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Abstract. We propose a new technique for approximate ABox rea-
soning with OWL DL ontologies. Essentially, we obtain substantially
improved reasoning performance by disregarding non-Horn features of
OWL DL. Our approach comes as a side-product of recent research
results concerning a new transformation of OWL DL ontologies into
negation-free disjunctive datalog [I12}[3l[4], and rests on the idea of per-
forming standard resolution over disjunctive rules by treating them as
if they were non-disjunctive ones. We analyse our reasoning approach
by means of non-monotonic reasoning techniques, and present an imple-
mentation, called SCREECH.

1 Introduction

Knowledge representation and reasoning on the Semantic Web is done by means
of ontologies. While the quest for suitable ontology languages is still ongoing,
OWL [5] has been established as a core standard. It comes in three flavours,
as OWL Full, OWL DL and OWL Lite, where OWL Full contains OWL DL,
which in turn contains OWL Lite. The latter two coincide semantically with
certain description logics [6] and can thus be considered fragments of first-order
predicate logic.

OWL ontologies can be understood to consist of two parts, one intensional,
the other extensional. In description logics terminology, the intensional part con-
sists of a TBox and an RBox, and contains knowledge about concepts (called
classes) and the complex relations between them (called roles). The extensional
part consists of an ABox, and contains knowledge about entities and how they
relate to the classes and roles from the intensional part. For the Semantic Web,
TBox and RBox shall provide background vocabulary, while (annotated) web-
pages etc. constitute ABoxes which are interlinked with intensional knowledge.
The Semantic Web thus envisions a distributed knowledge source, built from
OWL ontologies and intertwining the knowledge like the World Wide Web in-
terconnects websites.
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With an estimated 25 million active websites today and correspondingly more
webpages, it is apparent that reasoning on the Semantic Web will have to deal
with very large ABoxes. Complexity of ABox reasoning — also called data com-
plexity — thus measures complexity in terms of ABox size only, while considering
the intensional part of the ontology to be of constant size. For the different OWL
variants, data complexity is at least NP-hard, which indicates that it will not
scale well in general [7]. Methods are therefore being sought to cope with large
ABoxes in an approximate manner.

The approach which we propose is based on the fact that data complex-
ity is polynomial for non-disjunctive datalog. We utilise recent research results
[1L2L[3,4] which allow the transformation of OWL DL ontologies into disjunc-
tive datalog. Rather than doing (expensive) exact reasoning over the resulting
disjunctive datalog knowledge base, we do approximate reasoning by treating
disjunctive rules as if they were non-disjunctive ones. The resulting reasoning
procedure is complete, but may be unsound in cases. Its data complexity is
polynomial. We are also able to give a characterization of the resulting ap-
proximate inference by means of standard methods from logic programming
semantics.

This paper is structured as follows. In Section [2, we first discuss the general
rationale behind approximate reasoning, and how it relates to other reasoning
frameworks. We then recall formal terminology and notation for OWL DL, and
shortly review datalog and SLD-resolution. Then, in Section [ we explain how
OWL DL ontologies can be transformed into disjunctive datalog. In Section
we introduce the new approximate SLD-resolution procedure which we propose.
The presentation of our implementation SCREECH in Section [0l is followed by an
Example in Section[7, and an experimental evaluation in Section[8 We conclude
and discuss future work in Section [

2 Non-classical Reasoning — Common Grounds

The sophisticated reasoning tasks required when dealing with expressive knowl-
edge representation languages like those based on description logics are known to
be of high computational complexity. In the face of ever increasing data quan-
tities to be processed, new methods are needed to obtain usable systems. As
the high computational complexity of the reasoning tasks is unavoidable, the
method of choice for obtaining scalable systems is to use approzimate reasoning
techniques. In a nutshell, approximate reasoning rests on the idea of decreas-
ing the complexity of a problem by imposing controlled changes on either the
language used or the inference operation used for the deduction. The resulting
lower complexity and consequent speed-up thus comes at the price of unsound-
ness or incompleteness (or both), but in a controlled and well-understood manner
which allows to assess the quality of the deduction made by the approximate rea-
soner. So-called anytime algorithms develop the idea a bit further and guarantee
convergence to exact answers given enough time, while providing approximate
results during the reasoning process.



Resolution-Based Approximate Reasoning for OWL DL 385
high reasoning
complexity
low reasoning
complexity

well-understood
relationship

All models

Models taken into account

Fig. 1. Semantic view on approximate reasoning

A semantic perspective on approximate reasoning is depicted in Figure [l
When a theory is being considered, classical reasoning may be of high com-
putational complexity and thus be unsuitable for time-critical tasks. By taking
different models into account than the classical ones, the complexity of reasoning
can be reduced. The resulting approximate inference may be incomplete or un-
sound with respect to classical inference, but in a controlled and well-understood
manner, which makes the inferences suitable for further use.

Similar situations occur in the context of other sophisticated reasoning tech-
niques. For non-monotonic reasoning, for example, a subset of the classical mod-
els is usually considered, which is selected by means of e.g. additional syntax
constructs or by redefining the semantics of existing ones. Non-monotonic rea-
soning thus allows to arrive at conclusions which cannot be derived using classical
reasoning: It is complete, but unsound, and can be described as supraclassical [§].
The rationale in this case is to model aspects of human commonsense reasoning
like jumping to conclusions, again in a controlled and well-understood manner.
Complexity considerations are often treated as secondary in this context.

Paraconsistent reasoning — or reasoning with inconsistency — can be ap-
proached from a similar perspective. While inconsistent knowledge bases have
no classical models, paraconsistent reasoning strives to identify suitable models
to be assigned to the knowledge base nevertheless, in order to allow the infer-
ence of meaningful consequences. As such, paraconsistent reasoning is sound, but
incomplete with respect to classical logic, and can thus be termed subclassical.

Table Ml summarizes our discussion. While the table can certainly be extended
further taking other forms of reasoning into account, we restrict ourselves to the
mentioned examples, as the main goal of this paper is to present an approxi-
mate reasoning method for OWL DL, and not a comparative theory of reasoning

Table 1. Comparision of non-classical reasoning approaches

reasoning approach focus models taken into account typical complexity
classical all classical models high
non-monotonic commonsense some classical models very high
paraconsistent inconsistency more than the classical models high

approximate performance variable low
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approaches. We have included this discussion because it explains the general ra-
tionale behind our approximate reasoning method, and will help us in analyzing
it. Indeed, in all reasoning paradigms mentioned, it is important to obtain a clear
understanding of the inference relation computed. This can be done by semantic
analyses, i.e. by characterizations of the models taken into account. From the
general perspective described in this section, it will later come as no surprise to
the reader that we will analyze our approximate reasoning methods by means
of standard techniques from non-monotonic reasoning. Indeed, in our particular
case the models taken into account for approximate reasoning will turn out to
be a subset of the classical models, as in non-monotonic reasoning.

3 Preliminaries

3.1 OWL DL Syntax and Semantics

OWL DL is a syntactic variant of the SHOZN (D) description logic [9]. Hence,
although several XML and RDF syntaxes for OWL DL exist, it will be convenient
to use the traditional description logic notation since it is more compact, and
we recall the notation below. For the correspondence between this notation and
various OWL DL syntaxes, see [9].

We indeed assume that the reader is familiar with OWL and thus with
SHOIN (D), as space restrictions forbid to reintroduce them, but recall that
SHOIZIN (D) supports reasoning with concrete datatypes, such as strings or inte-
gers [10]. Recall also that the description logic syntax for concepts in SHOZN (D)
is defined as follows, where A is an atomic concept, R is an abstract role, S is
an abstract simple role, T(;) are concrete roles, d is a concrete domain predi-
cate, a; and ¢; are abstract and concrete individuals, respectively, and n is a
non-negative integer:

C—A|=-C|CinNCy|C1UCs | 3R.C|VYR.C|>nS|<nS|{a1,...,an} |
|>nT|<nT|3T,...,Ty.D|VTy,..., Tp.D
D —d|{c,...,cn}

The SHZQ(D) description logic is obtained from SHOZN (D) by disallowing
nominal concepts of the form {a1,...,a,} and {c1, ..., ¢, }, and by allowing qual-
ified number restrictions of the form > n S.C' and <n S.C, for C a SHZQ(D)
concept and S a simple role.

As description logics, SHOZN (D), i.e. OWL DL, and SHZQ(D) inherit
their semantics from first-order logic by the standard translations known e.g.
from [11], which we do not repeat here.

3.2 Datalog and SLD-Resolution

A (definite or negation-free) disjunctive logic program P consists of a finite set
of clauses or rules of the form

Vay ... Voo (H1 V-V Hy — Ay Ao A Ag),
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commonly written as
H{VvV---VH, «—Ay,..., Ag,

where x1,...,x, are exactly all variables occuring in Hy V -V H,, «— A1 A
-+« N A, and all H; and A; are atoms over some given first-order language
J). The disjunction Hy V ---V H,, is called the rule head, and the conjunction
Ay N -+ N Ay is called the rule body. The set of all ground instances of atoms
defined over X' is called the Herbrand base of P and is denoted by Bp. The set
of all ground instances of rules in P is denoted by ground(P). A rule is said to
be non-disjunctive if m = 1. It is called a fact if kK = 0. We abstract from the
order of the atoms in the heads respectively bodies; it is not important for our
results. A disjunctive logic program is called a (disjunctive) datalog program if
it does not contain function symbols.

Note that we do not consider logic programs to come with one specific se-
mantics. Some people for example associate datalog with the minimal model
semantics only. For our treatment, datalog and logic programs are defined via
syntax only. We do not specify a specific semantics because in the following
we will discuss different semantics for logic programs in their relation to proof
procedures. One of the semantics we will consider is the semantics coming from
interpreting logic programs as a set of first order formulas, and in this case we
use = to denote entailment in classical first-order predicate logic.

SLD-resolution (see e.g. [12]) is an efficient top-down query-answering tech-
nique for programs consisting of non-disjunctive rules, and has been imple-
mented and successfully applied in standard Prolog systems In this framework,
a ground atom can be derived from a program if and only if it is true in the least
(and thus in all) Herbrand models of the program.

In the following, we mean by a conjunctive query simply a conjunction B; A
---A B, of atoms. The query is called ground if it does not contain any variables.

Given a conjunctive query By A- - A B,,, an SLD-resolution step on the atom
B; with a non-disjunctive rule H « Ay, ..., A; produces a conjunctive query

BiON-- - ANBi_10NAON- - NAONBi 10NN Bppb

where 6 is the most general unifier of B; and H. An SLD-refutation of a con-
junctive query B; A .-+ A B, in a non-disjunctive program P is a finite sequence
of conjunctive queries Qo, ..., Qn, where (i) Qo = By A -+ A By, (i) each Q;
with ¢ > 0 is obtained from Q);_; by an SLD-resolution step with some rule from
P on some literal B;, and (i) @, = 0, i.e. the conjunctive query @,, does not
contain any literals. If an SLD-refutation of B; A --- A B, in P exists, we write
PkEBiA---AB,y,.

One of the fundamental results in logic programming states that A € Bp can
be proven by SLD-resolution if and only if A is a logical consequence of P, i.e.
if and only if A is true in the least Herbrand model of P:

! Like SWI or XSB Prolog, http://www.swi-prolog.org, http://xsb.sourceforge.net.
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Theorem 1 ([12]). For a ground conjunctive query By A -+ A By, and a non-
disjunctive program P, P+ By A--- A By, if and only if P =By A--- A By,. In
other words, entailment of ground conjunctive queries under SLD-resolution is
entailment in predicate logic.

SLD-resolution also allows to derive answers to non-ground queries: For a con-
junctive (and not necessarily ground) query @ there exist an SLD-refutation if
and only if P = 3y ...3z,.Q, where x1,...,x, are the variables occuring in
Q. By keeping track of the most general unifiers used in the process, it is also
possible to obtain bindings for (some of) the x; in the form of (answer) substitu-
tions 6, such that P |= Jy; ...y (Q0), where the y; are exactly those variables
occurring in Q6. In order to keep our exhibition focused, we will only deal with
ground queries.

4 Reducing OWL DL Knowledge Bases to Disjunctive
Datalog Programs

We utilise recent research results about the transformation of OWL DL ontolo-
gies into disjunctive datalog, and perform approximate reasoning by transform-
ing the disjunctive database into a non-disjunctive one. The transformation is
based on the fact that OWL DL is a subset of first-order logic. OWL axioms can
thus be translated directly into logical formulas and transformed into clausal
form using any of the standard algorithms. The resulting clauses can be repre-
sented as disjunctive datalog rules which do not contain negation.

Note, however, that due to possible skolemization steps in the clausal form
translation, the resulting datalog rules may contain function symbols. In general,
datalog with function symbols is undecidable, but since we obtain the datalog
program by a translation from OWL DL, which is decidable, inferencing over
the resulting program must be decidable. Standard datalog engines, however, do
in general not terminate in the presence of function symbols. To cope with this
problem, a sophisticated method has been presented in [2,8] which allows to get
rid of the function symbols without loosing ABox consequences. As a result, we
obtain a function- and negation-free disjunctive datalog program, which can be
dealt with using standard techniques.

There is one other catch: The approach presented in [2,[3] does not yet allow
to deal with nominals, i.e. it supports only SHZQ(D) instead of SHOZN (D)
(the latter is the description logic coinciding with OWL DL). We remark that
to date — and to the best of our knowledge — no reasoning algorithms for
SHOIN (D) have been implemented. We will return to a possible treatment of
nominals in our approach later.

The translation algorithm is schematically depicted in Figure[2l It transforms
a SHZQ(D) knowledge base KB into a disjunctive datalog program DD(KB).
The steps of the algorithm are as follows. (1) Transitivity axioms are removed
by adding axioms of a form similar to VS.C' C VS.(VS.C) for transitive roles S.
(2) The knowledge base is translated into clausal form by standard transforma-
tions based on first-order predicate logic. This introduces function symbols due
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SHIQ(D Elimination of ’ Saturation Elimination of Conversion to Disjunctive
(D) Pl Translation ) . v
kg P Transitivity > into Clauses —» byBasic ¥ Function —» Disjunctive —» Program
Axioms Superposition Symbols Datalog DD(KB)

Fig. 2. Algorithm for Reducing SHZQ(D) to Datalog Programs

to necessary skolemization steps. (3) The TBox of the knowledge base is par-
tially saturated by adding logical consequences. This is the crucial step of the
algorithm. (4) The saturation from step (3) now allows to remove all function
symbols which were introduced in step (2). Some additional axioms are added to
ensure that the algorithm remains sound and complete. (5) The knowledge base
is translated into disjunctive datalog clauses; this step is now straightforward.

It shall be noted that the details of the crucial step (3) are very sophisticated.
They guarantee that the removal of function symbols in step (4) is at all possible.
Step (3) is of exponential complexity, however for the ABox reasoning task which
we focus on in this paper, Step (3) can in principle be performed offline, as this
step is independent of the ABox — but note that this offline computation may
still be difficult if the TBox is large, which is a seperate issue and deserves further
in-depth studies which are outside the scope of this paper. A full presentation
of the translation with correctness proofs is technically involved and lengthy,
and space restrictions forbid to go into further detail; we refer the interested
reader to [2B]. In [I] full proofs are given which show amongst other things
that KB is unsatisfiable if and only if DD(KB) is unsatisfiable. This suffices for
reasoning over KB as reasoning tasks can be transformed into unsatisfiability
checks.

5 Approximate Resolution

While approximate reasoning methods for propositional and first-order logic have
been proposed (see e.g. [13[14, 15,1617, 18]), they have hardly been applied in
the context of Semantic Web technologies. The few exceptions are reported e.g.
in [19,20,2T] — to the best of our knowledge, this list is exhaustive. The success
of the approaches is mixed. [21] reports on an analysis indicating that straight-
forward adaptations of methods proposed by [14] do not suffice. [20] reports good
results but is not an approximate reasoning method in the more narrow sense
as the reasoning performed is exact, and thus does not address the complexity
problems underlying OWL DL reasoning. [19] deals with approximating queries,
while we focus on ABox reasoning. We will now present a novel approach based
on the translation of OWL DL to disjunctive datalog, as presented earlier.

5.1 Approximate SLD-Resolution

Having obtained the translated knowledge base in the form of a disjunctive
datalog program, ABox reasoning remains NP-hard, and thus untractable. If the
datalog program is non-disjunctive, though, reasoning is polynomial in the size of
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the ABox. We therefore propose the following approximate reasoning technique
in order to facilitate this insight. Given a conjunctive query By A --- A By,
an approximate SLD-resolution step on the atom B; with a disjunctive rule
HyV---VH, «— Aj,..., A is a conjunctive query

BiON-- - ANBi_10NAON- - NAONBi 10N - AN Bppb

such that 6 is the most general unifier of B; and some H;. Approximate SLD-
refutation is defined analogously to SLD-refutation, where approximate SLD-
resolution steps are used instead of (usual) SLD-resolution steps.

It is necessary to pursue the question what notion of entailment underlies
the approximate reasoning technique we propose. Following the spirit of the
obervations from Section 2] we want to identify the set of models which underly
the inference relation provided by approximate SLD-resolution. For this purpose,
we need the following notion, which is derived from standard notions in non-
monotonic reasoning over logic programs.

Definition 1 (cf. [22,23.[24]). A model M of a disjunctive program P is called
well-supported if there exists a function | : Bp — N such that for each A € M
there exists a rule AV Hy V ---V Hy, — Aq,..., A in ground(P) with M = A,
and 1(A) > 1(A;) for all i and k.

Definition[dlis a straightforward adaptation of the notion of well-supported model
for non-disjunctive programs, as given in [23]. For non-disjunctive (and negation-
free) programs, the well-supported models are exactly the minimal ones, but this
is not in general the case for disjunctive programs: Just consider the program
consisting of the single rule pV g <. Then {p, ¢} is a well-supported model, but
is not minimal.

Lifted appropriately to (non-disjunctive) programs with negation, the well-
supported models coincide with the well-known stable models. This was shown in
[23] and studied in-depth in [24125]. Stable models [26] provide the base for the
most popular non-monotonic reasoning paradigm called Answer Set Program-
ming, of which the two most prominent implementations are DLV and SMODELS
[27,28]. Our results thus stand within this well-established tradition.

It is apparent that A € Bp is entailed by a (disjunctive) program P by
approximate SLD-resolution if and only if it is true in at least one well-supported
model of P. This is called brave reasoning with well-supported models. A formal
proof of the following proposition is omitted for space restrictions.

Proposition 1. Entailment of ground conjunctive queries under approrimate
SLD-resolution is brave reasoning with well-supported models.

As an example, consider the (propositional) program consisting of the two rules
pV q < and r — p A ¢. Its minimal models are {q} and {p}, so r is not bravely
entailed by reasoning with minimal models. However all of {¢}, {p}, {p, ¢} and
{p, q,r} are well-supported models, so r is bravely entailed by reasoning with
well-supported models.
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There is an alternative way of formalizing approximate SLD-resolution using
a modified notion of split program [29]. Given a rule

H{V---VH, — Ay, ..., A,
the derived split rules are defined as:
HlHAl,...,Ak HmHAl,...,Ak.

For a given disjunctive program P its split program P’ is defined as the collection
of all split rules derived from rules in P. Approximate SLD-resolution on P is
obviously identical to SLD-resolution over P’.

Minimal models are well-supported, as can be seen from the following result
which was obtained along the lines of research laid out in [24,[25].

Theorem 2 ([30]). Let P be a disjunctive program. Then a model M of P is a
minimal model of P if and only if there exists a function | : Bp — N such that
for each A which is true in M there exists a rule AV H{V---VHy, «— A1,..., A
in ground(P) with M |= A;, M W~ Hy, and [(A) > 1(A;) for all i and k.

We hence have the following result, noting that P | @ for any ground con-
junctive query @ and program P if and only if @ is true in all minimal models
of P.

Proposition 2. Let P be a (possibly disjunctive) program and Q be a ground
conjunctive query with P |= Q. Then there exists an approximate SLD-refutation

for Q.

We remark that for negation-free disjunctive programs minimal models again
coincide with answer sets [26], as in the currently evolving Answer Set Program-
ming Systems, as already mentioned.

5.2 Approximate Resolution for OWL DL

Our proposal is based on the idea of converting a given OWL DL knowledge
base into a function-free definite disjunctive logic program, and then to apply
approximate resolution for ABox reasoning.

In order to be able to deal with all of OWL DL, we need to add a pre-
processing step to get rid of nominals, i.e. we need to compile SHOIN (D)
ontologies to SHZQ(D). We can do this by Language Weakening as follows: For
every occurrence of {o1,...,0,}, where n € N and the o, are abstract or con-
crete individuals, replace {o01,...,0,} by some new concept name D, and add
ABox assertions D(01),...,D(0,) to the knowledge base. Note that the trans-
formation just given does in general not yield a logically equivalent knowledge
base, so some information is lost in the process. Putting all the pieces together,
we propose the following subsequent steps for approximate ABox reasoning for
OWL DL.
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1. Apply Language Weakening as just mentioned in order to obtain a SHZQ(D)
knowledge base.

2. Apply transformations as in Section M in order to obtain a negation-free
disjunctive datalog program.

3. Apply approximate SLD-resolution for query-answering.

The first two steps can be considered to be preprocessing steps for setting up
the intensional part of the database. ABox reasoning is then done in the last step.
From our discussions, we can conclude the following properties of approximate
ABox reasoning for SHZQ(D).

— It is complete with respect to first-order predicate logic semantics.
— It is sound and complete wrt. brave reasoning with well-supported models.
— Data complexity of our approach is polynomial.

6 Screech OWL

A preliminary implementation of our approach is available as the SCREECH OWL
approximate reasoner [ Tt is part of the KAON2 OWL toolsH

KAONZ is the KArlsruhe ONtology framework, which includes a fast OWL
reasoner based on the transformation algorithms mentioned in Section[] and also
includes many other features helpful to work with ontologies. Among the KAON2
OWL tools, deo performs the language weakening step described in Section
in order to obtain a SHZQ(D) knowledge base. As KAON2 implements the
sophisticated translation algorithms described in Section [, we can convert an
OWL ontology into a disjunctive datalog program, e.g. by using the dlpconvert
KAON2 OWL tool with the -x switch.

SCREECH then accesses the results of the translation through the KAON2
API, creates the corresponding split programs and serialises them as Horn logic
programs in Edinburgh Prolog syntax. The result can be fed to any Prolog
interpreter — or other logic programming engine —, which in turn can be used
to perform ABox reasoning and inferencing over the knowledge base.

For completeness, we need to mention that in general support for concrete do-
mains and other features like integrity constraints is not necessarily implemented
in off-the-shelf logic programming systems. In these cases, concrete domains etc.
cannot be used. The KAON2 OWL tool ded,? for example, performs a language
weakening step by removing all concrete domains, and may come in handy in
such situations.

7 An Example

We demonstrate our approach by means of a simple OWL DL ontology. It con-
tains only a class hierarchy and an ABox, and no roles, but this will suffice to
display the main issues.

% http://logic.aifb.uni-karlsruhe.de/screech
3 http://www.aifb.uni-karlsruhe.de/ WBS /dvr /owltools
* http://kaon2.semanticweb.org
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serbian U croatian C european
eucitizen C european
german L! french U beneluxian C eucitizen
beneluxian = luxembourgian LI dutch LI belgian
serbian(ljiljana) serbian(nenad) german(pascal) french(julien)
croatian(boris) german(markus) german(stephan) croatian(denny)

indian(sudhir) belgian(saartje) german(rudi) german(york)
Fig. 3. Example ontology

The ontology is shown in Figure[], and its intended meaning is self-explanatory.
Note that the fourth line,

beneluxian = luxembourgian LI dutch U belgian,
translates into the four clauses

luxembourgian(x) V dutch(z) V belgian(x) < beneluxian(x), (1)

(z)
beneluxian(x) « luxembourgian(z),
beneluxian(z) < dutch,

(z)

and beneluxian(z) < belgian(z).

Thus, our approach changes the ontology by treating the disjunctions in
line () as conjunctions. This change affects the soundness of the reasoning
procedure. However, most of the ABox consequences which can be derived by
approximate SLD-resolution are still correct. Indeed, there are only two derivable
facts which do not follow from the knowledge base by classical reasoning, namely

dutch(saartje) and luxemburgian(saartje).

All other derivable facts are correct.

SCREECH translates the ontology from Figure Bl into the Prolog program
listed in Figure @ As standard implementations of SLD-resolution do not use
fair selection functions and also use depth-first search for higher efficiency, they
may sometimes fail to produce answers because they run into infinite branches of
the search tree. This occurs, for example, when using SWI—Proloﬁ. A reordering
of the clauses may improve the results, but does not solve the problem entirely.
More satisfactory performance can be obtained by using SLD-resolution with
tabling, as implemented e.g. in the XSB Prolog systenﬁ. In this case, all desired
consequences can be derived.

® http://www.swi-prolog.org/
5 http://xsb.sourceforge.net
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serbian(ljiljana). serbian(nenad). german (pascal) . french(julien).
croatian(boris) . german (markus) . german(stephan). croatian(denny).
indian(sudhir). belgian(saartje). german(rudi). german (york) .
european (X) :— serbian(X).

european (X) :— croatian(X).

european (X) :- eucitizen(X).

eucitizen(X) :— german(X) .

eucitizen(X) :— french(X).

eucitizen(X) :- beneluxian(X).

beneluxian(X) :— luxembourgian(X).

beneluxian(X) 1= dutch(X).

beneluxian(X) :- belgian(X).

dutch(X) :- beneluxian(X).

luxembourgian(X) :— beneluxian(X).

belgian(X) :- beneluxian(X).

Fig. 4. Example SCREECH output

8 Experiments and Evaluation

An approximate reasoning procedure needs to be evaluated on real data from
practical applications. Handcrafted examples are of only limited use as the ap-
plicability of approximate methods depends on the structure inherent in the
experimental data.

For our evaluation we have performed experiments with the OWL DL version
of the GALEN Upper OntologyE as it appears to be sufficiently natural and real-
istic. As it is a TBox ontology only, we populated GALEN’s 175 classes randomly
with 500 individuals] GALEN does not contain nominals or concrete domains.
GALEN has 673 axioms (the population added another 500). The TBox trans-
lation to disjunctive datalog took about 2300 ms, after which we obtained 2687
disjunctive datalog rules containing 267 disjunctions within 133 rules. Among
these were 152 integrity constraints (i.e. rules with empty head), which we re-
moved for our experiment as they led to inconsistency of the database] After
splitting disjunctive rules, we arrived at 2802 Horn rules.

We then randomly selected classes and queried for their extension using the
KAON2 datalog engine, both for processing the disjunctive datalog program and
for the split program. Some of the typical results are listed in Table 2l which
indicates a significant speed-up of more than 40% on average, while the vast ma-
jority of the retrieved answers is correct. Note that we obtain significant speed-up
although the KAON2 datalog engine is not optimized for Horn programs, but
rather tuned to efficient performance on definite disjunctive datalog.

" http://www.cs.man.ac.uk/~rector/ontologies/simple-top-bio/

8 Using the pop KAON2 OWL tool.

9 This is an expected effect. Removal of the integrity constraints does not destroy
completeness of the approximate reasoning procedure.
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Table 2. Performance comparison for instance retrieval using disjunctive datalog (DD)
vs. the corresponding split program (SPLIT), on the KAON2 datalog engine. Instances
indicates the number of instances retrieved using DD versus SPLIT, e.g. class Multi-
ple contained 9 individuals, while the split program allowed to retrieve 13 (i.e. the 9
correct individuals plus 4 incorrect ones). The full name of the class in the last row is
Biological object that has left right symmetry.

Time (DD) Time (SPLIT) Instances Class Name
11036 ms 6489 ms 154/154 Biological object

11026 ms 5959 ms 9/9  Specified set

11006 ms 6219 ms 9/13  Multiple

11015 ms 5898 ms 16/16 Probe structural part of heart
11036 ms 7711 ms 4/4  Human red blood cell mature

11055 ms 5949 ms 24/58 Biological object that. ..

The times were obtained with initial Java VM memory set to 256 MByte. Un-
der memory restrictions, the speed-up is more significant, which is probably caused
by the necessity to allocate additional memory for the DD reasoning task. Corre-
sponding figures are given in Table[3l Our experiments also indicate that SCREECH
may be useful when hardware is limited, for example in portable devices.

9 Conclusions and Further Work

In anutshell, our proposed procedure approximates reasoning by disregarding non-
Horn features of OWL DL ontologies. We argue that this is a reasonable approach
to approximate reasoning with OWL DL in particular because many of the cur-
rently existing ontologies rarely use language constructs that do not fall into the
Horn fragment of OWL DL [31]. So it can be projected that even in the future these
constructs will play a minor role and thus should be the first to be tempered with
in order to gain tractable reasoning.

Our approach provides ABox reasoning with polynomial time complexity.
While it is complete, it is also unsound with respect to first-order logic. We have
shown, however, that the inference underlying our approach can be characterized
using standard methods from the area of non-monotonic reasoning. We have also
presented our implementation SCREECH, and verified the usefulness of our
approach by means of experiments.

Table 3. Performance comparison as in Table[2] but with 128 MByte intial memory

Time (DD) Time (SPLIT) Instances Class Name
32997 ms 4817 ms 154/154 Biological object

33028 ms 4947 ms 9/9  Specified set

32927 ms 4987 ms 9/13  Multiple

32977 ms 4957 ms 16/16 Probe structural part of heart
32987 ms 7350 ms 4/4  Human red blood cell mature

32947 ms 4796 ms 24/58 Biological object that. ..
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The checking whether a conjunctive query is a predicate logic consequence of a
(negation-free) disjunctive logic program Pamounts to checking whether the query
is valid in all minimal models of P, i.e. corresponds to cautious reasoning with
minimal models. Theorem 2 suggests how an anytime algorithm for this might be
obtained: After performing approximate SLD-resolution, it remains to be checked
whether there is any (ground instance of a) rule used in the refutation of the query,
which has an atom A in its head besides the one used in the refutation and such that
A is (cautiously) entailed by the program. Such an algorithm might then first find a
brave proof of a query, and then substantiate this proof by subsequent calculations.
Our approach may also be useful for the quick derivation of possible answers to a
query, which may then be used for efficient guidance of the search within a sound and
complete OWL reasoner. These and other issues are currently under investigation.

Acknowledgement. We are grateful for discussions with Boris Motik about his and
our work.
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