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Abstract
Named entity recognition and classification research
has so far mainly focused on supervised techniques
and has typically considered only small sets of classes
with regard to which to classify the recognized en-
tities. In this paper we address the classification of
named entities with regard to large sets of classes
which are specified by a given ontology. Our approach
is unsupervised as it relies on no labeled training data
and is open-domain as the ontology can simply be
exchanged. The approach is based on Harris’ dis-
tributional hypothesis and, based on the vector-space
model, it assigns a named entity to the contextually
most similar concept from the ontology. The main
contribution of the paper is a systematic analysis of
the impact of varying certain parameters on such a
context-based approach exploiting similarities in vec-
tor space for the disambiguation of named entities.

1 Introduction and Related Work

Named Entity Recognition (NER) systems have typically
considered only a limited number of classes. The MUC
named entity task (Hirschman & Chinchor 97), for exam-
ple, distinguishes three classes: PERSON, LOCATION
and ORGANIZATION, and the CoNLL1 task adds one
more: MISC, while the ACE framework2 adds two more:
GPE (geo-political entity) and FACILITY. Further, it has
often been shown that it is relatively easy to recognize the
PERSON and ORGANIZATION classes due to certain
regularities, which renders MUC-like named entity recog-
nition tasks even easier.
In this paper we propose a more challenging task, i.e.
the classification of named entities with regard to a large
number of classes specified by an ontology or more specif-
ically by a concept hierarchy. Our approach aims at being
open-domain in the sense that the underlying ontology and
the corpus can be replaced. In our view this aim can only
be accomplished if one resorts to an unsupervised system
since providing labeled training data for a few hundred
concepts as we consider in our approach is often unfeasi-
ble. Some researchers have addressed this challenge and
have considered a larger number of classes. (Fleischman
& Hovy 02) for example have considered 8 classes: ATH-
LETE, POLITICIAN/GOVERNMENT, CLERGY, BUSI-
NESSPERSON, ENTERTAINER/ARTIST, LAWYER,

1This is a slighlty modified version of the paper published in
the proceedings of RANLP 2005

1http://cnts.uia.ac.be/conll2003/ner/
2http://www.itl.nist.gov/iaui/894.01/tests/ace/phase1/index.htm

DOCTOR/SCIENTIST and POLICE. (Evans 03) consid-
ers a totally unsupervised scenario in which the classes
themselves are derived from the documents. (Hahn &
Schnattinger 98) consider an ontology with 325 concepts
and (Alfonseca & Manandhar 02) consider 1200 WordNet
synsets. In our approach we consider an ontology consist-
ing of 682 concepts.
Named entity recognition and classification has been so far
mainly concerned with supervised techniques, the obvious
drawback here being that one has to provide labeled
training data for each domain and set of classes (compare
(Sekine et al. 98; Borthwick et al. 98; Bikel et al. 99;
Zhou & Su 02; G. Pailouras & Spyropoulos 00; Isozaki &
Kazawa 02; Chieu & Ng 03; Hendrickx & van denBosch
03)). However, when considering hundreds of concepts as
possible tags, a supervised approach requiring thousands
of training examples seems quite unfeasible. On the other
hand, the use of handcrafted resources such as gazetteers
or pattern libraries (compare (Maynard et al. 03)) will
also not help as creating and maintaining such resources
for hundreds of concepts is equally unfeasible. Interesting
and very promising are approaches which operate in a
bootstrapping-like fashion, using a set of seeds to derive
more training data such as the supervised approach using
Hidden Markov Models in (Niu et al. 03) or the unsuper-
vised approach in (Collins & Singer 99).
In this paper we present an unsupervised approach which -
as many others - is based on Harris’ distributional hypoth-
esis, i.e. that words are semantically similar to the extent
to which they share syntactic contexts. There have been
many approaches in NLP exploiting this hypothesis, the
most influential probably being the work of (Grefenstette
94) on automatic thesaurus construction as well as of
(Pereira et al. 93) on building hierarchical clusters of
nouns, the work of (Hindle 90) on discovering groups
of (semantically) similar nouns as well as the work of
(Yarowsky 95) and (Schuetze 98) on Word Sense disam-
biguation/discrimination. In particular some researchers
have considered using syntactic collocations for named
entity recognition (cf. (Cucchiarelli & Velardi 01) and (Lin
98)). More recently, several researchers have addressed
the problem of classifying a new term into an existing
ontology (Agirre et al. 00; Pekar & Staab 02; Alfonseca &
Manandhar 02; Widdows ).
In this paper we investigate the impact of using differ-
ent feature weighting measures and various similarity
measures described in (Lee 99). Further, to address data
sparseness problems we examine the influence of (i)



anaphora resolution in the hope that it will yield more
context information as speculated in (Grefenstette 94) (ii)
downloading additional textual material from the Web
as in (Agirre et al. 00) and making use of the structure
of the concept hierarchy or taxonomy in calculating the
context vectors for the classes as in (Resnik 93), (Hearst &
Schütze 93) or (Pekar & Staab 02). The paper is organized
as follows: first, we present our data set in Section 2 and
describe our evaluation measures as well as present a few
baselines for the task showing its complexity in Section
3. In section 4 we analyze the impact of varying the
above mentioned parameters step by step starting with a
window-based approach as a baseline. Before concluding
we also discuss the results of our approach with respect to
other systems performing a similar task.

2 Data Set

Our data set consists of 1880 texts contain-
ing destination descriptions downloaded from
http://www.lonelyplanet.com/destinations. In order to
create an evaluation standard, we asked two test persons to
annotate the named entities of 30 randomly selected texts
with the appropriate concept from a given ontology. They
used a pruned version of a tourism ontology developed
within an information retrieval project at our site. The
original ontology consisted of 1043 concepts, but we
removed some irrelevant concepts beforehand in order
to facilitate the task for the annotators, resulting in an
ontology with 682 concepts. In what follows, we will refer
to these annotators as � and � . Annotator � actually
produced 436 annotations and subject � produced 392.
There were 277 named entities that were annotated by
both subjects. For these 277 named entities, they used
59 different concepts and coincided in 176 cases, the
agreement thus being 63.54%. The categorial agreement
on these 277 named entities measured by the Kappa
statistic was 63.48% (cf. (Carletta 96)), which allows to
conclude that the annotation task is overall more or less
well defined but that the agreement between humans is
far from perfect. A system selecting a concept for a given
named entity at random would thus be correct in 0.15%
cases, which already shows the difficulty of the task. We
evaluate our system on the named entities annotated by
both subjects as described in the following section. It is
important to emphasize however that we totally abstract
here from the actual recognition of named entities in the
sense that the input to our system is a set of named entities
to be assigned to the appropriate class.

3 Evaluation

As mentioned in (Collins & Singer 99), the task in
named entity recognition is to learn a function from an
input string (a proper name) to its class. In particular
our aim is to learn a function ��� which approximates
the functions ��� and ��� specified by both annota-
tors. We assume that these functions are given as sets�
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is the concept it has been

assigned to and
��!#"$� � � is the domain of a function � .

While �*� and �*� are total functions, �.� is a partial one as
our system does not always produce an answer. In fact, if
the distributional similarity between the entity to be tagged
and all the concepts in the ontology is minimal, then the
system will give no answer. Thus it is not only important
to measure the recall, but also the precision of the system.
We thus evaluate the system with the standard measures of
Precision, Recall and F-Measure, i.e.
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As named entities can be tagged at different levels of
detail and there is certainly not only one correct as-
signment of a concept, we also consider how close the
assignment of the system is with respect to the assignment
of the annotator by using the Learning Accuracy originally
introduced by (Hahn & Schnattinger 98). However, we
consider a slightly different and symmetric formulation of
the Learning Accuracy in line with the measures defined
in (Maedche et al. 02). The main difference is that we
measure the distance between nodes in terms of edges – in
contrast to nodes in Hahn’s version – and we do not need
any case distinction taking into account if the classification
was correct or not. The Learning Accuracy is defined as
follows:

J � �)K3�MLN�'��
 O �QPR!FST�����TU �

O ��PR!FSA�����AU O �)K3�����AU O �)L*�����@U �

where
�%
WV���X��)K3�MLN�

is the least common subsumer of con-
cepts

K
and
L

as defined in (Maedche et al. 02).

4 Experiments

As mentioned above, our approach is in line with Harris’
distributional hypothesis and other approaches in which
the context of a phrase is used to disambiguate its sense
(Yarowsky 95; Schuetze 98) or class (Lin 98) or to discover
other semantically related terms (Hindle 90). As other ap-
proaches, we also adopt the one-sense-per-discourse as-
sumption (Gale et al. 92), i.e. we do not perform any
word sense disambiguation. Our algorithm thus assigns
an instance represented by a certain context vector YZ to the
concept corresponding to the most similar vector Y� . The
algorithm is basically as follows:
classify(set of instances [ , corpus

P
, set of concepts

�
)
�

foreach c in C
Y\.] = getContextVector(c,t);

foreach foreach c in C
doFeatureWeighting( Y\�] );

foreach i in I
�

Y\�^ = getContextVector(i,t);
class(i)=

"_K�`5K�acb ] sim( Y\�] , Y\�^ );-
return class;-



Though most approaches represent the context of a phrase
as a vector, there are great differences in which features
are used ranging from simple word windows (Yarowsky
95; Schuetze 98) to syntactic dependencies extracted
with a parser (Hindle 90; Pereira et al. 93; Grefenstette
94). We start our analysis by comparing window-based
techniques with using pseudo-syntactic dependencies
extracted by using regular expressions over part-of-speech
tags. Furthermore, we analyze the impact of using different
similarity and feature weighting measures. As they were
found to perform particularly well in (Lee 99), we use
the following similarity measures: the cosine and Jaccard
measures, the L1 norm as well as the Jensen-Shannon
and the Skew divergence. Further, we weight the features
according to different measures. In particular, we use the
following measures:
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Furthermore, � � � � � �#K�P � is the number of occurrences
of a term � with feature � �#K�P , � � � �#K�P � is the number of
occurrences of the feature � �#K�P and

/ � � � is the relative
frequency of a term � compared to all other terms. The
first information measure is simply the conditional prob-
ability of the term � given the feature � �#K�P . The second
measure

/�� [ � � � \ � is the so called pointwise mutual
information and was used by (Hindle 90) for discovering
groups of similar terms. The third measure is inspired
by the work of (Resnik 93) and introduces an additional
factor

� B � � � � �#K�P � which takes into account all the terms
appearing with the feature in question. In particular,
the factor measures the relative entropy of the prior and
posterior (given the feature) distributions of � and thus the
’selectional strength’ of a given feature.

4.1 Using Word Windows

In a first experiment we used the � words to the left and
right of a certain word of interest excluding so called stop-
words and without trespassing sentence boundaries. Here
� is the so called window size. The advantage of such an
approach is that no preprocessing is necessary to extract
context information. However, it also has the drawback
of making context vectors larger than when using syntac-
tic dependencies thus making the similarity calculation less
efficient (cf.(Grefenstette 94)). We implemented this ap-
proach in order to verify if syntactic dependencies actu-
ally perform better in our setting. We varied the similarity
measure, the feature weighting strategy as well as experi-
mented with the three different window sizes: 3, 5 and 10
words. thus producing 5 * 4 * 3 = 60 runs of the similarity-
based classification algorithm. Due to space limitations we
do not present all the results. The best result was an F-

Measure of 19.7% and a Learning Accuracy of 57.78%. It
was achieved when using the Skew divergence as similarity
measure, Resnik as feature weighting measure and a win-
dow size of 10.

4.2 Using pseudo-syntactic dependencies

Instead of merely using the words occurring within a given
window size before and after the word in question, we
also experimented with using pseudo-syntactic dependen-
cies. These dependencies are not really syntactical as they
are not obtained from parse trees, but from a very shal-
low method consisting in matching certain regular expres-
sion over part of speech tags. The motivation for doing
this is the observation in (Grefenstette 94) that the qual-
ity of using word windows or syntactic dependencies for
distributional analysis depends on the rank or frequency of
the word in question. In this line, our intention is to make
a compromise between using word windows and syntac-
tic dependencies extracted from parse trees. Our pseudo-
syntactic dependencies are surface dependencies extracted
by matching regular expressions. In what follows we list
the syntactic expressions we use and give a brief example
of how the features, represented as predicates, are extracted
from these expressions:
 adjective modifiers, i.e. a nice city ! nice(city)
 prepositional phrase modifiers, i.e. a city near the

river ! near river(city) and city near(river), respec-
tively

 possessive modifiers, i.e. the city’s center !
has center(city)

 noun phrases in subject or object position. i.e. the
city offers an exciting nightlife ! offer subj (city) and
offer obj(nightlife)

 prepositional phrases following a verb, i.e. the river
flows through the city ! flows through(city)

 copula constructs i.e. a flamingo is a bird !
is bird(flamingo)

 verb phrases with the verb to have, i.e. every country
has a capital ! has capital(country)

Consider for example the following discourse:

Mopti is the biggest city along the Niger with one of the
most vibrant ports and a large bustling market. Mopti has a
traditional ambience that other towns seem to have lost. It is also
the center of the local tourist industry and suffers from hard-sell
overload. The nearby junction towns of Gao and San offer nice
views over the Niger’s delta.

Here we would extract the following concept vec-
tors:

city: biggest(1)
ambience: traditional(1)



center: of tourist industry(1)
junction towns: nearby(1)
market: bustling(1)
port: vibrant(1)
tourist industry: center of(1), local(1)
town: seem subj(1)
view: nice(1), offer obj(1)

and the following ones for named entities:

Mopti: is city(1), has ambience(1)
San: offer subj(1)
Gao: junction of(1)
Niger: has delta(1)

Table 1 shows the results for the version of the clas-
sification algorithm making use of the pseudo-syntactic
dependencies using the different similarity and feature
weighting measures (Standard). The best result was an
F-Measure of 19.58% and a Learning Accuracy of 60.03%.
The fact that the F-Measure is slightly worse is definitely
compensated by a higher Learning Accuracy. Furthermore,
as the length of the vectors is much smaller and thus the
computation of the similarities faster, we conclude that
using the pseudo-syntactic dependencies is an interesting
alternative and present the results of further modifications
to our algorithm with respect to the version using these
sort of dependencies.

4.3 Dealing with Data Sparseness

4.3.1 Using Conjunctions

In order to address the problem of data sparseness we
exploit conjunctions of named entities in the sense that if
two named entities appear linked by the conjunctions ’and’
or ’or’, we count any occurrence of a feature with one of
the named entities also as an occurrence of the other. As
the results in Table 1 show, this simple heuristic improves
the results of our approach considerably. The top results
are F-Measures of 22.8% (Cosine), 22.57% (L1 norm) and
22.57% (Skew divergence) with a Learning Accuracy of
61.23%, 61.4% and 62.7%, respectively.

4.3.2 Exploiting the Taxonomy

An interesting option discussed in (Resnik 93), (Pekar
& Staab 02) and (Hearst & Schütze 93) is to take into ac-
count the taxonomy of the underlying ontology to compute
the context vector of a certain term by taking into account
the context vectors of its hyponyms. This is in fact a del-
icate issue as some studies have shown that this doesn’t
work while other have shown the contrary. We adopt here
a conservative strategy and take only into account the con-
text vectors of direct hyponyms to compute the vector of
a certain term. In fact, the context vector of a hypernym
will be the sum of the context vectors of all its direct hy-
ponyms. We assume a one-to-one mapping between nouns
and concept labels, thus considering the hyponyms of all
possible concepts for a given label. We will refer to this
as the ’standard’ version. However, the aggregated vec-

tors can also be normalized. In fact, we experiment with
the two possibilities also discussed in (Pekar & Staab 02):
(i) standard normalization of the vector or (ii) calculating
its centroid (compare (Pekar & Staab 02) and (Hearst &
Schütze 93)). In the latter the only difference is that we
create an average vector by dividing through the number of
direct hyponyms. As the results in Table 1 show, only the
version with the centroid method did indeed yield better re-
sults, while the standard (no vector normalization) and the
category method (standard vector normalization) did actu-
ally make the results worse. The best result with the cen-
troid method was an F-Measure of 23.02% and a Learning
Accuracy of 64.11%.

4.3.3 Anaphora Resolution

As another approach to overcome the problem of data
sparseness we explored the impact of anaphora resolution
on the task of named entity recognition. Based on MINI-
PAR (cf. (Lin 93)) and the work by (Lappin & Leass 94)
we implemented an algorithm for identifying intrasen-
tential antecedents of 3rd person personal and possessive
pronouns which replaces each (non-pleonastic) anaphor
by the grammatically correct form of the corresponding
antecedent as shown in the following examples:
The port capital of Vathy is dominated by its fortified Venetian
harbour. �
The port capital of Vathy is dominated by Vathy’s fortified
Venetian harbour.
Holiday hooligans used to head to nearby Benitses, until it was
ruined, so now they head north to cut a swathe through the
coastline’s few remaining unspoilt coves and fishing villages. �
Holiday hooligans used to head to nearby Benitses, until Benitses
was ruined, so now the hooligans head north to cut a swathe
through the coastline’s few remaining unspoilt coves and fishing
villages.

Moreover, in order to improve the detection of pleonas-
tic occurrences of it, we use a modified set of patterns de-
veloped by (Dimitrov 02). Although our implementation
seems to perform a bit worse than the one by Lappin and
Leass (maybe due to the very noisy data set) the evaluation
yielded a remarkable precision of about 0.79 and a recall of
approximately 0.7.

As shown by Table 1 the use of anaphora resolution even
improves the results we obtained by exploiting the taxon-
omy leading to an F-Measure of 23.82% and a Learning
Accuracy of 65.04% (Skew divergence).

4.3.4 Downloading Documents from the Web

Since named entities tend to occur less often than com-
mon nouns representing possible classes, they are to a
particularly high degree affected by the problem of data
sparseness. We address this issue by downloading from
the web a set of at most 20 additional documents

� ^ for
each named entity Z . Moreover, in order make sure that
each

�_� � ^ belongs to the correct sense of Z we compare�
with all documents in the original corpus containing at

least one occurrence of Z . The decision whether to keep
�

or not is made by creating bag-of-words style vectors rep-



Cosine Jaccard L1 JS Skew
F LA F LA F LA F LA F LA

Standard
Frequency 13.29% 55.77% 1.4% 29.99% 15.62% 59.45% 2.56% 39% 14.45% 59.41%
Conditional 16.78% 58.47% 1.4% 29.99% 18.65% 59.31% 6.29% 41.86% 17.02% 58.71%
PMI 19.11% 58.93% 1.4% 29.99% 17.72% 57.29% 5.13% 40.25% 19.58% 60.03%
Resnik 15.38% 56.33% 1.4% 29.99% 18.18% 58.91% 4.9% 38.12% 19.35% 60.44%

Conjunctions
Frequency 18.51% 61.25% 11.54% 44.22% 18.28% 63.58% 10.16% 52.06% 21.9% 65.19%
Conditional 20.77% 60.87% 11.54% 44.22% 21.9% 63.27% 11.06% 43.46% 22.12% 63.41%
PMI 22.8% 61.23% 11.54% 44.37% 22.57% 61.4% 10.84% 42% 22.57% 62.7%
Resnik 21.22% 60.32% 11.54% 44.37% 22.12% 61.71% 10.61% 43.1% 22.35% 62.92%

Conjunctions + Ontology
Freuqency 5.42% 63.12% 11.09% 44.93% 5.42% 66.82% 10.61% 51.18% 5.42% 65.82%
Conditional 5.64% 64.04% 11.09% 44.93% 5.64% 64.46% 10.84% 46.09% 5.64% 64.99%
PMI 6.32% 64.17% 11.09% 44.81% 5.87% 63.59% 10.61% 43.59% 5.87% 63.43%
Resnik 5.42% 62.52% 11.09% 44.81% 5.87% 62.78% 11.06% 44.88% 5.87% 63.39%

Conjunctions + Ontology (Category)
Frequency 10.16% 47.84% 11.09% 44.93% 13.77% 55.78% 10.61% 51.18% 14.67% 59.79%
Conditional 3.16% 42.84% 11.09% 44.93% 5.42% 49.7% 10.84% 46.09% 6.77% 58.04%
PMI 5.87% 45.76% 11.09% 44.81% 9.71% 44.03% 1.36% 38.65% 7.9% 53.71%
Resnik 5.19% 43.16% 11.09% 44.81% 6.55% 49.14% 0.9% 34.92% 6.32% 59.06%

Conjunctions + Ontology (Centroid)
Frequency 22.35% 63.57% 11.09% 44.93% 23.02% 63.27% 10.61% 51.18% 13.54% 62.63%
Conditional 22.12% 61.05% 11.09% 44.93% 22.8% 62.53% 10.84% 46.09% 23.02% 64.11%
PMI 22.12% 60.66% 11.09% 44.81% 22.8% 61.72% 10.38% 42.33% 19.86% 63.47%
Resnik 20.99% 60.62% 11.09% 44.81% 22.12% 61.89% 10.61% 43.39% 21.9% 64.33%

Conjunctions + Ontology (Centroid) + Anaphora Resolution
Frequency 22.25% 64.8% 10.59% 42.8% 23.15% 65.45% 10.11% 49.12% 15.28% 65.17%
Conditional 22.7% 62.19% 10.59% 42.8% 23.37% 63.92% 11.01% 45.58% 23.82% 65.04%
PMI 22.92% 61.69% 10.59% 43.1% 23.6% 63.32% 11.24% 43.6% 18.88% 64.49%
Resnik 22.25% 61.06% 10.59% 43.1% 23.37% 63.42% 10.36% 43.16% 23.37% 64.69%

Conjunctions + Ontology (Centroid) + Web Crawling
Frequency 25.4% 65.43% 12.1% 51.01% 24.4% 64.22% 6.25% 45.61% 9.07% 64.68%
Conditional 25.6% 64.46% 12.1% 51.01% 25.81% 64.43% 3.63% 39.72% 26.21% 65.91%
Mutual 25.6% 63.94% 10.08% 50.4% 25.81% 63.72% 3.43% 23.63% 12.1% 64.31%
Resnik 24.4% 61.9% 10.08% 50.4% 24.6% 62.41% 1.81% 20.17% 25.2% 65.18%

Table 1: Results for pseudo-syntactic dependencies

resentations for each of the involved documents, comput-
ing their cosine and only considering the document if the
similarity is over an experimentally determined threshold
of 0.2. Table 1 shows that this way of extending the corpus
with documents from the web considerably improves all
previous results. With the Skew divergence we achieved an
F-Measure of 26.21% and a Learning Accuracy of 65.91%.

4.3.5 Postprocessing

Finally, we also examine a postprocessing step in which
the � best answers of the system (ranked according to
their corresponding similarities from highest to lowest) are
checked for their statistical plausibility on the Web. For
this purpose, inspired by the work of (Markert et al. 03),
for each named entity

�
and the top � answers

����� ��� �M���
we generate the following Hearst-style (Hearst 92) pattern
strings and count their occurrences on the Web by using the
Google Web API:

1. �
�)� ^ � such as

�
2.
�

and other �
��� ^ �

3.
�

or other �
��� ^ �

4. �
�)� ^ � , especially

�
5. �

�)� ^ � , including
�

where �
���%�

is the result of looking up the plural form of
the word

�
in a lexicon containing inflected forms and their

corresponding lemmas. Furthermore, the number of hits of
the above pattern string are normalized by dividing through

the number of hits of the underlined parts. At the end, that
answer of the � best is chosen which maximizes this co-
efficient. We experimented with different values for � , i.e.
3, 5 and 10. This extension is furthermore efficient as we
only need to generate � U � queries to the Google Web
API for each named entity. Table 2 gives the results of this
step when postprocessing the results produced with the ver-
sions of our system using anaphora resolution and crawl-
ing documents from the Web. The results show that the
F-Measures increase considerably when using our postpro-
cessing step. The best result is an F-Measure of 32.6% with
a precision of 36.82%, a recall of 29.34% and a Learning
Accuracy of 69.87% for the version of our system crawling
the Web.

4.3.6 Discussion

The best result of our approach is an F-Measure of
32.6% which is more than 32 points points above the naive
baseline of F=0.15%, almost 20 points over the majority-
class-baseline of F=12.64% and 12.9 points over the word-
window-based approach approach with a window size of
10 (F=19.7%). When considering this best version of our
approach, the precision is 36.82% and the recall 29.34%.
In order to compare our results with systems performing
a similar task, we compare our recall as well as Learning
Accuracy with the one of the systems in Table 3. In fact,
our recall value corresponds to the accuracy values of the
other approaches. (Fleischman & Hovy 02) for example



k k=3 k=5 k=10
F P R LA F P R LA F P R LA

AR 29.15% 38.46% 23.47% 71.04% 28.7% 37.87% 23.1% 71% 30.72% 40.53% 24.73% 71.71%
WC 30.58% 34.54% 27.44% 67.71% 30.78% 34.77% 27.62% 68.52% 32.6% 36.82% 29.24% 69.87%

Table 2: Results of the postprocessing step on the A(naphora) R(esolution) and the W(eb) C(rawling versions))

make use of a supervised approach and extract n-grams for
training several classifiers. (Evans 03) computes hypernym
vectors for each entity by using the Google API and clus-
ters instances on the basis of these, thus considering a to-
tally unsupervised scenario in which the classes themselves
are derived from the data. (Alfonseca & Manandhar 02)
present a similar approach to ours relying on distributional
similarity and achieve the best results using verb-object de-
pendencies as features, while (Hahn & Schnattinger 98)
present an elaborated qualification calculus for reasoning
about the quality of different hypothesis. The systems thus
rely on different assumptions, learning paradigms as well
as number of classes, such that they are not directly com-
parable. The conclusions which can be drawn from Table 3
are that (i) obviously the task is the harder the more classes
are considered and (ii) our approach fits very well from
a quantitative point of view into the landscape of systems
performing a similar – but not equivalent – task. Consid-
ering the most similar systems, it is worth mentioning that
our results are worse than the ones of (Hahn & Schnattinger
98), which however consider half as many concepts and
furthermore assume a perfect syntactic and semantic anal-
ysis as well as an elaborated DL concept hierarchy. On the
other hand we achieve much better results than (Alfonseca
& Manandhar 02), but they also consider a larger number
of classes. SemTag (Dill et al. 03) also considers a large
amount of classes from the TAP ontology, but assumes that
the possible classes or tags for each instance are known in
advance. Thus, the system effectively performs sense dis-
ambiguation with respect to a much smaller set of classes
per instance.

5 Conclusion

We have addressed the problem of tagging named entities
with regard to a large set of concepts as specified within a
given concept hierarchy. In particular we have presented
an approach relying on Harris’ distributional hypothesis as
well as on the vector-space model and assigning a named
entity to that concept which maximizes the contextual sim-
ilarity with the named entity in question. The aim has not
been to present a fully fledged system performing this task,
but to investigate the impact of varying a number of param-
eters. In this line we have shown that the pseudo-syntactic
dependencies we have considered are an interesting alter-
native to window-based approaches as they yield a higher
Learning Accuracy and also allow a more efficient compu-
tation of the similarities. To address the typical data sparse-
ness problems one encounters when working with corpora,
we have examined the impact of (i) exploiting conjunc-
tions, (ii) factoring the underlying taxonomy into the com-
putation of the concept vectors as in (Pekar & Staab 02),
(iii) getting additional context by applying an anaphora res-

System #concepts Rec/Acc LA
MUC 3 � 90% n.a
Fleischman et al. 8 70.4% n.a.
Evans 2-8 41.41% n.a.
Hahn et al. (Baseline) 325 21% 67%
Hahn et al. (TH) 325 26% 73%
Hahn et al. (CB) 325 31% 76%
BEST 682 29.24% 69.87%
Alfonseca et al. 1200 17.39% 44%

Table 3: Comparison of results

olution algorithm developed for this purpose and (iv) addi-
tionally downloading additional documents from the World
Wide Web as in (Agirre et al. 00), showing that with the
correct settings all these techniques improve the results of
our approach both in terms of F-Measure and Learning Ac-
curacy. Finally, we have also presented a postprocessing
step by which the system’s � most highly ranked answers
are checked for their statistical plausibility on the Web,
which notably improves the results of the approach. In gen-
eral, the best results were achieved using the conditional
probability as feature weighting strategy and the Skew di-
vergence as similarity measure, thus confirming the results
obtained in (Lee 99).
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