
INCOME2010 - a Toolset for Developing Process-
Oriented Information Systems Based on Petri Nets

Stefan Klink, Yu Li, Andreas Oberweis

Institute of Applied Informatics and Formal Description Methods (AIFB)
University of Karlsruhe

76128 Karlsruhe, Germany
{stefan.klink | yu.li | oberweis}@aifb.uni-karlsruhe.de

ABSTRACT
Petri nets are widely accepted as a process modeling technique
with formal semantics and mathematical foundation. They are
well suitable for modeling (business) processes in executable
form and for analyzing process models through simulative vali-
dation and formal verification. Nevertheless, there are currently
only a small number of Petri net based tools available for de-
veloping process-oriented information systems, which have
gained importance in recent years because of the awareness that
business processes are one of the key success factors for or-
ganizations. In this paper we survey the project INCOME2010
aiming at developing an open source software toolset that facili-
tates the development of process-oriented information systems.
It provides functionalities for modeling, analyzing, executing,
and monitoring (business) processes using variants of high-
level Petri nets and concepts of Service-Oriented Architecture.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques –
Petri nets.

General Terms
Design

Keywords
Petri nets, XML nets, software toolset, information systems,
SOA

1. INTRODUCTION
In recent years process-oriented information systems (IS) have
steadily gained importance in comparison to traditional func-
tion-oriented IS because business processes are one of the key
success factors for organizations of all sizes. As a result, there
has been a distinct increase in the number of tools that facilitate
the development of process-oriented information systems based
on various process modeling methodologies.

Petri nets are widely accepted as a well-founded process model-

ing technique with formal semantics, graphical nature, high
expressiveness, analyzability and vendor-independence [15].
They are well suitable for modeling business processes with
related process and data objects in executable form and for
analyzing process models through simulative validation and
formal verification. Since the introduction of high-level Petri
nets in the 80's of the last century [5], Petri net theory has been
greatly enriched through enormous research efforts resulting in
a large number of theoretical publications. Nevertheless, there
are still only a small number of Petri net based tools available
for the development of process-oriented information systems.

With the globalization of the economy, the significance of in-
ter-organizational business processes has been realized by more
and more organizations and researchers. During execution of
inter-organizational business processes, process objects (e.g.,
orders, invoices, protocols etc.) are exchanged among cooperat-
ing organizations. As a variant of high-level Petri nets, XML
nets [10] have advantages especially in the description of proc-
ess objects and inter-organizational exchange of standardized
structured data (e.g., XML documents). However, there is cur-
rently still no software tool available that supports modeling,
analysis, execution and monitoring of business processes using
XML nets.

In this paper we survey the project INCOME20101 aiming at
developing an open source software toolset2 that facilitates the
development of process-oriented information systems. It pro-
vides functionalities for modeling, analyzing, executing and
monitoring (business) processes using variants of high-level
Petri nets (e.g., XML nets) and concepts of Service-Oriented
Architecture (SOA). The extensible plug-in architecture of
INCOME2010 allows different Petri net variants to be imple-
mented as plug-ins which can be easily added to the main plat-
form and used for different types of process-oriented informa-
tion system.

This paper is structured as follows: The next section examines
related work. Section 3 gives a brief explanation of XML nets
with a simple example. Section 4 discusses general require-

1 INCOME stands for “Interactive Conceptual Modeling Envi-

ronment”. An earlier version of INCOME2010 is described in
[11]. INCOME2010 is being developed collaboratively by the
Institute of Applied Informatics and Formal Description
Methods (AIFB) at the University of Karlsruhe (TH), PRO-
MATIS Software GmbH and the Research Center for Infor-
mation Technologies Karlsruhe (FZI).

2 The current version of the toolset can be freely downloaded
from the project’s website http://www.aifb.uni-
karlsruhe.de/Forschungsgruppen/BIK/income2010/.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
International Workshop on Petri Nets Tools and APplications
PNTAP 2008, March 3, 2008, Marseille, France.
Copyright 2008 ACM ISBN 978-963-9799-20-2 ...$5.00.

ments for a software tool used to develop process-oriented in-
formation systems. In section 5 we describe the open plug-in
architecture of INCOME2010. In section 6 some technical as-
pects in the implementation of INCOME2010 will be discussed.
Section 7 presents the implemented functional features of the
toolset. Section 8 concludes with a summary and an outlook on
future work.

2. RELATED WORK
In recent years, a great number of Petri net tools have been
developed3. Most of them are designed for high-level Petri nets
for running on different operating systems. More sophisticated
tools provide a graphical editor for modeling Petri nets and a
token game animation which makes the system more user-
friendly. But only a few provide an interchange file format, e.g.
PNML, for further use or execution in other (commercial) tools.

Representative work related to INCOME2010 includes for ex-
ample VIPtool, CPN-Tool, Woflan, PetriNetKernel and
YAWL-Tool. None of them is supporting XML nets.

VIPtool is a tool for editing, simulating and validating systems
modeled with P/T Petri nets. It implements the research done in
a project named VIP (Verification of Information systems by
evaluating partially-ordered Petri net runs) to establish a simu-
lation and validation concept for Petri nets based on the genera-
tion and evaluation of partially ordered execution runs (proc-
esses) instead of totally ordered sequences of transition occur-
rences [2].

CPN-Tool is a high level Petri net tool which supports the basic
Petri nets plus Colored Petri nets and timed Petri nets. It in-
cludes a simulator and a state space analysis tool [4].

The tool Woflan enables users to model business processes by
workflow nets, and to check whether the designed model ful-
fills desired properties, such as soundness etc. [14].

PetriNetKernel is an infrastructure for developing Petri net
tools. It relieves the programmer from implementing standard
functions on Petri nets such as loading and saving nets, access-
ing and modifying the net structure, and building graphical user
interfaces [8].

Based on YAWL (Yet Another Workflow Language), a Petri
net dialect extended with additional features and constructs to
facilitate the modeling of complex workflows [13], the YAWL-
Tool provides a graphical editor and a SOA-based engine sup-
porting both the control flow and data perspectives. It uses

3 A comprehensive overview of Petri net tools is given at

http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/.

XML-based standards like XML Schema, XPath and XQuery to
define, transform, evaluate and exchange workflow data. It also
supports workflow analysis (e.g., soundness test) at build time.

Modeling systems supporting graphical design of models are
also related to INCOME2010 in the sense that Petri nets are
also a graph-based modeling formalism. A representative of
such modeling systems is Draw-Net [3], a Java-based open
framework supporting the multi-formalism modeling of sys-
tems. It includes a formalism generator for defining and editing
(multi-)formalism and a graphical Draw-Net tool for the crea-
tion of models using the defined formalism. Nevertheless, using
the formalism definition languages provided by Draw-Net, it
would be difficult to map all constructs of XML nets without
semantic loss.

3. FOUNDATIONS
XML nets represent a variant of high-level Petri nets, in which
each place is inscribed and typified by an XML Schema. Places
are therefore interpreted as containers of XML documents that
must conform to the place types defined in the respective sche-
mas. Transitions can also be inscribed by predicate logical ex-
pressions, whose free variables must be contained in the in-
scriptions of adjacent edges, the so-called Filter Schemas used
to read or manipulate XML data objects.

A transition in an XML net is enabled (i.e. it may occur) for a
given marking and for a given instantiation of the variables in
the transition's environment if the following three conditions
hold: Each place in the pre-set of the transition contains at least
one valid XML document that conforms to the Filter Schema
inscribing the edge from the place to the transition. Addition-
ally, places in the post-set of the transition have to be checked:
If the transition modifies existing XML documents in post-set
places, the existence and validity of these documents must be
ensured. If the transition creates new XML documents in post-
set places, then the places must not contain the documents to be
created. Finally, the transition inscription must be evaluated to
be true for the given instantiation of the variables, in order to
enable the transition. If an enabled transition occurs, XML
documents of pre-set places are read or (partially) deleted for
the given instantiation of variables, and in the marking of post-
set places, new XML documents are inserted or existing docu-
ments are modified.

Figure 1 shows a simplified XML net “pay bill” with XML
Schema and Filter Schema diagrams assigned to places and
edges, respectively. The XML element “isPaid” is of type Boo-

Figure 1: XML net "pay bill"

bills unpaid bills paid

pay bill

bill

product

price

buyer

number nameid name

number date
1..*

totalPriceisPaid

address

bill

product

price

buyer

number nameid name

number date
1..*

totalPriceisPaid

address

bill

product

price

buyer

number nameid name

number date
1..*

totalPriceisPaid

address

bill

product

price

buyer

number nameid name

number date
1..*

totalPriceisPaid

address

bill

NO DA
1..*

TPIP:false

bill

NO DA
1..*

TPIP:false

bill

NO DA
1..*

TPIP:true

bill

NO DA
1..*

TPIP:true

lean and indicates whether the bill has been paid. If the transi-
tion “pay bill” occurs, XML documents containing a bill num-
ber, a total price, an issue date and an element “isPaid” with the
value “false” are deleted from the place “bills unpaid” accord-
ing to the Filter Schema assigned to the ingoing arc of the tran-
sition. According to the Filter Schema inscribing the outgoing
arc of the transition and the XML Schema of the place “bills
paid”, XML documents are created where the value of element
“isPaid” is set to “true”. The black bars in the Filter Schema
diagrams represent manipulation filters used to create or delete
XML documents in this context. The rectangles with an in-
scribed “A” stand for element placeholders of the XML data
type AnyType and can be instantiated by elements of any type.

4. REQUIREMENTS
Requirements for a software tool supporting the development of
process-oriented information systems can be classified in func-
tional and non-functional requirements. The functional re-
quirements relate to behavior and internal functionalities of the
software and may generally include following aspects:

• Graphical modeling of process flows (control flows): A gra-
phical editor should be provided to build and edit process
flow models in executable form. Auxiliary graphical ele-
ments (shapes, images etc.), attributes (e.g., color, font,
alignment) and related functions are also desired to increase
the visuality of the models.

• Modeling of data flows: The tool should support the mode-
ling of data flows and the (structural) description of rele-
vant process objects and data objects.

• Definition and evaluation of (business) rules: Functional-
ities should be supplied for the definition and evaluation of
logical rules ranging from global strategic business rules to
process rules bound to specific usage points in process
models.

• Modeling of organizational structure: It should be possible
to model organizations involved in a business process and
their relationships and to assign roles and related resources
to organizational entities.

• Definition and management of process metrics: Process
metrics like time, cost, and resource consumption are per-
formance indicators used to monitor and optimize process-
oriented information systems. The tool should allow defin-
ing, assigning, storing, removing, and editing process met-
rics.

• Hierarchy modeling: It should be allowed to build process
and organization models hierarchically by refining process
nodes or organization entities to provide views at different
level of detail.

• Reusable process fragments: To reduce the time and cost
for building new process models, the tool should allow us-
ers to reuse process fragments (e.g., sub-processes) defined
previously or to select process prototypes from a process li-
brary.

• Analysis of process models: In order to improve process
models and to reduce costs in handling execution faults,
process models should be analyzed through simulative vali-
dation and, if possible, through formal verification prior to
the execution of models.

• Execution of process models: A workflow engine should be
provided to execute process models. Tasks of the workflow
engine include for example instantiation of workflows, in-
terpretation of business rules, creation of work lists, as-
signment of resources and invocation of (remote) functional
units (e.g., applications, services).

• Monitoring of process execution: A monitor should be pro-
vided to record and report the execution of process models
using process metrics. Mechanisms for exception handling
(e.g., error signaling, interruption, rollback, compensation)
should also be provided.

• Dynamic process management: Functionalities should be
supplied to support ad-hoc process deviations at run-time
by modifying process models and related objects, rules and
metrics during the process execution without violating data
consistency and other constraints.

More specifically, the incorporation of SOA concepts can also
be regarded as a functional requirement for the system. By
treating process activities or fragments as reusable and loosely
coupled Services, the flexibility and interoperability of process
models built with the tool would be enhanced.

Besides usability, availability, performance, and other non-
functional requirements for measuring and judging run-time
quality of the tool, some requirements for development-time
quality like extensibility, scalability, composability, and reus-
ability should also be taken into account. An open architecture
is therefore desirable, especially for an open source software
tool with features developed in parallel and cooperatively by
different teams.

5. ARCHITECTURE
INCOME2010 is a rich client Java application based on Eclipse
Rich Client Platform (RCP). Using the plug-in technology of
Eclipse, it arranges its components in an open plug-in architec-
ture in order to increase feature extensibility as stated in Section
4. Figure 2 depicts this architecture where the component de-
pendencies are indicated by arrows.

The Core Plug-in serves as the foundation of other plug-ins and
provides definition and implementation of basic GUI elements
(e.g., global menus, toolbars) and related (retargetable) actions.
It also defines system-wide configurations and the main struc-
ture of the integrated help system which can be extended and
refined by other plug-ins.

The Petri Net Plug-in supplies necessary facilities for the
graphical creation, editing and animated simulation of elemen-
tary Petri net models by implementing Petri net specific GUI
elements (perspective, views, menus, toolbars, wizards, etc.)
and related actions. As one of the fundamental components of
the system, it provides basic functionalities, extension points
and interfaces that can be extended and commonly used by
plug-ins implementing higher Petri net variants. In order to
support business processes, it also enables the definition, edit-
ing and assignment of roles, resources, documents, and process
metrics like time and cost.

Based on the Core and the Petri Net Plug-in, a variety of func-
tional modules can be added as plug-ins. For instance, the
Structural Analyzer Plug-in is utilized to analyze the structural
properties of Petri net models (e.g., free choice property). The
Monitoring Plug-in allows keeping track of the execution of
process models based on predefined metrics or indicators. The
Workflow Engine Plug-in supplies a workflow engine used to

execute process models. The Web Services Plug-in uses SOA
concepts and provides a BPEL4 generator to convert Petri net
models (partially) in executable BPEL codes and a UDDI5 in-
terface to search and access the available public Web Services
that can be integrated as process activities. In addition, by tak-
ing advantage of this extensible architecture, other functional
plug-ins for Petri nets can also be added to the system.

Functionalities for modeling and simulating XML nets are pro-
vided by the XML Net Plug-in, which depends on the Core
Plug-in, the Petri Net Plug-in, and three Editor Plug-ins. The

4 BPEL (Business Process Execution Language) is an executa-

ble business process modeling language for the orchestration
of Web Services. The specifications of BPEL can be found at
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf.

5 UDDI (Universal Description, Discovery and Integration) is a
platform-independent, XML-based registry for publishing and
discovering Web Services. For details see http://www.oasis-
open.org/committees/uddi-spec/doc/tcspecs.htm.

latter three are used to create and edit XML Schemas, Filter
Schemas and transition inscriptions, respectively. All functional
plug-ins for Petri nets can also be extended to meet specific
requirements of XML nets.

6. IMPLEMENTATION
INCOME2010 is a platform independent software toolset deve-
loped in Java. Its earlier version [1] was a standalone applica-
tion based on SWT/JFace6 toolkits and the graph library
JGraph7. Since version 0.2.0, INCOME2010 has migrated to

6 SWT (Standard Widgets Toolkit) and JFace are Java widget

toolkits for the creation of graphical user interfaces (GUI) by
accessing native GUI libraries of the underlying operating
system. http://www.eclipse.org/swt.

7 JGraph is an open source Java Graph visualization and layout
library. http://www.jgraph.com/.

Figure 2: Architecture of INCOME2010

Figure 3: User interface of INCOME2010

Eclipse RCP in order to utilize basic functionalities provided by
Eclipse and to increase extensibility of the system. It also uses
Eclipse Graphical Editing Framework (GEF) for the construc-
tion of rich graphical editors for process modeling and analysis.
Figure 3 shows the user interface of INCOME20108.

Similar to JGraph and other graph libraries, GEF is also built on
the architectural pattern Model-View-Controller (MVC) [12].
The model in GEF is any data that can be stored persistently.
Changes made in the model are notified to the controller using
PropertyChangeListener defined in JavaBeans. The controller
is named EditPart. It contains helpers called EditPolicies which
are responsible for handling editing tasks identified in user

8 For more screenshots see http://www.aifb.uni-karlsruhe.de/

Forschungsgruppen/BIK/income2010/screenshots.htm.

requests or property change events. The view in GEF is a Fig-
ure or a TreeItem which can only be changed by the controller.

Within the implementation of the Petri Net Plug-in, generic
interfaces for Petri net element models are defined so that fa-
cilities provided by this plug-in can easily be used and extended
by plug-ins implementing other Petri net variants. Figure 4
shows the UML class diagram for these interfaces with generic
operations that characterize them. The root interface IPetriNet-
Element represents the most generic interface from which all
other model interfaces are derived. It ensures that all Petri net
elements can be identified by IDs. The interface IPetriNetSub-
part extends IPetriNetElement with bounds information (e.g.,

+getID()
+setID()
+getNewID()

«interface»
IPetriNetElement

+reconnect()
+disconnect()
+getSource()
+setSource()
+getTarget()
+setTarget()
+getSourceID()
+getTargetID()
+getBendpoints()
+setBendpoints()
+clone()
+...()

«interface»
IPetriNetArc

+getSize()
+setSize()
+getLocation()
+setLocation()
+getIcon()
+...()

«interface»
IPetriNetSubpart

+addChild()
+removeChild()
+getChildren()
+getChildNodeByID()
+getPlaces()
+getTransitions()
+synchronizeBorderPlace()
+getType()
+setType()
+...()

«interface»
IPetriNetDiagram

+getOwner()
+setOwner()
+getText()
+setText()
+getFontInfo()
+setFontInfo()
+setVisible()
+isVisible()
+getType()
+setType()
+clone()
+...()

«interface»
IPetriNetLabel

+addArc()
+removeArc()
+getOutgoingArcs()
+getIncomingArcs()
+getNameModel()
+setNameModel()
+getDocumentRepository()
+setDocumentRepository()
+isImageHidden()
+setImageHidden()
+...()

«interface»
IPetriNetNode

+getOwner()
+setOwner()
+clone()

«interface»
IPetriNetToken

+getSuperdiagramPath()
+setSuperdiagramPath()
+getSupertransitionID()
+setSupertransitionID()
+addBorderPlace()

«interface»
IPetriNetSubdiagram

+addToken()
+removeToken()
+addVirtualToken()
+removeVirtualToken()
+setTokens()
+setVirtualTokens()
+getTokens()
+getVirtualTokens()
+getPreset()
+getPostset()
+isBordering()
+setBordering()
+clone()
+...()

«interface»
IPetriNetPlace

+getPreset()
+getPostset()
+isActivated()
+setActivated()
+isFiring()
+setFiring()
+getSubdiagramPath()
+setSubdiagramPath()
+getCost()
+setCost()
+getTime()
+setTime()
+clone()
+...()

«interface»
IPetriNetTransition

+getForegroundColor()
+setForegroundColor()
+getBackgroundColor()
+setBackgroundColor()
+getImage()
+setImage()
+getLineStyle()
+setLineStyle()
+getLineWidth()
+setLineWidth()
+getAlpha()
+setAlpha()
+getGradient()
+setGradient()
+...()

«interface»
IPetriNetGraphicsSubpart

+clone()

«interface»
IPetriNetEllipse

+clone()

«interface»
IPetriNetImage

+getStartArrowScaleX()
+setStartArrowScaleX()
+getStartArrowScaleY()
+setStartArrowScaleY()
+getEndArrowScaleX()
+setEndArrowScaleX()
+getEndArrowScaleY()
+setEndArrowScaleY()
+getStartArrowStyle()
+setStartArrowStyle()
+getEndArrowStyle()
+setEndArrowStyle()
+isStartArrowFill()
+setStartArrowFill()
+isEndArrowFill()
+setEndArrowFill()
+clone()
+...()

«interface»
IPetriNetLine

+clone()

«interface»
IPetriNetRectangle

Figure 4: Interfaces for Petri net element models

size, location) for resizable and/or movable net elements.
Within the interface IPetriNetGraphicsSubpart which special-
izes IPetriNetSubpart, common graphical properties (e.g., color,
line style, transparency, gradient) of Petri net node, label, image
and geometric shape (e.g., ellipse, rectangle, line) are aggre-
gated. The interface IPetriNetSubdiagram extends IPetriNet-
Diagram with super-diagram path, super-transition ID and the
operation for adding border places to the sub-diagram while
ensuring the consistency between border places and the corre-
sponding places in the super-diagram. Common properties of
Petri net place and transition like references to arcs, labels and
other nodes are incorporated in the operations of IPetriNet-
Node. All element model interfaces together with the related
EditParts, EditPolicies and Figures have been implemented in
the Petri Net Plug-in and extended by the XML Net Plug-in.

INCOME2010 is implementing element libraries used to man-
age reusable net elements and the references generated in the
creation of sub-diagrams. The current version provides implicit
element libraries for each project to add, remove, update, and
search references between border places and the corresponding
referenced places. The element libraries stored as XML files are
net specific, which means that several libraries can coexist in a
project if it contains process models based on different Petri net
variants. The Petri Net Plug-in offers an interface IElement-
Library that can be implemented by other net plug-ins to build
their own specific element libraries.

By refining transitions with subnets, process models can be
built hierarchically. As a result, simulation of process models
should be allowed to run at any level of the hierarchy. Once
started on a process diagram, the simulator must take all related
sub-diagrams into consideration. The simulation process of
each diagram must be coordinated by a central functional unit.
To achieve this for the token game simulation provided by the
Petri Net Plug-in, a token game simulator is divided into a To-
ken Game Coordinator and several Token Game Controllers.
The Coordinator is responsible for registering Controllers, start-
ing and stopping token game, controlling virtual token flow,
creating simulation report, and delegating checking tasks and
user requests to the registered Controllers. A Controller is in-
stantiated and assigned to each diagram involved in the simula-
tion to perform net checking tasks and to restore token and
transition status after the token game is stopped. Because one
sub-diagram can be used in several model hierarchies, it is im-
portant that no more than one Coordinator can be instantiated at
the same time and thus no more than one token game instance
can run simultaneously to avoid deadlocks and errors in the
simulation. This simulation mechanism also provides interfaces
that can be extended by other net plug-ins.

Within the implementation of the XML Net Plug-in, XQuery is
used to parse process rules expressed by Filter Schemas and
transition inscriptions and to manipulate XML data objects.
XQuery statements are executed using the XSLT and XQuery
processor Saxon9. To store and exchange XML net models, an
XML-based file format XNML has been defined, which extends
the standard Petri net interchange format PNML [6] with XML
Schema elements for XML net specific information like transi-
tion inscription and Schema path.

To speed up the development of INCOME2010, it is necessary
to integrate existing Petri net tools (e.g., Woflan) in the system.
The difficulty of the integration may vary depending on func-
tionalities, interfacing, data exchange format, system require-

9 http://saxon.sourceforge.net/.

ments and other natures of the tool. For instance, it would be
easier to integrate a tool supporting PNML standard. Otherwise
an interface or an adapter for data transformation has to be pro-
vided. EAI (Enterprise Application Integration) technologies
(e.g., bus/hub, connector, middleware) and Web Services may
also be used to integrate more heterogeneous tools.

On the other hand, to ensure the reusability of functional plug-
ins of the system, in addition to the adherence to PNML, inter-
faces should be provided to enable direct procedure call (DPC)
with simple parameter passing.

7. FUNCTIONAL FEATURES
INCOME2010 is in early stage of development. The current
version implements the Core Plug-in, the Petri Net Plug-in, and
the XML Net Plug-in and includes the following main func-
tional features:

• Graphical modeling: The creation and editing of Petri net
and XML net models are supported with net specific
graphical editors enabling simultaneous work on several net
diagrams. Net elements can be drag-and-dropped to the dia-
gram easily.

• Hierarchy modeling: Net models can be built hierarchi-
cally by creating reusable sub-processes that refine transi-
tions and can be referenced and embedded in more than one
net diagram. Places in the pre- and post-set of a refined
transition are referenced by border places in the sub-
processes. In order to guarantee the semantic consistency
between places in super- and sub-processes, some proper-
ties (e.g., name, initial marking) of border places can only
be modified by making changes on the top level of the hier-
archy. The system then propagates the changes downwards
to all related levels. To reduce complexity, other forms of
hierarchy modeling (e.g., place refinement) are currently
not supported.

• Animated token game simulation with report: Net mod-
els can be simulated by playing interactive token games in
which the movement of tokens is animated. After stopping
a token game, a simulation report recording transition acti-
vation and token movements is created. A token game can
be started at any level of a hierarchy.

• PNML-compliant file format: Net models are stored on
the local file system in tool-independent file formats com-
pliant to PNML, which enables exchanging net models with
other Petri net tools. For XML net models a PNML-based
file format XNML with XML net specific extensions is
used.

• Structured standard information of net nodes: Net nodes
(places and transitions) are described and specified by
structured standard information or metrics like name, view
name, description, notes, cost, time, etc. This information is
used to identify its owner or to analyze the net behavior in
simulation.

• Role and resource: Roles and resources are fundamental
elements for resource planning and management which can
be part of business process management. INCOME2010 al-
lows the definition of roles and resources that can be allo-
cated and assigned to transitions.

• Graphical editing support: Grid, ruler, guide and zoom
functions are provided to facilitate the positioning of dia-
gram elements, which can also be resized and aligned ac-

cording to the size and position of other elements. In addi-
tion, net nodes can be displayed using images. It is also
possible to draw geometric shapes and to add image and
text at an arbitrary location.

• Graphical export of diagram: Model diagrams can be
easily exported as images in BMP, JPEG, GIF and PNG
formats.

• Categorized project structure: INCOME2010 is project-
oriented, which means all resources created by the user are
managed in projects with predefined categorized structure.
INCOME2010 provides a project explorer that gives a hier-
archical view of the resources and categories of projects in
the workspace.

• Import and export of project: INCOME2010 provides
wizards and functionalities to import projects from an exist-
ing workspace or an archive file and to export projects to an
archive file.

• Project handbook: Project handbooks used to document
projects and related resources can be generated with con-
figuration possibilities, i.e. users can predefine the style and
content of a project handbook by activating some standard
reporting options. Project handbooks are stored in XML
format and can be exported as HTML, PDF or Microsoft
Word documents using XSLT stylesheet.

• Integrated help system: Documents guiding users and
developers of INCOME2010 are arranged in an integrated
Eclipse help system based on an XML table of contents ref-
erencing HTML files. The contents of the help documents
are searchable. Help topics related to a user interface wid-
get selected by the user can be listed dynamically by
searching all available topics on the query formed from cur-
rent context.

8. SUMMARY AND OUTLOOK
In this paper we surveyed INCOME2010, an open source soft-
ware toolset facilitating the development of process-oriented
information systems using variants of high-level Petri nets (e.g.,
XML nets) and SOA concepts. Although in early stage of de-
velopment, INCOME2010 can already be used for modeling
and simulating (business) processes in an effective and user
friendly way. It offers an integrated help system and compre-
hensive functionalities supporting graphical modeling, hierar-
chy modeling, animated token game simulation, PNML-
conform exchange format, project-oriented resource manage-
ment, and the definition and assignment of process metrics,
documents and other process-relevant information.

Next steps in the development of INCOME2010 include the
implementation of functional plug-ins for Petri nets and XML
nets, especially plug-ins for editing XML Schemas, Filter
Schemas, and transition inscriptions. In addition, the Petri Net
Plug-in will also be expanded, e.g., with the following features
and functionalities:

• Automated simulation with detailed report: A module
for automated simulation will be added to the current sys-
tem. Time, cost, resource consuming, and other process
metrics will be considered in the simulation. The simulation
result will be reported in detail and in different text formats.

• Explicit element library: The current internal element
library will be expanded to enable users to add, remove or
edit reusable net elements or fragments conveniently.

• Organization model: A graphical editor will be imple-
mented for creating and editing organization models that
describe organization entities and their relationships. The
editor also enables users to assign roles and resources to or-
ganization units. Similar to process models, an organization
model can also be built hierarchically by refining organiza-
tion entities with sub-organigrams.

Taking advantage of the extensible open architecture, we also
plan to enrich INCOME2010 with other Petri net variants (e.g.,
Front-end nets [7]) and tools (e.g., tool for semantic annotation
of Petri nets [9]) that are currently under development.

In cooperation with PROMATIS Software GmbH and the Re-
search Center for Information Technologies Karlsruhe (FZI),
INCOME2010 will be applied and evaluated in different (in-
dustrial) projects.

Acknowledgement:

We wish to thank the anonymous referees for many valuable
comments on an earlier version of this paper.

9. REFERENCES
[1] Betz, S., Karle, T., Klink, S., Koschmider, A., Li, Y., Me-

vius, M., Oberweis, A., Ried, D., Trunko, R., and Zaich,
M. 2006. Ein Framework zur Modellierung und Analyse
von XML-Netzen. In Moldt, D., Tagungsband 13. Work-
shop Algorithmen und Werkzeuge für Petri-Netze
(AWPN'06), 18-24. Universität Hamburg (in German).

[2] Desel, J., Juhas, G., Lorenz, R., and Neumair, C. 2003.
Modelling and Validation with VipTool. LNCS 2678, 380-
389.

[3] Gribaudo, M., Mazzocca, N., Moscato, F., and Vittorini,
V. 2005. Multisolution of Complex Performability Models
in the OsMoSys/DrawNet Framework. In Proc. 2nd Int.
Conf. on the Quantitative Evaluation of Systems, Torino,
Italy.

[4] Jensen, K., Kristensen, L.M., and Wells, L. 2007. Col-
oured Petri Nets and CPN Tools for Modelling and Valida-
tion of Concurrent Systems. In International Journal on
Software Tools for Technology Transfer (STTT).

[5] Jensen, K. and Rozenberg, G. (eds.) 1991. High-Level
Petri Nets. Theory and Application. Springer-Verlag.

[6] Jüngel, M., Kindler, E., and Weber, M. 2000. Towards a
Generic Interchange Format for Petri Nets. In: Bastide, R.,
Billington, J., Kindler, E., Kordon, F. and Mortensen, K.
H. (eds.): Meeting on XML/SGML based Interchange
Formats for Petri Nets. 1-5, Århus, Denmark, 21st
ICATPN.

[7] Karle, T. and Oberweis, A. 2006. Unterstützung von Kol-
laboration im Rahmen der Softwareentwicklung auf Basis
service-orientierter Architekturen. In: EMISA 2006 - Me-
thoden, Konzepte und Technologien für die Entwicklung
von dienstbasierten Informationssystemen, Volume P-95
of Lecture Notes in Informatics, 77-90. GI (in German).

[8] Kindler, E. and Oschmann, F. 1998. The Petri Net Kernel:
An INA-Pilot. In Desel, J., Kemper, P., Kindler, E., Ober-
weis, A.: Workshop Algorithmen und Werkzeuge für Pet-
rinetze.

[9] Koschmider, A. and Oberweis, A. 2005. Ontology based
Business Process Description. In Castro, J., Teniente, E.

Proceedings of the CAiSE´05 Workshops, No. 2, 321-333.
Porto/Portugal.

[10] Lenz, K. and Oberweis, A. 2003. Inter-Organizational
Business Process Management with XML Nets. In: Ehrig,
H., Reisig, W., Rozenberg, G., Weber, H. (eds.): Petri Net
Technology for Communication-Based Systems, Advances
in Petri Nets volume 2472 of LNCS, 243-263. Springer-
Verlag.

[11] Oberweis, A., Scherrer, G., and Stucky, W. 1994. IN-
COME/ STAR: Methodology and Tools for the Develop-
ment of Distributed Information Systems. In: Information
Systems, Vol. 19, No. 8, 643-660.

[12] Reenskag, T. M. H. 2003. The Model-View-Controller
(MVC), Its Past and Present. JavaZone 2003, Oslo, Nor-
way.

[13] Van der Aalst, W.M.P. and ter Hofstede, A.H.M. 2005.
YAWL: Yet Another Workflow Language. Information
Systems, 30(4):245-275.

[14] Van der Aalst, W.M.P. and van Hee, K. 2002. Workflow
Management, Models, Methods and Systems. The MIT
Press, Cambridge, Massachusetts.

[15] Van der Aalst, W.M.P. 1998. The Application of Petri
Nets to Workflow Management. In: The Journal of Cir-
cuits, Systems and Computers, 8(1), 21-66.

	1. INTRODUCTION
	2. RELATED WORK
	3. FOUNDATIONS
	4. REQUIREMENTS
	5. ARCHITECTURE
	6. IMPLEMENTATION
	7. FUNCTIONAL FEATURES
	8. SUMMARY AND OUTLOOK
	9. REFERENCES

