role of this
global best particle is to guide all the particles towards the
middle of the interval. In order to increase the impact of
this solution, we change Equation 1 to:

vj,t+1
i = Wvj,ti +R1(1−Wf)(P j,t

i − x
j,t
i)

+ R2Wf (Gj,t − xj,ti) (2)

where 0 ≤Wf ≤ 1 and is called focusing factor. If we set it
to one, Gt will influence the population to exploit the region
around it. The lower this value, the higher is the impact of
the personal best P t

i .

b

1

f
2

a

f

Figure 2: Focusing MOPSO inside the interval [a, b]:
The non-dominated solution closest to the middle
of the interval (white particle) is selected as the
only global best particle for the population mem-
bers (black particles).

In order to avoid stagnation in local optima, we usually
employ a turbulence factor [15]. This works by randomly
changing the positions of a given percentage of the particles
in the parameter space. In our case, if we apply the turbu-
lence factor to the particles in the entire parameter space,
the solutions easily go out of the desired interval. As we
want to focus on an interval, we only allow a percentage
of particles to randomly move in a fixed area around the
selected global best. In this way, we force a percentage of
particles indicated by a local search factor to perform a
local search by unified random sampling around the global
best. This parameter will be tested in our experiments.

Algorithm 2: Focusing MOPSO

Input: I := [Imin, Imax] interval
Output: a local archive

a0 := [] empty local archive

a0 = AccessGlobalArchive
for i = 1 to PopSize do

pop0(i) = Initialize(x0i , v
0
i , P

0
i)

end
for t = 1 to iterations do

Gt = FindGlobalBest(popt−1, at−1, I)

(popt, at) = Update(popt−1, Gt)

(popt, at) = LocalSearch(Gt, LS)
end

Algorithm 2 briefly explains Focusing MOPSO. The op-
erations are employed for all the dimensions j which are not
illustrated in the Algorithm. The goal of this algorithm is
to create a local archive a which is first set equal to the
global archive A (in the shared memory) by the function
AccessGlobalArchive and then updated. Within a given
interval I, the algorithm finds a global best solution Gt

which is an input to the Function Update(popt−1, Gt). This
function updates the positions and velocities of the parti-
cles in the population popt−1 according to Equation 2. The
non-dominated solutions are stored in the local archive at.
The positions of the personal best particles are computed
in this function which saves the most recent non-dominated
position that a particle could obtain so far. The Function
LocalSearch(Gt, LS) performs a local search in a fixed area
around the global best Gt. LS is the local search factor
which is a percentage indicating the number of particles used

for the local search. Hereby, the population and the archive
are updated again.

5. EXPERIMENTS
We select three different test problems containing convex,

concave and disconnected fronts. Due to space limit in this
paper, we only report the results on the well-known ZDT1,
2 and 3 functions [9]. As in SIPO the quality of solutions
gets more precise over the division process, the optimization
algorithm in each interval must only find a rough approxima-
tion of solutions. Therefore, Focusing MOPSO (F-MOPSO)
is run for 20 particles and 20 iterations in all the experi-
ments. The maximal global archive size is kept to 100 by
a clustering mechanism [15]. We select the standard value
0.4 for inertia weight. All the experiments are repeated for
30 different runs. The starting interval is selected as [0, 1]
along the first objective for all the test problems.

In the parallel environment, we suppose that the proces-
sors have the same properties (in terms of memory and com-
puting power)2. The communication overhead between the
resources is considered to be negligible. The access to the
global archive is achieved by using a shared memory. We
start the computation from one and two computing resource
and set the NumofDivisions to 2. Since we work on a
simulation of the parallel environment, the job assignment
strategy is not being studied here.

For evaluations, we compute the average number of func-
tion evaluations and the quality of solutions based on the
hypervolume metric (smetric in [23]). We set the reference
point to (3, 3). In addition, we measure the average number
of required resources over different depths in the algorithm.

In SIPO, the number of required resources is estimated
based on the quality of obtained solutions during the opti-
mization. As a consequence, SIPO does not require an ex-
plicit stopping criteria, but the number of evaluations varies
for different runs and settings which makes it difficult to
compare two different sets of solutions. Therefore, we com-
pare the results by looking at the quality (hypervolume) and
the corresponding number of required evaluations. It is ob-
vious, that if we have more function evaluations, we obtain
better results with higher values of hypervolume. The best
setting must have the smallest number of evaluations and
the largest hypervolume.

5.1 Results
Table 1 shows the results of the first experiments. HV

and SEHV indicate the average hypervolume and the cor-
responding standard error. #Ev and SEEv show the aver-
age number of required evaluations and the standard error.
#AMP is the average maximum number of processors re-
quired for the entire optimization process whereas #MAPD

indicates the maximum of the average number of processors
required in one depth.

In the following, we first find the best parameter settings
for F-MOPSO and then analyze different aspects of paral-
lelization. The first experiments are carried out to determine
the impact of the focusing factor Wf . The role of the global
best particle is to guide the particles in the middle of a given
interval. All of the experiments for ZDT1 and ZDT3 show
that Wf = 1.0 gives us the best average HV with similar or
even better results in terms of number of evaluations #Ev

2This factor does not have an impact in our approach.

Table 1: Results of SIPO for different focusing factor
Wf , number of starting processors #SP and local
search factors LS on ZDT1, ZDT2 and ZDT3 test
problems

Wf #SP LS HV SEHV #Ev SEEv #AMP #MAPD

ZDT1
1.0 1 0.4 8.2441 0.0467 16380 729 39.0 12.4
1.0 2 0.4 8.4072 0.0374 26544 1118 63.2 20.4
1.0 1 0.3 8.3137 0.0473 16968 679 40.4 13.3
1.0 2 0.3 8.3680 0.0437 28728 1044 68.4 23.3
1.0 1 0.2 8.3781 0.0489 17836 859 42.5 13.1
1.0 2 0.2 8.3604 0.0452 26096 1179 62.1 21.7
1.0 1 0.1 8.2643 0.0580 19992 1097 47.6 13.9
1.0 2 0.1 8.2720 0.0445 27384 1519 65.2 20.3
0.9 1 0.4 8.0218 0.0611 16520 710 39.3 12.5
0.9 2 0.4 8.2065 0.0435 26656 1198 63.5 19.5
0.9 1 0.3 8.0985 0.0571 17668 733 42.1 12.7
0.9 2 0.3 8.0402 0.0452 26684 1407 63.5 20.9
0.9 1 0.2 7.9798 0.0660 20552 957 48.9 14.9
0.9 2 0.2 8.0190 0.0490 24360 1440 58.0 17.0
0.9 1 0.1 7.7029 0.0843 19992 1270 47.6 14.8
0.9 2 0.1 7.7727 0.0633 26124 1486 62.2 17.1

ZDT2
1.0 1 0.4 7.2479 0.1810 10304 935 24.5 8.6
1.0 2 0.4 7.6307 0.1675 13328 1215 31.7 11.5
1.0 1 0.3 7.6120 0.1428 10276 810 24.5 8.4
1.0 2 0.3 7.4506 0.1595 12572 1015 29.9 9.0
1.0 1 0.2 6.9770 0.3010 9632 1029 22.9 8.9
1.0 2 0.2 7.4152 0.1778 13272 1304 31.6 11.0
1.0 1 0.1 6.9374 0.3056 10612 1143 25.3 8.6
1.0 2 0.1 6.8399 0.2611 10696 1195 25.5 8.8
0.9 1 0.4 6.4351 0.2489 7756 959 18.5 5.0
0.9 2 0.4 6.8238 0.1460 11032 1174 26.3 5.9
0.9 1 0.3 6.2715 0.1560 6608 732 15.7 4.1
0.9 2 0.3 6.6565 0.1627 9632 1099 22.9 5.2
0.9 1 0.2 6.0436 0.1786 6188 710 14.7 3.6
0.9 2 0.2 6.3902 0.1811 8596 773 20.5 4.3
0.9 1 0.1 4.9071 0.3719 5096 796 12.1 2.7
0.9 2 0.1 5.7303 0.2340 6496 765 15.5 4.0

ZDT3
1.0 1 0.4 9.1450 0.1056 13076 488 31.1 9.7
1.0 2 0.4 9.4120 0.0755 15148 638 36.1 10.1
1.0 1 0.3 9.3122 0.0891 13216 577 31.5 9.4
1.0 2 0.3 9.5139 0.0757 16828 638 40.1 11.4
1.0 1 0.2 9.2614 0.0769 13384 525 31.9 9.5
1.0 2 0.2 9.3338 0.0762 16156 667 38.5 10.5
1.0 1 0.1 9.0677 0.1060 15204 615 36.2 10.0
1.0 2 0.1 9.1793 0.1193 17948 921 42.7 12.1
0.9 1 0.4 8.8418 0.0934 13692 462 32.6 9.5
0.9 2 0.4 8.6382 0.1039 14588 852 34.7 9.9
0.9 1 0.3 8.8589 0.0888 13916 496 33.1 9.8
0.9 2 0.3 8.6723 0.0919 15820 927 37.7 9.7
0.9 1 0.2 8.4806 0.0944 14504 660 34.5 9.2
0.9 2 0.2 8.5982 0.1152 15540 950 37.0 9.4
0.9 1 0.1 8.0370 0.1333 14448 900 34.4 8.7
0.9 2 0.1 8.0830 0.1464 16100 1055 38.3 9.5

and number of intervals #AMP and #MAPD. For ZDT2,
Wf = 1.0 gives us also the best average HV , whereas we
require more #Ev (average of 200) than for Wf = 0.9. How-
ever, these results clearly show that the focusing factor in
our approach must be the highest. The local search fac-
tor LS in F-MOPSO has a great impact on the solutions
as we need to focus inside the intervals and additionally
avoid stagnation in local optima. We select a fixed area of
0.2 around the global best particle for performing the local
search for all the test problems. This value is set according
to our preliminary experiments. Table 1 shows the results
for different values of LS. From the results in Table 1, we
observe that SIPOs with one starting processor outperform
all SIPOs with 2 starting processors for all the LS values,
as the solutions with #SP = 1 clearly require less #Ev
for the same HV than those with #SP = 2. Concerning
the focusing factor Wf , we conclude, as discussed before,

0

2

4

6

8

10

12

14

16

18

20

22

0 1 2 3 4 5 6 7 8

ZDT1-SIPO-1.0-1-0.2

ZDT2-SIPO-1.0-1-0.3

ZDT3-SIPO-1.0-1-0.3

30 30 30 30 30 30 30 30 30 30 30 30 30 29 30 30 19 30 15 6 10 7 3 1 3 0 0

d

#p

Figure 3: The average number of computing resources required by SIPO-1.0-1-0.2 and SIPO-1.0-1-0.3 in
each depth is shown for ZDT1, ZDT2 and ZDT3. The columns show the minimum and the maximum
number of processing units. The numbers below the columns describe the number of runs which reached the
corresponding depth.

that SIPO-1.0-1 (SIPO-Wf -#SP) has a larger hypervolume
and almost the same number of function evaluations than
SIPO-0.9-1 for all the test problems. Among the solutions
with the same Wf and #SP values, the solutions obtained
with local search factor (LS) of 0.2 have the best HV and
#Ev for ZDT1, whereas 0.3 for ZDT2 and ZDT3. For the
next experiments and comparisons, we take these best re-
sults as (SIPO-Wf -#SP -LS) SIPO-1.0-1-0.2 for ZDT1 and
SIPO-1.0-1-0.3 for ZDT2 and ZDT3.

In the following, we investigate the average maximum
number of required processors #AMP and the maximum
average number of resources at one depth #MAPD by SIPO-
1.0-1-0.2 for ZDT1 and SIPO-1.0-1-0.3 for ZDT2 and ZDT3
as shown in Table 1. We obtain #AMP values of 42.5, 24.5
and 31.5 and #MAPD values of 13.1, 8.4 and 9.4 for ZDT1,
ZDT2 and ZDT3, respectively. The number of resources at
each depth illustrates the parallel resources required at the
same time. This indicates that for our test problems, we
require a maximum of 14 (13.1) processors in average, 22
processors the highest and 1 processor the lowest which is
illustrated in Figure 3. Since we run SIPO for 30 different
runs, we realize that not all of them reach the same depth.
Some runs stop the optimization earlier than the others.
Therefore, we indicate the number of runs which success-
fully reached a certain depth in Figure 3. We observe that
in most of the cases, the intervals survive 5 successive divi-
sions. The further divisions at depth 6 can be considered as
fine corrections on the approximated Pareto-front.

5.2 Comparison
For a more in-depth evaluation, we additionally compare

the results of SIPO with a number of straight forward alter-
natives below. Based on these comparisons, one can com-
pute the speed-up factors in parallelization. For these com-
parisons, we select the best obtained results from above,
namely SIPO-1.0-1-0.2 for ZDT1 and SIPO-1.0-1-0.3 for ZDT2
and ZDT3.

• Case 1: Instead of running a parallel algorithm, a
simple alternative would just be to run a single multi-
objective algorithm on one processor available for the
same number of evaluations. While this scenario uses
less computational power overall, it will tell us how
much we can benefit from parallelization. We select a
baseline algorithm which obtains the best results for
these problems according to [8] and compare the al-
gorithms in terms of convergence rate. We select the
standard parameter setting for the baseline algorithm
(NSGA-II) from [8] (population size 100, 200 genera-
tions, 0.9 probability of crossover with ηc = 15 and
0.033 probability of mutation with ηm = 20).

• Case 2: We take the maximum number of processors
which SIPO requires in average for the optimization
and use them in parallel for the same number of eval-
uations. We divide the main given interval in terms of
the first objective. Each processor gets an interval ded-
icated by us for the optimization and runs F-MOPSO
to focus on. By this experiment, we want to observe
the influence of different depths on the quality of the
results. We take #Ev from SIPO-1.0-1-0.2 / SIPO-
1.0-1-0.3 (17836, 10276 and 13216 for ZDT1 to ZDT3)
and divide that by #AMP (43, 25 and 32). In this
way, we compute #Ev for each processor. The num-
ber of particles is kept to 20 and therefore the number
of iterations is 21 for all the problems.

• Case 3: We take the maximum average number of
processors which are run in parallel by SIPO, i.e., the
maximum average number of processors required in
one depth (#MAPD). Like in Case 2, we divide the
given interval into sub-intervals and run the proces-
sors in parallel and altogether for the same number
of evaluations. This experiment is meant to measure
the quality of solutions, when we only have a certain
number of processors available for a longer time than
in Case 2. In more details, we take #Ev from SIPO-
1.0-1-0.2 / SIPO-1.0-1-0.3 (17836, 10276 and 13216 for
ZDT1 to ZDT3) and divide that by #MAPD (13, 8
and 9). The number of iterations in each processor is

-2

0

2

4

6

8

0 2000 4000 6000 8000 10000 12000 14000 16000

NSGA-II

SIPO-1.0-1-0.2

HV

Ev

(a) ZDT1

-8

-6

-4

-2

0

2

4

6

8

0 2000 4000 6000 8000 10000

NSGA-II

SIPO-1.0-1-0.3

HV

Ev

(b) ZDT2

(c) ZDT3

Figure 4: Quality in terms of the average hypervol-
ume of the best results obtained by SIPO in com-
parison with the baseline algorithm (NSGA-II) over
the number of evaluations

computed as 69, 64 and 73 for ZDT1 to ZDT3 for 20
particles.

• Case 4: We take the average of the maximum num-
ber of parallel processors over all depths by SIPO. The
average values are 8, 7 and 6 for the three test prob-
lems. Like in other cases, we divide the given interval
into sub-intervals and run the processors in parallel
for the same number of evaluations. In more details,
we take #Ev from SIPO-1.0-1-0.2 / SIPO-1.0-1-0.3
(17836, 10276 and 13216 for ZDT1 to ZDT3) and di-
vide that by 8, 7 and 6. The number of iterations
in each processor is computed as 111, 73 and 110 for
ZDT1 to ZDT3 for 20 particles.

Figures 4 (a)-(c) show the results of SIPO and Case 1 for
ZDT1 to ZDT3 with the corresponding standard errors. The
two methods have equally good and small standard errors.
The plots indicate the average values of hypervolume over
the number of evaluations. In these experiments, SIPO ob-
tains for a small #Ev better solutions than NSGA-II for
ZDT1 to ZDT3. NSGA-II clearly obtains very good solu-
tions for higher #Ev and the convergence rate increases by
increasing the amount of evaluations. However, SIPO has a
faster convergence in the beginning which can be explained
by the parallelization effect. SIPO has a stair-like growth in
the convergence rate, as the global archive is updated after
each depth. SIPO behaves worse than NSGA-II the more
#Ev is increasing. We explain this by the circumstance,
that after the first two depth some of the good intervals are
omitted due to missing nondominated solutions in these in-

Table 2: Results of SIPO, Case 2, Case 3 and Case 4
with Wf = 1.0 and LS of 0.2 (ZDT1) and 0.3 (ZDT2
and ZDT3)

Test HV SEHV #Ev #AMP
ZDT1 SIPO 8.3781 0.0489 17836(±859) 42.5 - 13.1

Case 2 3.7178 0.0786 18060 43
Case 3 7.4544 0.0431 17940 13
Case 4 8.1703 0.0359 17760 8

ZDT2 SIPO 7.6120 0.1428 10276(±810) 24.5 - 8.4
Case 2 3.4809 0.0829 10500 25
Case 3 6.8323 0.0915 10240 8
Case 4 7.0200 0.0713 10220 7

ZDT3 SIPO 9.3122 0.0891 13216(±577) 31.5 - 9.4
Case 2 4.9334 0.0992 13440 32
Case 3 8.7360 0.0598 13140 9
Case 4 9.3449 0.0789 13200 6

tervals. This can specially be recognized by the ZDT3 prob-
lem, which contains gaps and therefore, SIPO has probably
omitted some of the good intervals containing gaps. Sur-
prising results are obtained for the ZDT2 problem. This
problem is known to be one of the difficult concave multi-
objective problems. The results with low #Ev values ob-
tained by SIPO are much better than NSGA-II and with a
very good convergence rate. This can also be explained by
the parallelization effect.

Table 2 illustrates the results for Case 2, Case 3 and
Case 4, where the results of Case 2 have the lowest qual-
ity. On the other hand, Case 4 with the lowest number of
parallel processors obtains the best results among the cases.
This indicates that we do not benefit from starting with a
large number of processing units. Additionally, we observe
that if we adaptively change the number of processing units
on demand, the results are much better than when starting
by a large number of processors. However, this effect can
depend on the way we divided the objective space into in-
tervals. Other methods like cone separation [5] could obtain
better results. In our experiments, we want to show the ef-
fect of the self-organized optimization and do not intent to
analyze the way the objective space is divided. SIPO ob-
tains better quality of solutions than Case 4 for ZDT1 and
ZDT2 problems where for ZDT3 Case 4 outperforms SIPO.
This is due to the shape of the Pareto-front of the test prob-
lems. Both ZDT1 and ZDT2 have connected Pareto-fronts
where ZDT3 has a disconnected front. For ZDT3 problem,
we realize that some intervals are deleted automatically by
SIPO during the division process which causes undesired
gaps along the approximated front.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we study a new approach called Self-organized

Invasive Parallel Optimization (SIPO) for solving optimiza-
tion problems using parallel platforms. One of the main as-
pects when using parallel environments is to determine the
number of required processors to solve a certain problem.
In our approach, we develop an algorithm which determines
the number of required processors during the optimization
based on the quality of the so far obtained solutions. This
approach is particularly appropriate for interactive problems
on systems like clouds or grids so that the users can stop
the optimization anytime by looking at the quality of the re-
sults. For evaluating our approach, we select multi-objective
optimization problems and perform the optimization by a
PSO based focusing algorithm (F-MOPSO). The role of F-

MOPSO is to focus on certain given intervals. SIPO starts
from an interval given by the user with one computing re-
source, which takes the role of a master. In the case that
the interval of the master resource passes a certain selection
mechanism, it is divided into smaller intervals which are as-
signed to other resources by the master. The resources run
an F-MOPSO, update a global archive in the shared memory
and take the role of a master. This process can successively
be continued. The quality of solutions gets more precise
over the successive divisions of the intervals. The selection
mechanism determines whether an interval has to be further
divided or not. After a certain number of divisions, SIPO
stops automatically.

The results of our experiments show that for the selected
test problems, we require a significantly smaller number of
parallel resources than the total number of resources in our
platform. The results are comparable with results of ex-
isting non-parallel approaches and much better than other
parallel variants (with the same number of evaluations and
different number of processors). However, in some cases
we realize that some intervals are deleted causing undesired
gaps along the approximated front. This will be investigated
in our future work. In addition, we intend to extend our ap-
proach for dividing the objective space in terms of all the
objectives. Furthermore, as SIPO is a general framework, we
will employ other optimization algorithms in SIPO and in-
vestigate it on real-world problems. The efficiency of SIPO
will be studied in comparison with other existing parallel
approaches.

7. REFERENCES
[1] A. Abdulazim, F. Arifin, F. Hannig, and J. Teich.

FPGA Implementation of an Invasive Computing
Architecture. In Proceedings of the IEEE International
Conference on Field Programmable Technology (FPT),
pages 135–142, Sydney, Australia, 2009. IEEE.

[2] D. Abramson, A. Lewis, and T. Peachy. Nimrod/o: A
tool for automatic design optimization. In The 4th
International Conference on Algorithms and
Architectures for Parallel Processing, 2000.

[3] J. Branke. Consideration of partial user preferences in
evolutionary multiobjective optimization. In
Multiobjective Optimization, pages 157–178, 2008.

[4] J. Branke, T. Kaußler, and H. Schmeck. Guidance in
evolutionary multi-objective optimization. Advances in
Engineering Software, 32(6):499 – 507, 2001.

[5] J. Branke, H. Schmeck, K. Deb, and M. Reddy.
Parallelizing Multi-Objective Evolutionary
Algorithms: Cone Separation. In IEEE Congress on
Evolutionary Computation, pages 1952–1957, 2004.

[6] Y. Censor and S. A. Zenios. Parallel Optimization:
Theory, Algorithms, and Applications. Oxford
University Press, New York/Oxford, 1997.

[7] K. Deb. Multi-objective Optimization using
Evolutionary Algorithms. WILEY, 2002.

[8] K. Deb, A. Pratap, and S. Agarwal. A fast and elitist
multi-objective genetic algorithm: Nsga-ii. IEEE
Trans. on Evolutionary Computation, 6(8), 2002.

[9] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler.
Scalable multi-objective optimization test problems.
In Congress on Evolutionary Computation, volume 1,
pages 825–830, 2002.

[10] K. Deb, P. Zope, and A. Jain. Distributed computing
of pareto-optimal solutions with evolutionary
algorithms. In International Conference on
Evolutionary Multi-Criterion Optimization, pages
534–549, 2003.

[11] D. Gelernter. Multiple tuple spaces in linda. In
PARLE 89, Vol. II: Parallel Languages, pages 20–27,
1989.

[12] P. Møller-Nielsen and J. Staunstrup. Problem-heap: A
paradigm for multiprocesor algorithms. Parallel
Computing, 4(1):63 – 74, 1987.

[13] S. Mostaghim, J. Branke, and H. Schmeck.
Multi-objective particle swarm optimization on
computer grids. In The Genetic and Evolutionary
Computation Conference (GECCO), volume 1, pages
869–875, 2007.

[14] S. Mostaghim and H. Schmeck. Self-organized parallel
cooperation for solving optimization problems. In
22nd International Conference on Architecture of
Computing Systems, volume 5455 of Lecture Notes in
Computer Science, pages 135–145, Berlin, Heidelberg,
2009. Springer.

[15] S. Mostaghim and J. Teich. Strategies for finding good
local guides in multi-objective particle swarm
optimization. In IEEE Swarm Intelligence Symposium,
pages 26–33, 2003.

[16] S. Mostaghim, H. Trautmann, and O. Mersmann.
Preference-based multi-objective particle swarm
optimization using desirabilities. In Parallel Problem
Solving from Nature (PPSN), pages 101–110. Parallel
Problem Solving from Nature (PPSN), Springer, 2010.

[17] M. Reyes-Sierra and C. A. Coello Coello.
Multi-objective particle swarm optimizers: A survey of
the state-of-the-art. International Journal of
Computational Intelligence Research, 2(3):287–308,
2006.

[18] O. Schütze, S. Mostaghim, M. Dellnitz, and J. Teich.
Covering Pareto sets by multilevel evolutionary
subdivision techniques. In Proceedings of Second
International Conference on Evolutionary
Multi-Criterion Optimization, pages 118–132, 2003.

[19] E.-G. Talbi, S. Mostaghim, T. Okabe, H. Ichibushi,
G. Rudolph, and C. A. Coello Coello. Parallel
Approaches for Multiobjective Optimization, pages
349–372. Springer Verlag, 2008.

[20] H. Trautmann and J. Mehnen. Preference-Based
Pareto-Optimization in Certain and Noisy
Environments. Engineering Optimization, 41:23–38,
2009.

[21] D. A. V. Veldhuizen, J. Zydallis, and G. B. Lamont.
Considerations in engineering parallel multiobjective
evolutionary algorithms. In IEEE Transactions on
Evolutionary Computation, Vol. 7, No. 2, pages
144–173, 2003.

[22] U. K. Wickramasinghe and X. Li. Integrating user
preferences with particle swarms for multi-objective
optimization. In Proceedings of the conference on
Genetic and evolutionary computation (GECCO),
pages 745–752, 2008.

[23] E. Zitzler. Evolutionary Algorithms for Multiobjective
Optimization: Methods and Applications. Shaker,
1999.

